93
Views
2
CrossRef citations to date
0
Altmetric
Review

Towards the development of a human glaucoma disease-in-a-dish model using stem cells

&

References

  • Day AC, Baio G, Gazzard G, et al. The prevalence of primary angle closure glaucoma in European derived populations: a systematic review. Br J Ophthalmol 2012;96(9):1162-7
  • Springelkamp H, Höhn R, Mishra A, et al. Meta-analysis of genome-wide association studies identifies novel loci that influence cupping and the glaucomatous process. Nat Commun 2014;5
  • Hysi PG, Cheng C-Y, Springelkamp H, et al. Genome-wide analysis of multi-ancestry cohorts identifies new loci influencing intraocular pressure and susceptibility to glaucoma. Nat Genet 2014;46(10):1126-30
  • Wolfs RC, Klaver CC, Ramrattan RS, et al. Genetic risk of primary open-angle glaucoma. Population-based familial aggregation study. Arch Ophthalmol 1998;116(12):1640-5
  • Weinreb RN, Aung T, Medeiros FA. The pathophysiology and treatment of glaucoma: a review. JAMA 2014;311(18):1901-11
  • The AGIS Investigators. The advanced glaucoma intervention study (AGIS): 7. the relationship between control of intraocular pressure and visual field deterioration. Am J Ophthalmol 2000;130(4):429-40
  • Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006;126(4):663-76
  • Weinreb RN, Lindsey JD. The importance of models in glaucoma research. J Glaucoma 2005;14(4):302
  • Levin LA. Retinal ganglion cells and supporting elements in culture. J Glaucoma 2005;14(4):305
  • Van Bergen NJ, Wood JPM, Chidlow G, et al. Recharacterization of the RGC-5 retinal ganglion cell line. Invest Ophthalmol Vis Sci 2009;50(9):4267-72
  • Wood JPM, Chidlow G, Tran T, et al. A comparison of differentiation protocols for RGC-5 cells. Invest Ophthalmol Vis Sci 2010;51(7):3774-83
  • Dimos JT, Rodolfa KT, Niakan KK, et al. Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 2008;321(5893):1218-21
  • Park I-H, Arora N, Huo H, et al. Disease-specific induced pluripotent stem cells. Cell 2008;134(5):877-86
  • Lamba DA, Karl MO, Ware CB, Reh TA. Efficient generation of retinal progenitor cells from human embryonic stem cells. Proc Natl Acad Sci USA 2006;103(34):12769-74
  • McCabe KL, Gunther EC, Reh TA. The development of the pattern of retinal ganglion cells in the chick retina: mechanisms that control differentiation. Development 1999;126:5713-24
  • Young RW. Cell differentiation in the retina of the mouse. Anat Rec 1985;212(2):199-205
  • Meyer JS, Howden SE, Wallace KA, et al. Optic vesicle-like structures derived from human pluripotent stem cells facilitate a customized approach to retinal disease treatment. Stem Cells 2011;29(8):1206-18
  • Meyer JS, Shearer RL, Capowski EE, et al. Modeling early retinal development with human embryonic and induced pluripotent stem cells. Proc Natl Acad Sci USA 2009;106(39):16698-703
  • Rowan S, Cepko CL. Genetic analysis of the homeodomain transcription factor Chx10 in the retina using a novel multifunctional BAC transgenic mouse reporter. Dev Biol 2004;271(2):388-402
  • Rockhill RL, Daly FJ, MacNeil MA, et al. The diversity of ganglion cells in a mammalian retina. J Neurosci 2002;22(9):3831-43
  • Moritoh S, Komatsu Y, Yamamori T, Koizumi A. Diversity of retinal ganglion cells identified by transient GFP transfection in organotypic tissue culture of adult marmoset monkey retina. PLoS One 2013;8(1):e54667
  • Völgyi B, Chheda S, Bloomfield SA. Tracer coupling patterns of the ganglion cell subtypes in the mouse retina. J Comp Neurol 2009;512(5):664-87
  • Bar-Nur O, Russ HA, Efrat S, Benvenisty N. Epigenetic memory and preferential lineage-specific differentiation in induced pluripotent stem cells derived from human pancreatic islet beta cells. Cell Stem Cell 2011;9(1):17-23
  • Kim K, Doi A, Wen B, et al. Epigenetic memory in induced pluripotent stem cells. Nature 2010;467(7313):285-90
  • Pick M, Stelzer Y, Bar-Nur O, et al. Clone- and gene-specific aberrations of parental imprinting in human induced pluripotent stem cells. Stem Cells 2009;27(11):2686-90
  • Ben-David U, Benvenisty N, Mayshar Y. Genetic instability in human induced pluripotent stem cells: classification of causes and possible safeguards. Cell Cycle 2010;9(23):4603-4
  • Liu ISC, Chen J-D, Ploder L, et al. Developmental expression of a novel murine homeobox gene (Chx10): evidence for roles in determination of the neuroretina and inner nuclear layer. Neuron 1994;13(2):377-93
  • Riazifar H, Jia Y, Chen J, et al. Chemically induced specification of retinal ganglion cells from human embryonic and induced pluripotent stem cells. Stem Cells Transl Med 2014;3(4):424-32
  • Lamba DA, Reh TA. Microarray characterization of human embryonic stem cell-derived retinal cultures. Invest Ophthalmol Vis Sci 2011;52(7):4897-906
  • Ferrer M, Corneo B, Davis J, et al. A multiplex high-throughput gene expression assay to simultaneously detect disease and functional markers in induced pluripotent stem cell-derived retinal pigment epithelium. Stem Cells Transl Med 2014;3(8):911-22
  • Jagatha B, Divya MS, Sanalkumar R, et al. In vitro differentiation of retinal ganglion-like cells from embryonic stem cell derived neural progenitors. Biochem Biophys Res Commun 2009;380(2):230-5
  • Eiraku M, Takata N, Ishibashi H, et al. Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature 2011;472(7341):51-6
  • Nakano T, Ando S, Takata N, et al. Self-formation of optic cups and storable stratified neural retina from human ESCs. STEM 2012;10(6):771-85
  • Sluch VM, Zack DJ. Stem cells, retinal ganglion cells and glaucoma. Dev Ophthalmol 2014;53:111-21
  • Song W-T, Zhang X-Y, Xia X-B. Atoh7 promotes the differentiation of retinal stem cells derived from Müller cells into retinal ganglion cells by inhibiting Notch signaling. Stem Cell Res Ther 2013;4(4):94
  • Meng F, Wang X, Gu P, et al. Induction of retinal ganglion-like cells from fibroblasts by adenoviral gene delivery. Neuroscience 2013;250(C):381-93
  • Singh R, Shen W, Kuai D, et al. iPS cell modeling of Best disease: insights into the pathophysiology of an inherited macular degeneration. Hum Mol Genet 2013;22(3):593-607
  • Li Y, Wu W-H, Hsu C-W, et al. Gene therapy in patient-specific stem cell lines and a preclinical model of retinitis pigmentosa with membrane frizzled-related protein defects. Mol Ther 2014;22(9):1688-97
  • Howden SE, Gore A, Li Z, et al. Genetic correction and analysis of induced pluripotent stem cells from a patient with gyrate atrophy. PNAS 2011;108:6537-42
  • Tucker BA, Solivan-Timpe F, Roos BR, et al. Duplication of TBK1 stimulates autophagy in iPSC-derived retinal cells from a patient with normal tension glaucoma. J Stem Cell Res Ther 2014;3(5):161
  • Minegishi Y, Iejima D, Kobayashi H, et al. Enhanced optineurin E50K-TBK1 interaction evokes protein insolubility and initiates familial primary open-angle glaucoma. Hum Mol Genet 2013;22(17):3559-67
  • Raviola G. Schwalbe line’s cells: a new cell type in the trabecular meshwork of Macaca mulatta. Invest Ophthalmol Vis Sci 1982;22(1):45-56
  • Acott TS, Samples JR, Bradley JM, et al. Trabecular repopulation by anterior trabecular meshwork cells after laser trabeculoplasty. Am J Ophthalmol 1989;107(1):1-6
  • Tripathi BJ, Tripathi RC, Livingston AM, Borisuth NS. The role of growth factors in the embryogenesis and differentiation of the eye. Am J Anat 1991;192(4):442-71
  • Du Y, Yun H, Yang E, Schuman JS. Stem cells from trabecular meshwork home to TM tissue in vivo. Invest Ophthalmol Vis Sci 2013;54(2):1450-9
  • Abu-Hassan DW, Li X, Ryan EI, et al. Induced pluripotent stem cells restore function in a human cell loss model of open-angle glaucoma. Stem Cells 2015;33(3):751-61
  • Braunger BM, Ademoglu B, Koschade SE, et al. Identification of adult stem cells in Schwalbe’s line region of the primate eye. Invest Ophthalmol Vis Sci 2014;55(11):7499-507
  • Park H-YL, Kim JH, Park CK. Alterations of the synapse of the inner retinal layers after chronic intraocular pressure elevation in glaucoma animal model. Mol Brain 2014;7(53):1-10
  • Feng L, Zhao Y, Yoshida M, et al. Sustained ocular hypertension induces dendritic degeneration of mouse retinal ganglion cells that depends on cell type and location. Invest Ophthalmol Vis Sci 2013;54(2):1106-17
  • Williams PA, Howell GR, Barbay JM, et al. Retinal ganglion cell dendritic atrophy in DBA/2J glaucoma. PLoS One 2013;8(8):e72282
  • Kalesnykas G, Oglesby EN, Zack DJ, et al. Retinal ganglion cell morphology after optic nerve crush and experimental glaucoma. Invest Ophthalmol Vis Sci 2012;53(7):3847-57
  • Li ZW, Liu S, Weinreb RN, et al. Tracking dendritic shrinkage of retinal ganglion cells after acute elevation of intraocular pressure. Invest Ophthalmol Vis Sci 2011;52(10):7205-12
  • Conforti L, Adalbert R, Coleman MP. Neuronal death: where does the end begin? Trends Neurosci 2007;30(4):159-66
  • Whitmore AV, Libby RT, John SWM. Glaucoma: thinking in new ways – a rôle for autonomous axonal self-destruction and other compartmentalised processes? Prog Retin Eye Res 2005;24(6):639-62
  • Jin Z-B, Okamoto S, Osakada F, et al. Modeling retinal degeneration using patient-specific induced pluripotent stem cells. PLoS One 2011;6(2):e17084
  • Chi ZL, Akahori M, Obazawa M, et al. Overexpression of optineurin E50K disrupts Rab8 interaction and leads to a progressive retinal degeneration in mice. Hum Mol Genet 2010;19(13):2606-15
  • Fingert JH, Robin AL, Stone JL, et al. Copy number variations on chromosome 12q14 in patients with normal tension glaucoma. Hum Mol Genet 2011;20(12):2482-94
  • Dutt K, Harris-Hooker S, Ellerson D, et al. Generation of 3D retina-like structures from a human retinal cell line in a NASA bioreactor. Cell Transplant 2003;12(7):717-31
  • Kumar R, Dutt K. Enhanced neurotrophin synthesis and molecular differentiation in non-transformed human retinal progenitor cells cultured in a rotating bioreactor. Tissue Eng 2006;12(1):141-58
  • Dutt K, Sanford G, Harris-Hooker S, et al. Three-dimensional model of angiogenesis: coculture of human retinal cells with bovine aortic endothelial cells in the NASA bioreactor. Tissue Eng 2003;9(5):893-908
  • Roberts JE, Kukielczak BM, Chignell CF, et al. Simulated microgravity induced damage in human retinal pigment epithelial cells. Mol Vis 2006;12:633-8
  • Meyer K, Ferraiuolo L, Miranda CJ, et al. Direct conversion of patient fibroblasts demonstrates non-cell autonomous toxicity of astrocytes to motor neurons in familial and sporadic ALS. Proc Natl Acad Sci USA 2014;111(2):829-32
  • Kumar R, Harris-Hooker S, Sanford GL. The expression of growth factors and their receptors in retinal and endothelial cells cocultured in the rotating bioreactor. Ethn Dis 2008;18(2 Suppl 2):S2-44; 50
  • Rieke M, Gottwald E, Weibezahn K-F, Layer PG. Tissue reconstruction in 3D-spheroids from rodent retina in a motion-free, bioreactor-based microstructure. Lab Chip 2008;8(12):2206-13
  • Miao H, Crabb AW, Hernandez MR, Lukas TJ. Modulation of factors affecting optic nerve head astrocyte migration. Invest Ophthalmol Vis Sci 2010;51(8):4096-103
  • Johnson EC, Deppmeier LM, Wentzien SK, et al. Chronology of optic nerve head and retinal responses to elevated intraocular pressure. Invest Ophthalmol Vis Sci 2000;41(2):431-42
  • Nguyen JV, Soto I, Kim K-Y, et al. Myelination transition zone astrocytes are constitutively phagocytic and have synuclein dependent reactivity in glaucoma. PNAS 2011;108(3):1176-81
  • Bai Y, Sivori D, Woo SB, et al. During glaucoma, alpha2-macroglobulin accumulates in aqueous humor and binds to nerve growth factor, neutralizing neuroprotection. Invest Ophthalmol Vis Sci 2011;52(8):5260-5
  • Harada C, Namekata K, Guo X, et al. ASK1 deficiency attenuates neural cell death in GLAST-deficient mice, a model of normal tension glaucoma. Cell Death Differ 2010;17(11):1751-9
  • Sappington RM, Calkins DJ. Contribution of TRPV1 to microglia-derived IL-6 and NF B translocation with elevated hydrostatic pressure. Invest Ophthalmol Vis Sci 2008;49(7):3004-17
  • Howell GR, Macalinao DG, Sousa GL, et al. Molecular clustering identifies complement and endothelin induction as early events in a mouse model of glaucoma. J Clin Invest 2011;121(4):1429-44
  • Ly T, Gupta N, Weinreb RN, et al. Dendrite plasticity in the lateral geniculate nucleus in primate glaucoma. Vision Res 2011;51(2):243-50
  • Lee JY, Jeong HJ, Lee JH, et al. An investigation of lateral geniculate nucleus volume in patients with primary open-angle glaucoma using 7 tesla magnetic resonance imaging. Invest Ophthalmol Vis Sci 2014;55(6):3468-76
  • Gupta N, Greenberg G, de Tilly LN, et al. Atrophy of the lateral geniculate nucleus in human glaucoma detected by magnetic resonance imaging. Br J Ophthalmol 2009;93(1):56-60
  • Yücel Y, Gupta N. Glaucoma of the brain: a disease model for the study of transsynaptic neural degeneration. In: Cerulli L, Nucci C, Osborne NN, Bagetta G, editors. Glaucoma: An Open Window to Neurodegeneration and Neuroprotection. Volume 173. Elsevier, Amsterdam; 2008. p. 465-78
  • Bähr M, Wizenmann A. Retinal ganglion cell axons recognize specific guidance cues present in the deafferented adult rat superior colliculus. J Neurosci 1996;16(16):5106-16
  • Eiraku M, Sasai Y. Mouse embryonic stem cell culture for generation of three-dimensional retinal and cortical tissues. Nat Protoc 2011;7(1):69-79
  • Phillips MJ, Wallace KA, Dickerson SJ, et al. Blood-derived human iPS cells generate optic vesicle-like structures with the capacity to form retinal laminae and develop synapses. Invest Ophthalmol Vis Sci 2012;53(4):2007-19
  • Zhong X, Gutierrez C, Xue T, et al. Generation of three-dimensional retinal tissue with functional photoreceptors from human iPSCs. Nat Commun 2014;5:1-14
  • Santina Della L, Inman DM, Lupien CB, et al. Differential progression of structural and functional alterations in distinct retinal ganglion cell types in a mouse model of glaucoma. J Neurosci 2013;33(44):17444-57
  • Hertz J, Qu B, Hu Y, et al. Survival and integration of developing and progenitor-derived retinal ganglion cells following transplantation. Cell Transplant 2014;23(7):855-72
  • Aoki H, Hara A, Niwa M, et al. An in vitro mouse model for retinal ganglion cell replacement therapy using eye-like structures differentiated from ES cells. Exp Eye Res 2007;84(5):868-75
  • de Lima S, Koriyama Y, Kurimoto T, et al. Full-length axon regeneration in the adult mouse optic nerve and partial recovery of simple visual behaviors. Proc Natl Acad Sci USA 2012;109(23):9149-54
  • Butt GF, Habib A, Mahgoub K, et al. Optic nerve regeneration. Expert Rev Ophthalmol 2012;7(6):533-54
  • Kador KE, Montero RB, Venugopalan P, et al. Tissue engineering the retinal ganglion cell nerve fiber layer. Biomaterials 2013;34(17):4242-50
  • Kador KE, Alsehli HS, Zindell AN, et al. Retinal ganglion cell polarization using immobilized guidance cues on a tissue-engineered scaffold. Acta Biomater 2014;10(12):4939-46
  • Kador KE, Goldberg JL. Scaffolds and stem cells: delivery of cell transplants for retinal degenerations. Expert Rev Ophthalmol 2012;7(5):459-70
  • McUsic AC, Lamba DA, Reh TA. Guiding the morphogenesis of dissociated newborn mouse retinal cells and hES cell-derived retinal cells by soft lithography-patterned microchannel PLGA scaffolds. Biomaterials 2012;33(5):1396-405
  • Leipzig ND, Shoichet MS. The effect of substrate stiffness on adult neural stem cell behavior. Biomaterials 2009;30(36):6867-78
  • Burgoyne CF, Downs JC, Bellezza AJ, Hart RT. Three-dimensional reconstruction of normal and early glaucoma monkey optic nerve head connective tissues. Invest Ophthalmol Vis Sci 2004;45(12):4388-99
  • Fortune B, Reynaud J, Wang L, Burgoyne CF. Does optic nerve head surface topography change prior to loss of retinal nerve fiber layer thickness: a test of the site of injury hypothesis in experimental glaucoma. PLoS One 2013;8(10):e77831
  • Sigal IA, Grimm JL, Jan N-J, et al. Eye-specific IOP-induced displacements and deformations of human lamina cribrosa. Invest Ophthalmol Vis Sci 2014;55(1):1-15
  • Fu CT, Sretavan D. Laser-induced ocular hypertension in albino CD-1 mice. Invest Ophthalmol Vis Sci 2010;51(2):980-90
  • Howell GR, Libby RT, Jakobs TC, et al. Axons of retinal ganglion cells are insulted in the optic nerve early in DBA/2J glaucoma. J Cell Biol 2007;179(7):1523-37
  • Crish SD, Sappington RM, Inman DM, et al. Distal axonopathy with structural persistence in glaucomatous neurodegeneration. Proc Natl Acad Sci USA 2010;107(11):5196-201
  • Fingert JH. Primary open-angle glaucoma genes. Eye (Lond) 2011;25(5):587-95
  • Karl MO. The potential of stem cell research for the treatment of neuronal damage in glaucoma. Cell Tissue Res 2013;353(2):311-25

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.