468
Views
5
CrossRef citations to date
0
Altmetric
Review

Mass spectrometry in leukemia research and treatment

&

References

  • Greaves J, Roboz J. Mass spectrometry for the novice. CRC Press, Taylor & Francis Group, Boca Raton, Florida, USA; 2013
  • Roboz J. Mass spectrometry in cancer research. CRC Press; Boca Raton: 2002
  • Sequenom. Available from: www.sequenom.com [Accessed 21 October 2014]
  • Zhong Y, Wu J, Ma R, et al. Association of Janus kinase 2 (JAK2) polymorphisms with acute leukemia susceptibility. Int J Lab Hematol 2012;34(3):248-53
  • Zhong Y, Chen B, Feng J, et al. The associations of Janus kinase-2 (JAK2) A830G polymorphism and the treatment outcomes in patients with acute myeloid leukemia. Leuk Lymphoma 2010;51(6):1115-20
  • Van Riper SK, de Jong EP, Carlis JV, Griffin TJ. Mass spectrometry-based proteomics: basic principles and emerging technologies and directions. Adv Exp Med Biol 2013;990:1-35
  • Walzthoeni T, Leitner A, Stengel F, Aebersold R. Mass spectrometry supported determination of protein complex structure. Curr Opin Struct Biol 2013;23(2):252-60
  • Carr SA, Abbatiello SE, Ackermann BL, et al. Targeted peptide measurements in biology and medicine: best practices for mass spectrometry-based assay development using a fit-for-purpose approach. Mol Cell Proteomics 2014;13(3):907-17
  • Bejar R, Stevenson K, Abdel-Wahab O, et al. Clinical effect of point mutations in myelodysplastic syndromes. N Engl J Med 2011;364(26):2496-506
  • Dunlap J, Beadling C, Warrick A, et al. Multiplex high-throughput gene mutation analysis in acute myeloid leukemia. Hum Pathol 2012;43(12):2167-76
  • Abdel-Wahab O, Levine RL. Mutations in epigenetic modifiers in the pathogenesis and therapy of acute myeloid leukemia. Blood 2013;121(18):3563-72
  • Gross S, Cairns RA, Minden MD, et al. Cancer-associated metabolite 2-hydroxyglutarate accumulates in acute myelogenous leukemia with isocitrate dehydrogenase 1 and 2 mutations. J Exp Med 2010;207(2):339-44
  • Dinardo CD, Propert KJ, Loren AW, et al. Serum 2-hydroxyglutarate levels predict isocitrate dehydrogenase mutations and clinical outcome in acute myeloid leukemia. Blood 2013;121(24):4917-24
  • Wang JH, Chen WL, Li JM, et al. Prognostic significance of 2-hydroxyglutarate levels in acute myeloid leukemia in China. Proc Natl Acad Sci USA 2013;110(42):17017-22
  • Janin M, Mylonas E, Saada V, et al. Serum 2-hydroxyglutarate production in IDH1- and IDH2-mutated de novo acute myeloid leukemia: a study by the Acute Leukemia French Association group. J Clin Oncol 2014;32(4):297-305
  • Foss EJ, Radulovic D, Stirewalt DL, et al. Proteomic classification of acute leukemias by alignment-based quantitation of LC-MS/MS data sets. J Proteome Res 2012;11(10):5005-10
  • Wang D, Lv YQ, Liu YF, et al. Differential protein analysis of lymphocytes between children with acute lymphoblastic leukemia and healthy children. Leuk Lymphoma 2013;54(2):381-6
  • Majek P, Reicheltova Z, Suttnar J, et al. Plasma protein alterations in the refractory anemia with excess blasts subtype 1 subgroup of myelodysplastic syndrome. Proteome Sci 2012;10(1):31
  • Majek P, Riedelova-Reicheltova Z, Suttnar J, et al. Plasma proteome changes associated with refractory anemia and refractory anemia with ringed sideroblasts in patients with myelodysplastic syndrome. Proteome Sci 2013;11(1):14
  • Majek P, Riedelova-Reicheltova Z, Suttnar J, et al. Proteome changes in the plasma of myelodysplastic syndrome patients with refractory anemia with excess blasts subtype 2. Dis Markers 2014;2014:178709
  • Nicolas E, Ramus C, Berthier S, et al. Expression of S100A8 in leukemic cells predicts poor survival in de novo AML patients. Leukemia 2011;25(1):57-65
  • Braoudaki M, Lambrou GI, Vougas K, et al. Protein biomarkers distinguish between high- and low-risk pediatric acute lymphoblastic leukemia in a tissue specific manner. J Hematol Oncol 2013;6:52
  • Geiger T, Cox J, Ostasiewicz P, et al. Super-SILAC mix for quantitative proteomics of human tumor tissue. Nat Methods 2010;7(5):383-5
  • Aasebo E, Vaudel M, Mjaavatten O, et al. Performance of Super-SILAC based quantitative proteomics for comparison of different acute myeloid leukemia (AML) cell lines. Proteomics 2014;14(17-18):1971-6
  • Braoudaki M, Tzortzatou-Stathopoulou F, Anagnostopoulos AK, et al. Proteomic analysis of childhood de novo acute myeloid leukemia and myelodysplastic syndrome/AML: correlation to molecular and cytogenetic analyses. Amino Acids 2011;40(3):943-51
  • Lee SW, Kim IJ, Jeong BY, et al. Use of MDLC-DIGE and LC-MS/MS to identify serum biomarkers for complete remission in patients with acute myeloid leukemia. Electrophoresis 2012;33(12):1863-72
  • Song W, Wang N, Li W, et al. Serum peptidomic profiling identifies a minimal residual disease detection and prognostic biomarker for patients with acute leukemia. Oncol Lett 2013;6(5):1453-60
  • Morris MK, Chi A, Melas IN, Alexopoulos LG. Phosphoproteomics in drug discovery. Drug Discov Today 2014;19(4):425-32
  • Stehle F, Schulz K, Seliger B. Towards defining biomarkers indicating resistances to targeted therapies. Biochim Biophys Acta 2014;1844(5):909-16
  • Smith CC, Shah NP. The role of kinase inhibitors in the treatment of patients with acute myeloid leukemia. Am Soc Clin Oncol Educ Book 2013;313-18
  • Iliuk AB, Arrington JV, Tao WA. Analytical challenges translating mass spectrometry-based phosphoproteomics from discovery to clinical applications. Electrophoresis 2014;35(24):3430-40
  • Andriamanana I, Gana I, Duretz B, Hulin A. Simultaneous analysis of anticancer agents bortezomib, imatinib, nilotinib, dasatinib, erlotinib, lapatinib, sorafenib, sunitinib and vandetanib in human plasma using LC/MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2013;926:83-91
  • Micova K, Friedecky D, Faber E, Adam T. Isotope dilution direct injection mass spectrometry method for determination of four tyrosine kinase inhibitors in human plasma. Talanta 2012;93:307-13
  • Lankheet NA, Hillebrand MJ, Rosing H, et al. Method development and validation for the quantification of dasatinib, erlotinib, gefitinib, imatinib, lapatinib, nilotinib, sorafenib and sunitinib in human plasma by liquid chromatography coupled with tandem mass spectrometry. Biomed Chromatogr 2013;27(4):466-76
  • Couchman L, Birch M, Ireland R, et al. An automated method for the measurement of a range of tyrosine kinase inhibitors in human plasma or serum using turbulent flow liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem 2012;403(6):1685-95
  • Haouala A, Zanolari B, Rochat B, et al. Therapeutic Drug Monitoring of the new targeted anticancer agents imatinib, nilotinib, dasatinib, sunitinib, sorafenib and lapatinib by LC tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2009;877(22):1982-96
  • Kralj E, Zakelj S, Trontelj J, et al. Monitoring of imatinib targeted delivery in human leukocytes. Eur J Pharm Sci 2013;50(1):123-9
  • O’Hare T, Eide CA, Agarwal A, et al. Threshold levels of ABL tyrosine kinase inhibitors retained in chronic myeloid leukemia cells determine their commitment to apoptosis. Cancer Res 2013;73(11):3356-70
  • Casado P, Alcolea MP, Iorio F, et al. Phosphoproteomics data classify hematological cancer cell lines according to tumor type and sensitivity to kinase inhibitors. Genome Biol 2013;14(4):R37
  • Parker WT, Ho M, Scott HS, et al. Poor response to second-line kinase inhibitors in chronic myeloid leukemia patients with multiple low-level mutations, irrespective of their resistance profile. Blood 2012;119(10):2234-8
  • Pizzatti L, Panis C, Lemos G, et al. Label-free MSE proteomic analysis of chronic myeloid leukemia bone marrow plasma: disclosing new insights from therapy resistance. Proteomics 2012;12(17):2618-31
  • Cooper MJ, Cox NJ, Zimmerman EI, et al. Application of multiplexed kinase inhibitor beads to study kinome adaptations in drug-resistant leukemia. PLoS One 2013;8(6):e66755
  • Duncan JS, Whittle MC, Nakamura K, et al. Dynamic reprogramming of the kinome in response to targeted MEK inhibition in triple-negative breast cancer. Cell 2012;149(2):307-21
  • Liang D, Wang W, Jiang X, Yin S. Simultaneous determination of 1-beta-d-Arabinofuranosylcytosine and two metabolites, 1-beta-d-Arabinofuranosyluracil and 1-beta-d-Arabinofuranosylcytosine triphosphate in leukemic cell by HPLC-MS/MS and the application to cell pharmacokinetics. J Chromatogr B Analyt Technol Biomed Life Sci 2014;962C:14-19
  • Buchi F, Spinelli E, Masala E, et al. Proteomic analysis identifies differentially expressed proteins in AML1/ETO acute myeloid leukemia cells treated with DNMT inhibitors azacitidine and decitabine. Leuk Res 2012;36(5):607-18
  • Iriyama N, Yoshino Y, Yuan B, et al. Speciation of arsenic trioxide metabolites in peripheral blood and bone marrow from an acute promyelocytic leukemia patient. J Hematol Oncol 2012;5:1
  • Chen B, Cao F, Yuan C, et al. Arsenic speciation in saliva of acute promyelocytic leukemia patients undergoing arsenic trioxide treatment. Anal Bioanal Chem 2013;405(6):1903-11
  • Vincent K, Hardy MP, Trofimov A, et al. Rejection of leukemic cells requires antigen-specific t cells with high functional avidity. Biol Blood Marrow Transplant 2014;20(1):37-45
  • Roberts KG, Li Y, Payne-Turner D, et al. Targetable kinase-activating lesions in Ph-like acute lymphoblastic leukemia. N Engl J Med 2014;371(11):1005-15
  • Hong CS, Muller L, Boyiadzis M, Whiteside TL. Isolation and characterization of CD34+ blast-derived exosomes in acute myeloid leukemia. PLoS One 2014;9(8):e103310
  • Hong CS, Muller L, Whiteside TL, Boyiadzis M. Plasma exosomes as markers of therapeutic response in patients with acute myeloid leukemia. Front Immunol 2014;5:160
  • Huan J, Hornick NI, Shurtleff MJ, et al. RNA trafficking by acute myelogenous leukemia exosomes. Cancer Res 2013;73(2):918-29
  • Weissinger EM, Metzger J, Dobbelstein C, et al. Proteomic peptide profiling for preemptive diagnosis of acute graft-versus-host disease after allogeneic stem cell transplantation. Leukemia 2014;28(4):842-52
  • Han L, Zeng Z, Qiu P, et al. Single-cell mass cytometry reveals phenotypic and functional heterogeneity in acute myeloid leukemia at diagnosis and in remission. Blood 2013;122(21):abstract 1311

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.