53
Views
6
CrossRef citations to date
0
Altmetric
Reviews

Autoregulation of optic nerve head blood flow and its role in open-angle glaucoma

, &

References

  • Smith P. Glaucoma: its causes, symptoms, pathology, and treatment. J. and A. Churchill; London: 1879
  • Tielsch J, Katz J, Sommer A, et al. Hypertension, perfusion pressure, and primary open-angle glaucoma. Arch Ophthalmol 1995;113:216-21
  • Leske M, Connel A, Wu S, et al. Risk factors for open-angle glaucoma: the Barbados Eye Study. Arch Ophthalmol 1995;113:918-24
  • Bonomi L, Marchini G, Marraffa M, et al. Vascular risk factors for primary open angle glaucoma: the Egna-Neumarkt Study. Ophthalmology 2000;107:1287-93
  • Alm A. Effects of norepinephrine, angiotensin, dihydroergotamine, papaverine, isoproterenol, nicotinic acid and xanthinol on retinal oxygen tension in cats. Acta Ophthalmol (Copenh) 1972;50:707-19
  • Alm A, Anders B. Ocular and optic nerve blood flow at normal and increased intraocular pressures in monkeys (Cacac irus): a study with radioactively labeled microspheres including flow determinations in brain and some other tissues. Exp Eye Res 1973;15:15-29
  • Ernest J. Autoregulation of optic-disk oxygen tension. Invest Ophthalmol Vis Sci 1979;18:101-6
  • Weinstein J, Funsch D, Page R, Brennan R. Optic nerve blood flow and its regulation. Invest Ophthalmol Vis Sci 1982;23:640-5
  • Weinstein J, Duckrow R, Beard D, Brennan R. Regional optic nerve blood flow and its autoregulation. Invest Ophthalmol Vis Sci 1983;24:1559-65
  • Sossi N, Anderson D. Effect of elevated intraocular pressure on blood flow: occurrence in cat optic nerve head studied with iodoantipyrine I 125. Arch Ophthalmol 1983;101:98-101
  • Quigley H, Hohman R, Addicks E, Green W. Blood Vessels of the glaucomatous optic disc in experimental primate and human eyes. Invest Ophthalmol Vis Sci 1984;25:918-93
  • Rojanapongpun P, Drance S, Morrison B. Ophthalmic artery flow velocity in glaucomatous and normal subjects. Br J Ophthalmol 1993;77:25-9
  • Harris A, Sergott R, Spaeth G, et al. Color doppler anaylsis of ocular vessel blood velocity in normal-tension glaucoma. Am J Ophthalmol 1994;118:642-9
  • Ulrich A, Ulrich C, Barth T, Ulrich W. Detection of disturbed autoregulation of the peripapillary choroid in primary open angle glaucoma. Ophthalmic Surg Lasers 1996;27:746-57
  • Yin Z, Vaegan Millar T, et al. Widespread choroidal insufficiency in primary open-angle glaucoma. J Glaucoma 1997;6:23-32
  • Chung H, Harris A, Kagemann L, Martin B. Peripaillary retinal blood flow in normal tension glaucoma. Br J Ophthalmol 1999;83:466-9
  • Fuchsjager-Mayrl G, Wally B, Gerogopoulos M, et al. Ocular blood flow and systemic blood pressure in patients with primary open-angle glaucoma and ocular hypertension. Invest Ophthalmol Vis Sci 2004;45:834-9
  • Sato E, Ohtake Y, Shinoda K, et al. Decreased blood flow at neuroretinal rim of optic nerve head corresponds with visual field deficit in eyes with normal-tension glaucoma. Graefes Arch Clin Exp Ophthalmol 2006;244:795-801
  • Garhofer G, Fuchsjager-Mayrl G, Vass C, et al. Retrobulbar blood flow velocities in open angle glaucoma and their association with mean arterial blood pressure. Invest Ophthalmol Vis Sci 2010;51:6652-7
  • Moore D, Harris A, WuDunn D, et al. Dysfunctional regulation of ocular blood flow: a risk factor for glaucoma? Clin Ophthalmol 2008;2:849-61
  • Hayreh S. Blood flow in the optic nerve head and factors that may influence it. Prog Retin Eye Res 2001;20:595-624
  • Geijer C, Bill A. Effects of raised intraocular pressure on retinal, prelaminar, laminar, and retrolaminar optic nerve blood flow in monkeys. Invest Ophthalmol Vis Sci 1979;18:1030-42
  • Cipolla M. Control of cerebral blood flow. In: The cerebral circulation. Morgan & Claypool Life Sciences, 2009
  • Hafez A, Bizzarro R, Rivard M, Lesk M. Changes in optic nerve head blood flow after therapeutic intraocular pressure reduction in glacuoma patients and ocular hypertensives. Ophthalmology 2003;110:201-10
  • Pillunat L, Stodtmeister R, Wilmanns I, Christ T. Autoregulation of ocular blood flow during changes in intraocular pressure; preliminary results. Graefes Arch Clin Exp Ophthalmol 1985;223:219-23
  • Evans D, Harris A, Garret M, et al. Glaucoma patients demonstrate faulty autoregulation of ocular blood flow during posture change. Br J Ophthalmol 1999;83:809-13
  • Robert Y, Steiner D, Hendrickson P. Papillary circulation dynamics in glaucoma. Graefes Arch Clin Exp Ophthalmol 1989;227:436-9
  • Pillunat L, Stodmeister R, Wilmanns I. Pressure compliance of the optic nerve head in low tension glaucoma. Br J Ophthalmol 1987;71:181-7
  • Weinreb R, Harris A. Ocular blood flow in glaucoma: the 6th Consensus report of the World Glaucoma Association. Volume 6 Kugler Publications; Amsterdam, Netherlands: 2009
  • Sacco S, Ripa P, Grassi D, et al. Peripheral vascular dysfunction in migraine: a review. J Headache Pain 2013;14:80
  • Asghar M, Hansen A, Amin F, et al. Evidence for a vascular factor in migraine. Ann Neurol 2011;69:635-45
  • Phelps C, Corbett J. Migraine and low-tension glaucoma: a case-control study. Invest Ophthalmol Vis Sci 1985;26:1105-8
  • Corbett J, Phelps C, Eslinger P, Montague P. The neurologic evaluation of patients with low-tension glaucoma. Invest Ophthalmol Vis Sci 1985;26:1101-4
  • Cursiefen C, Wisse M, Cursiefen S, et al. Migraine and tension headache in high-pressure and normal-pressure glaucoma. Am J Ophthalmol 2000;129:102-4
  • Wang J, Mitchell P, Smith W. Is there an association between migraine headaches and open-angle glaucoma? Findings from the Blue Mountains Eye Study. Ophthalmology 1997;104:1714-19
  • Drance S, Anderson D, Schulzer M. Collaborative normal tension glaucoma study: risk factors for progression of visual field abnormalities in normal-tension glaucoma. Am J Ophthalmol 2001;131:699-708
  • Martinez A, Proupim N, Sanchez M. Scanning laser polarimetry with variable corneal compensation in migraine patients. Acta Ophthalmol 2009;87:740-53
  • Martinez A, Proupim N, Sanchez M. Retinal nerve fibre layer thickness measurements using optical coherence tomography in migraine patients. Br J Ophthalmol 2008;92:1069-75
  • Gipponi S, Sacroni N, Venturelli E, et al. Reduction in retinal nerve fiber layer thickness in migraine patients. Neurol Sci 2013;34:841-5
  • Sorkhabi R, Mostafaei S, Ahoor M, Talebi M. Evaluation of retinal nerve fiber layer thickness in migraine. Iran J Neurol 2013;12:51-5
  • Zengin M, Elmas Z, Cinar E, Kucukerdonmez C. Choroidal thickness changes in patients with migraine. Acta Neurol Belg 2014. [Epub ahead of print]
  • Mahler F, Wurbel H, Flammer J. Local cooling test for clinical capillaroscopy in Raynaud’s phenomenon, unstable angina, and vasospastic visual disorders. Vasa 1989;18:201-4
  • Flammer J, Guthauser U, Mahler F. Do ocular vasospasms help cause low tension glaucoma? Doc Ophthalmol Proc Ser 1987;397:399
  • Broadway D, Drance S. Glaucoma and vasospasm. Br J Ophthalmol 1998;82:862-70
  • Flammer J, Pache M, Resink T. Vasospasm, its role in the pathogenesis of diseases with particular reference to the eye. Prog Retin Eye Res 2001;20:319-49
  • Drance S, Douglas G, Wijsman K, et al. Response of blood flow to warm and cold in normal and low-tension glaucoma patients. Am J Ophthalmol 1988;105:35-9
  • Gasser P, Flammer J. Blood-cell velocity in the nailfold capillaries of patients with normal-tension and high-tension glaucoma. Am J Ophthalmol 1991;11:585-8
  • Emre M, Orgul S, Gugleta K, Flammer J. Ocular blood flow alteration in glaucoma is related to systemic vascular dysregulation. Br J Ophthalmol 2004;88:662-6
  • Ghergel D, Orgul S, Dubler B, et al. Is vascular regulation in the central retinal artery altered in persons with vasospasm? Arch Ophthalmol 1999;117:1359-62
  • Mozaffarieh M, Osusky R, Schotzau A, Flammer J. Relationship between optic nerve head and finger blood flow. Eur J Ophthalmol 2010;20:136-41
  • Pache M, Dubler B, Flammer J. Peripheral vasospasm and nocturnal blood pressure dipping - two distinct risk factors for glaucomatous damage? Eur J Ophthalmol 2003;13:260-5
  • Hafez A, Bizzarro R, Descovich D, Lesk M. Correlation between finger blood flow and changes in optic nerve head blood flow following therapeutic intraocular pressure reduction. J Glaucoma 2005;14:448-54
  • Hulsman C, Vingerling J, Hofman A, et al. Blood pressure, arterial stiffness, and open-angle glaucoma. The Rotterdam Study. Epidemiology 2007;125:805-12
  • Costa V, Harris A, Anderson D, et al. Ocular perfusion pressure in glaucoma. Acta Ophthalmol 2014;92(4):e252-66
  • Schmidl D, Garhofer G, Schmetterer L. The complex interaction between ocular perfusion pressure and ocular blood flow – relevance for glaucoma. Exp Eye Res 2011;93:141-55
  • Wang L, Cull G, Fortune B. Optic nerve head blood flow response to reduced ocular perfusion pressure by alteration of either the blood pressure or intraocular pressure. Curr Eye Res 2014. [Epub ahead of print]
  • Boltz A, Told R, Napora K, et al. Optic nerve head blood flow autoregulation during changes in arterial blood pressure in healthy young subjects. PLoS One 2013;8:e82351
  • Hayreh S, Zimmerman M, Podhajsky P, Alward W. Nocturnal arterial hypotension and its role in optic nerve head and ocular ischemic disorders. Am J Ophthalmol 1994;1117:603-24
  • Hayreh S, Podhajsky P, Zimmerman M. Beta-blocker eyedrops and nocturnal arterial hypotension. Am J Ophthalmol 1999;128:301-9
  • Meyer J, Brandi-Dohrn J, Funk J. Twenty four hour blood pressure monitoring in normal tension glaucoma. Br J Ophthalmol 1996;80:864-7
  • Yazici B, Usta E, Ertuk H, Dilek K. Comparison of ambulatory blood pressure values in patients with glaucoma and ocular hypertension. Eye (Lond) 2003;17:593-8
  • Riccadonna M, Covi G, Pancera P, et al. Autonomic system activity abd 42-hour blood pressure variations in subjects with nornal- and high-tension glaucoma. J Glaucoma 2003;12:156-63
  • Tokunaga T, Kashiwagi K, Tsumura T, et al. Association between nocturnal blood pressure reduction and progression of visual field defect in patients with primary open-angle glaucoma or normal-tension glaucoma. Jpn J Ophthalmol 2004;48:380-5
  • Joe S, Choi J, Sung K, et al. Twenty-four hour blood pressure pattern in patients with normal tension glaucoma in the habitual position. Korean J Ophthalmol 2009;23:32-9
  • Karadag R, Keshkin U, Koktener A, et al. Ocular pulse amplitude and retrobulbar blood flow change in dipper and non-dipper individuals. Eye (Lond) 2011;25:762-6
  • Krasinska B, Karolczak-Kulesza M, Karsinski Z, et al. A marked fall in nocturnal blood pressure is associated with the stage of primary open-angle glaucoma in patients with arterial hypertension. Blood Press 2011;20:171-81
  • Nesher R, Kohen R, Shulman S, et al. Diastolic-double product: a new entity to consider in normal-tension glaucoma patients. Isr Med Assoc J 2012;14:240-3
  • Krasinska B, Karolczak-Kulesza M, Karsinski Z, et al. Effects of the time of antihypertensive drugs administration on the stage of primary open-angle glaucoma in patients with arterial hypertension. Blood Press 2012;21:240-8
  • Ramali N, Nurull B, Hairi N, Mimiwati Z. Low nocturnalocular perfusion pressure as a risk factor for normal tension glaucoma. Prev Med 2013;57:S47-59
  • Farnett L, Mulrow C, Linn W, et al. The j-curve phenomenon and the treatment of hypertension. Is there a point beyond which pressure reduction is dangerous? JAMA 1991;265:489-95
  • Resch H, Schmidl D, Hommer A, et al. Correlation of optic disc morphology and ocular perfusion parameters in patients with primary open angle glaucoma. Acta Ophthalmol 2001;89:e544-9
  • Yaoeda K, Shirakashi M, Fufushima A, et al. Relationship between optic nerve head microcirculation and visual field loss in glaucoma. Acta Ophthalmol Scand 2003;81:253-9
  • Tuulonen A, Nagin P, Schwartz B, Wu D. Increase in pallor and fluorescein-filling defects of the optic disc in the follow-up of ocular hypertensives measured by computerized image analysis. Ophthalmology 1987;94:558-63
  • Loebl M, Schwartz B. Fluorescein angiographic defects of the optic disc in ocular hypertension. Arch Ophthalmol 1977;95:1980-4
  • Piltz-Seymour J, Grunwald J, Hariprasad S, DuPont J. Optic nerve blood flow is diminished in eyes of primary open-angle glaucoma suspects. Am J Ophthalmol 2001;243:659-64
  • Arend O, Remky A, Plange N, et al. Fluorescein leakage of the optic disc in glaucomatous optic neuropathy. Graefes Arch Clin Exp Ophthalmol 2005;243:659-64
  • Leiberman M, Maumenee E, Green W. Histologic studies of the vasculature of the anterior optic nerve. Am J Ophthalmol 1976;82:405-23
  • Hayreh S. Blood supply of the anterior optic nerve. In: Ritch R, Chields M, Krupin T, editors. The glaucomas. Volume 1. The C.V. Mosby Company, St. Louis, 1989. p. 133-61
  • Hayreh S. Ischemic optic neuropathy. Prog Retin Eye Res 2009;28:34-62
  • Francois J, Neetens A. Vascularization of the optic pathway. III. Study of intra-orbital and intracranial optic nerve by serial sections. Br J Ophthalmol 1956;40:45-52
  • Zhao Y, Li F. Microangioarchitecture of optic papilla. Jpn J Ophthalmol 1987;31:147-59
  • Cioffi G, Van Buskirk E. Anatomy of the ocular microvasculature. Surv Ophthalmol 1994;38:5107
  • Onda E, Cioffi G, Bacon D, Van Buskirk M. Microvasculature of the human optic nerve. Am J Ophthalmol 1995;120:92-102
  • Cioffi G, Van Buskirk E. Chapter 8. Vasculature of the anterior optic nerve and peripapillary choroid. In: Ritch R, Shields M, Krupin T, editors. The glaucomas. 2nd edition. The C.V. Mosby Company, St. Louis, 1996. p. 177-88
  • Mackenzie P, Cioffi G. Vascular anatomy of the optic nerve head. Can J Ophthalmol 2008;43:308-12
  • Furukawa H. Autonomic innervation of preretinal blood vessels of the rabbit. Invest Ophthalmol Vis Sci 1987;28:1752-60
  • Kumagi N, Yuda K, Katoda T, et al. Substance P-like immunoreactivity in the central retinal artery of the rabbit. Exp Eye Res 1988;46:591-6
  • Ye X, Laties A, Stone R. Peptidergic innervation of the retinal vasculature and optic nerve head. Invest Ophthalmol Vis Sci 1990;31:1731-7
  • Delaey C, Van de Voorde J. Pressure-induced myogenic responses in isolated bovine retinal arteries. Invest Ophthalmol Vis Sci 2000;41:1871-5
  • Tan C, Hamner J, Taylor J. The role of myogenice mechanisms in human cerebrovascular regulation. J Physiol 2013;591:5095-105
  • Jeppesen P, Aalkjaer C, Bek T. Myogenic repsonse in isolated porcine retinal arteries. Curr Eye Res 2003;27:217-22
  • Kontos H, Wei E, Raper A. Patterson J,Jr. Local mechanism of CO2 action on cat pial arterioles. Stroke 1977;8:226-9
  • Kontos H, Wei E, Raper A, et al. Role of tissue hypoxia in local regulation of cerebral microcirculation. Am J Physiol 1978;234:H582-91
  • Riva C, Grunwald J, Sinclair S. Laser Doppler velocimetry study of the effect of pure oxygen breathing on retinal blood flow. Invest Ophthalmol Vis Sci 1983;24:47-51
  • Harris A, Ciulla T, Chung H, Martin B. Regulation of retinal and optic nerve blood flow. Arch Ophthalmol 1998;1116:1491-5
  • Schmetterer L, Findl O, Strenn K, et al. Role of NO in the O2 and CO2 responsiveness of cerebral and ocular circulation in humans. Am J Physiol 1997;273:R2005-R2012
  • Lee N, Lopilly Park H, Na K, et al. Association between heart rate vairability and systemic endothelin-1 concentration in normal-tension glaucoma. Curr Eye Res 2013;38:516-19
  • Brooks D, Komaromy A, Kallberg A, et al. Blood flow velocity response of the ophthalmic artery and anterior optic nerve head capillaries to carbogen gas in the rhesus monkey model of optic nerve head ischemia. Vet Ophthalmol 2007;10:20-7
  • Schmidl D, Boltz A, Kaya S, et al. Role of nitric oxide in optic nerve head blood flow regulation during an experimental increase in intraocular pressure in healthy humans. Exp Eye Res 2013;116:247-53
  • Schmidl D, Boltz A, Kaya S, et al. Role of nitric oxide in optic nerve head blood flow regulation during isometric exercise in healthy humans. Invest Ophthalmol Vis Sci 2013;54:1964-70
  • Okuno T, Oku H, Sugiyama T, et al. Evidence that nitric oxide is involved in autoregulation in optic nerve head of rabbits. Invest Ophthalmol Vis Sci 2002;43:784-9
  • Dodge A, Hechtman H, Shepro D. Microvascular endothelial-derived autacoids regulate pericyte contractility. Cell Motil Cytoskeleton 1991;18:180-8
  • Toda N, Kitamura Y, Okamura T. Functional role of nerve-derived nitric oxide in isolated dog ophthalmic arteries. Invest Ophthalmol Vis Sci 1995;36:563-70
  • Orgul S, Meyer P, Cioffi G. Physiology of blood flow regulation and mechanisms involved in optic nerve perfusion. J Glaucoma 1995;4:427-43
  • Haefliger I, Flammer J, Luscher T. Nitric oxide and endothelin-1 are important regulators of human ophthalmic artery. Invest Ophthalmol Vis Sci 1992;33:2340-3
  • Shibata M, Sugiyama T, Kurimoto T, et al. Involvement of glial cells in the autoregulation of optic nerve head blood flow in rabbits. Invest Ophthalmol Vis Sci 2012;53:3726-32
  • Jossi N, Anderson D. Blockage of axonal transport in the optic nerve induced by elevation of intraocular pressure: effect of arterial hypertension induced by angiotensin-I. Arch Ophthalmol 1983;101:94-7
  • Ferrari-Dileo G. Beta1 and beta2 adrenergic binding sites in bovine retina and retinal blood vessels. Invest Ophthalmol Vis Sci 1988;29:695-9
  • Ferrari-Dileo G, Davis E, Anderson D. Angiotensin ii binding receptors in retinal and optic nerve head blood vessels. An autoradiographic approach. Invest Ophthalmol Vis Sci 1991;32:21-6
  • Forester B, Ferrari-Dileo G, Anderson D. Adrenergic alpha1 and alpha2 binding sites are present in bovine retinal blood vessels. Invest Ophthalmol Vis Sci 1987;28:1741-6
  • Schmetterer L, Polak K. Role of nitric oxide in the control of ocular blood flow. Prog Retin Eye Res 2001;20:823-47
  • Harder D, Narayanan J, Gebremedhin D. Pressure-induced myogenic tone and role of 20-HETE in mediating autoregulation of cerebral blood flow. Am J Physiol Heart Circ Physiol 2011;300:H1557-65
  • Roff E, Harris A, Chung H, et al. Comprehensive assessment of retinal, choroidal and retrobulbar haemodynamics during blood gas perturbation. Graefes Arch Clin Exp Ophthalmol 1999;237:984-90
  • Riva C, Grunwald J, Sinclair S. Laser Doppler velocimetry study of the effect on pure oxygen breathing on retinal blood flow. Invest Ophthalmol Vis Sci 1983;24:47-51
  • Harris A, Anderson D, Pillunat L, et al. Laser Doppler flowmetry measurement of changes in human optic nerve head blood flow in response to blood gas perturbations. J Glaucoma 1996;5:258-65
  • Dallinger S, Dorner G, Wenzel R, et al. Endothelin-1 contributes to hyperoxia-induced vasoconstriction in the human retina. Invest Ophthalmol Vis Sci 2000;41:864-9
  • Schmetterer L, Findl O, Strenn K, et al. Effects of endothelin-1 (ET-1) on ocular hemodynamics. Curr Eye Res 1997;16:687-92
  • Wang X, Li Y, Huang C, et al. Effect of clazosentan in patients with aneurysmal subarachnoid hemorrhage: a meta-analysis of randomized controlled trials. PLoS One 2012;7:e47778
  • Minton A, Phatak N, Stankowska D, et al. Endothelin B receptors contribute to retinal ganglion cell loss in a rat model of glaucoma. PLoS One 2012;7:e43199
  • Cellini M, Strobbe E, Gizzi C, et al. Endothelin-1 plasma levels and vascular endothelial dysfunction in primary open angle glaucoma. Life Sci 2012;91:13-14
  • Kitamura Y, Okamura T, Kani K, Toda N. Nitric oxide-mediated retinal arteriolar and arterial dilation induced by substance P. Invest Ophthalmol Vis Sci 1993;34:2859-65
  • Peterson E, Wang Z, Britz G. Regulation of cerebral blood flow. Int J Vasc Med 2011;2011:823525
  • Hamner J, Tan C, Lee K, et al. Sympathetic control of the cerebral vasculature in humans. Stroke 2010;41:102-9
  • Ogoh S, Brothers R, Eubank W, Raven P. Autonomic control of the cerebral vasculature: acute hypotension. Stroke 2008;39:1979-87
  • Ainslie P, Brassard P. Why is the neural control of the cerebral autoregulation so controversial? F1000Prime Rep 2014;6:14
  • Hoste A, Boels P, Brutsaert D, De Laey J. Effect of alpha-1 and beta agonists on contraction of bovine retinal resistance arteries in vitro. Invest Ophthalmol Vis Sci 1989;30:44-50
  • Campochiaro P, Sen A. Adenosine and its agonists cause retinal vasodilation and hemorrhages. Implication for ischemic retinopathies. Arch Ophthalmol 1989;107:412-16
  • Harris A, Jonescu-Cuypers C, Kagemann L. editors. Atlas of ocular blood flow: vascular anatomy, pathophysiology, and metabolism. Butterworth Heinemann, Philadelphia; 2003
  • Kowiański P, Lietzau G, Steliga A, et al. The astrocytic contribution to neurovascular coupling – still more questions than answers? Neurosci Res 2013;75:171-83
  • Filosa J, Iddings J. Astrocyte regulation of cerebral vascular tone. Am J Physiol Heart Circ Physiol 2013;305:H606-19
  • Danser A, Derkx F, Admiraal P, et al. Angiotensin levels in the eye. Invest Ophthalmol Vis Sci 1994;35:1008-18
  • Ferrari-Dileo G, Davis E, Anderson D. Angiotensin binding sites in bovine and human retinal blood vessels. Invest Ophthalmol Vis Sci 1987;28:1747-51
  • Ferrari-Dileo G, Davis E, Anderson D. Glaucoma, capillaries and pericytes. 3. Peptide hormone binding and influence on pericytes. Ophthalmologica 1996;210:269-75
  • Meyer P, Flammer J, Luscher T. Local action of the renin angiotensin system in the porcine ophthalmic circulation: effects of ACE-inhibitors and angiotensin receptor antagonists. Invest Ophthalmol Vis Sci 1995;36:555-62
  • Matsugi T, Chen Q, Anderson D. Contractile responses of cultured bovine retinal pericytes to angiotensin II. Arch Ophthalmol 1997;115:1281-5
  • Matsugi T, Chen Q, Anderson D. Suppression of CO2-induced relaxation of bovine retinal pericytes by angiotensin II. Invest Ophthalmol Vis Sci 1997;38:652-7
  • Foureaux G, Noguiera J, Noguiera B, et al. Antiglaucomatous effects of the activation of intrinsic angiotensin-converting enzyme 2. Invest Ophthalmol Vis Sci 2013;54:4296-306
  • Arciero J, Harris A, Siesky B, et al. Theoretical analysis of vascular regulatory mechanisms contributing to retinal blood flow autoregulation. Invest Ophthalmol Vis Sci 2013;54:5584-93
  • Liang Y, Fortune B, Cull G, et al. Quantification of dynamic blood flow autoregulation in the optic nerve head of rhesus monkeys. Exp Eye Res 2009;90:203-9
  • Yu J, Thompson S, Cull G, Wang L. Parametric transfer function analysis and modeling of blood flow autoregulation in the optic nerve head. Int J Physiol Pathophysiol Pharmacol 2014;6:13-22
  • Yang Q, Shen J, Guo W, et al. Effect of acute intraocular pressure elevation on blood flow velocity and resistance in the rabbit ophthalmic artery. Vet Ophthalmol 2011;14:353-7
  • Takayama J, Tomidokoro A, Tamaki Y, Makoto A. Time course of changes in optic nerve head circulation after acute reduction in intraocular pressure. Invest Ophthalmol Vis Sci 2005;46:1409-19
  • Wang L, Cull G, Burgoyne C, et al. Longitudinal alterations in the dynamic autoregulation of optic nerve head blood flow revealed in experimental glaucoma. Invest Ophthalmol Vis Sci 2014;55:3509-16
  • Wang L, Burgoyne C, Cull G, et al. Static blood flow autoregulation in the optic nerve head in normal and experimental glaucoma. Invest Ophthalmol Vis Sci 2014;55:873-80
  • Cusick P, Benson O Jr, Boothby W. Effect of anoxia and of high concentrations of oxygen on the retinal vessels: preliminary report. Curr Res Anesth Analg 1942;21:18-19
  • Riva C, Grunwald J, Sinclair S. Laser Doppler measurement of relative blood velocity in the human optic nerve head. Invest Ophthalmol Vis Sci 1982;22:241-8
  • Baxter G, Williamson T, McKillop G, Dutton G. Color Doppler ultrasound of orbital and optic nerve blood flow: effects of posture and timolol 0.5%. Invest Ophthalmol Vis Sci 1992;33:604-10
  • Galambos P, Vafiadi J, Vilchez S, et al. Compromised autoregulatory control of ocular hemodynamics in glaucoma patients after postural change. Ophthalmology 2006;113:1832-6
  • Feke G, Pasquale L. Retinal blood flow response to posture change in glaucoma patients compared with healthy subjects. Ophthalmology 2008;115:246-52
  • Feke G, Hazin R, Grosskreutz C, Pasquale L. Effect of brimonidine on retinal blood flow autoregulation in primary open-angle glaucoma. J Ocul Pharmacol Ther 2011;27:347-52
  • Feke G, Bex P, Taylor C, et al. Effect of brimonidine on retinal vascular autoregulation and short-term visual function in normal tension glaucoma. Am J Ophthalmol 2014;158:105-12
  • Feke G, Rhee D, Turalba A, Pasquale L. Effects of dorzolamide-timolol and brimonidine-timolol on retinal vascular autoregulation and ocular perfusion pressure in primary open angle glaucoma. J Ocul Pharmacol Ther 2013;29:639-45
  • Movaffaghy A, Chamot S, Petrig B, Riva C. Blood flow in the human optic nerve during isometric exercise. Exp Eye Res 1998;67:561-8
  • Boltz A, Told R, Palkovits S, et al. Optic nerve head autoregulation during changes in arterial blood pressure. Acta Ophthalmol 2013;91:0; doi: 10.1111/j.1755-3768.2013.1746.x
  • Chiquet C, Lacharme T, Riva C, et al. Continuous response of optic nerve head blood flow to increase of arterial blood pressure in humans. Invest Ophthalmol Vis Sci 2014;55:485-91
  • Schmidl D, Boltz A, Kaya S, et al. Comparison of choroidal and optic nerve head blood flow regulation during changes in ocular perfusion pressure. Invest Ophthalmol Vis Sci 2012;53:4337-46
  • Pillunat L, Anderson D, Knighton R, et al. Autoregulation of human optic nerve head circulation in response to increased intraocular pressure. Exp Eye Res 1997;64:737-44
  • Riva C, Hero M, Titze P, Petrig B. Autoregulation of human optic nerve head blood flow in response to acute changes in ocular perfusion pressure. Graefes Arch Clin Exp Ophthalmol 1997;235:618-26
  • Joos K, Kay M, Pillunat L, et al. Effect of acute intraocular pressure changes on short posterior ciliary artery hemodynamics. Br J Ophthalmol 1999;83:33-8
  • Weigert G, Findl O, Luksch A, et al. Effects of moderate changes in intraocular pressure on ocular hemodynamics in patients with primary open-angle glaucoma and healthy controls. Ophthalmology 2005;112:1337-42
  • Sampaolesi J, Tosi J, Darchuk V, et al. Antiglaucomatous drugs effects on optic nerve head flow: design, baseline and preliminary report. Int Ophthalmol 2001;23:359-67
  • Fuchsjager-Mayrl G, Gerogopoulos M, Hommer A, et al. Effect of dorzolamide and timolol on ocular pressure: blood flow relationship in patients with primary open-angle glaucoma and ocular hypertension. Invest Ophthalmol Vis Sci 2010;51:1289-96
  • Sehi M, Flanagan J, Zeng L, et al. Anterior optic nerve capillary blood flow response to diurnal variation of mean ocular perfusion pressure in early untreated primary open-angle glaucoma. Invest Ophthalmol Vis Sci 2005;46:4581-7
  • Sehi M, Goharian I, Konduru R, et al. Retinal blood flow in glaucomatous eyes with single-hemifield damage. Ophthalmology 2014;121:750-8
  • Jia Y, Wei E, Wang X, et al. Optical coherence tomography angiography of optic disc perfusion in glaucoma. Ophthalmology 2014;121:1322-32
  • Pinto L, Vandewalle E, Stalmans I. Disturbed correlation between arterial resistance and pulsatility in glaucoma patients. Acta Ophthalmol 2012;90:e214-20
  • Shoshani Y, Harris A, Shoja M, et al. Imapired ocular blood flow regulation in patients with open-angle glaucoma and diabetes. Clin and Exp Ophthalmol 2012;40:697-705

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.