461
Views
49
CrossRef citations to date
0
Altmetric
Review

Activation of natural killer cells inhibits liver fibrosis: a novel strategy to treat liver fibrosis

, &
Pages 173-180 | Published online: 10 Jan 2014

References

  • Friedman SL, Rockey DC, Bissell DM. Hepatic fibrosis 2006: report of the Third AASLD Single Topic Conference. Hepatology45(1), 242–249 (2007).
  • Iredale JP. Models of liver fibrosis: exploring the dynamic nature of inflammation and repair in a solid organ. J. Clin. Invest.117(3), 539–548 (2007).
  • Bataller R, Brenner DA. Liver fibrosis. J. Clin. Invest.115(2), 209–218 (2005).
  • Pinzani M, Rombouts K. Liver fibrosis: from the bench to clinical targets. Dig. Liver Dis.36(4), 231–242 (2004).
  • Tsukada S, Parsons CJ, Rippe RA. Mechanisms of liver fibrosis. Clin. Chim. Acta364(1–2), 33–60 (2006).
  • Pinzani M. PDGF and signal transduction in hepatic stellate cells. Front. Biosci.7, D1720–D1726 (2002).
  • Bissell DM, Roulot D, George J. Transforming growth factor β and the liver. Hepatology34(5), 859–867 (2001).
  • Duffield JS, Forbes SJ, Constandinon CM et al. Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. J. Clin. Invest.115(1), 56–65 (2005).
  • Imamura M, Imamura M, Ogawa T, Sasaguri Y, Chayama K, Ueno H. Suppression of macrophage infiltration inhibits activation of hepatic stellate cells and liver fibrogenesis in rats. Gastroenterology128(1), 138–146 (2005).
  • Matsuoka M, Tsukamoto H. Stimulation of hepatic lipocyte collagen production by Kupffer cell-derived transforming growth factor β: implication for a pathogenetic role in alcoholic liver fibrogenesis. Hepatology11(4), 599–605 (1990).
  • Novobrantseva TI, Majeau GR, Amatucci A et al. Attenuated liver fibrosis in the absence of B cells. J. Clin. Invest.115(11), 3072–3082 (2005).
  • Shi Z, Wakil AE, Rockey DC. Strain-specific differences in mouse hepatic wound healing are mediated by divergent T helper cytokine responses. Proc. Natl Acad. Sci. USA94(20), 10663–10668 (1997).
  • Saito JM, Bostick MK, Campe CB, Xu J, Maher JJ. Infiltrating neutrophils in bile duct-ligated livers do not promote hepatic fibrosis. Hepatol. Res.25(2), 180–191 (2003).
  • Jeong WI, Lee CS, Park SJ, Chung JY, Jeong KS. Kinetics of macrophages, myofibroblasts and mast cells in carbon tetrachloride-induced rat liver cirrhosis. Anticancer Res.22(2A), 869–877 (2002).
  • Radaeva S, Sun R, Jaruga B, Nguyen VT, Tian Z, Gao B. Natural killer cells ameliorate liver fibrosis by killing activated stellate cells in NKG2D-dependent and tumor necrosis factor-related apoptosis-inducing ligand-dependent manners. Gastroenterology130(2), 435–452 (2006).
  • Melhem A, Muhanna N, Bishara A et al. Anti-fibrotic activity of NK cells in experimental liver injury through killing of activated HSC. J. Hepatol.45(1), 60–71 (2006).
  • Mehal W Z. Activation-induced cell death of hepatic stellate cells by the innate immune system. Gastroenterology130(2), 600–603 (2006).
  • Middleton D, Curran M, Maxwell L. Natural killer cells and their receptors. Transpl. Immunol.10(2–3), 147–164 (2002).
  • Lanier LL. NK cell recognition. Annu. Rev. Immunol.23, 225–274 (2005).
  • Ortaldo JR, Young HA. Mouse Ly49 NK receptors: balancing activation and inhibition. Mol. Immunol.42(4), 445–450 (2005).
  • Vivier E, Nunes JA, Vely F. Natural killer cell signaling pathways. Science306(5701), 1517–1519 (2004).
  • Cerwenka A, Bakker AB, McClanahan T et al. Retinoic acid early inducible genes define a ligand family for the activating NKG2D receptor in mice. Immunity12(6), 721–727 (2000).
  • Bauer S, Groh V, Wu J et al. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science285(5428), 727–729 (1999).
  • Cosman D, Müllberg J, Sutherland CL et al. ULBPs, novel MHC class I-related molecules, bind to CMV glycoprotein UL16 and stimulate NK cytotoxicity through the NKG2D receptor. Immunity14(2), 123–133 (2001).
  • Chalupny NJ, Sutherland CL, Lawrence WA et al. ULBP4 is a novel ligand for human NKG2D. Biochem. Biophys. Res. Commun.305(1), 129–135 (2003).
  • Kenna T, Golden-Mason L, Porcelli SA et al. NKT cells from normal and tumor-bearing human livers are phenotypically and functionally distinct from murine NKT cells. J. Immunol.171(4), 1775–1779 (2003).
  • Obara H, Nagasaki K, Hsieh CL et al. IFN-γ, produced by NK cells that infiltrate liver allografts early after transplantation, links the innate and adaptive immune responses. Am J. Transplant.5(9), 2094–2103 (2005).
  • Sun R, Tian Z, Kulkarni S, Gao B. IL-6 prevents T cell-mediated hepatitis via inhibition of NKT cells in CD4+ T cell- and STAT3-dependent manners. J. Immunol.172(9), 5648–5655 (2004).
  • Vermijlen D, Luo D, Froelich CJ et al. Hepatic natural killer cells exclusively kill splenic/blood natural killer-resistant tumor cells by the perforin/granzyme pathway. J. Leukoc. Biol.72(4), 668–676 (2002).
  • Takeda K, Hayakawa Y, Smyth MJ et al. Involvement of tumor necrosis factor-related apoptosis-inducing ligand in surveillance of tumor metastasis by liver natural killer cells. Nat. Med.7(1), 94–100 (2001).
  • Barajas M, Mazzolini G, Genové G et al. Gene therapy of orthotopic hepatocellular carcinoma in rats using adenovirus coding for interleukin 12. Hepatology33(1), 52–61 (2001).
  • Ortaldo JR, Winkler-Pickett RT, Bere EW, Watanabe M, Murphy WJ, Wiltrout RH. In vivo hydrodynamic delivery of cDNA encoding IL-2: rapid, sustained redistribution, activation of mouse NK cells, and therapeutic potential in the absence of NKT cells. J. Immunol.175(2), 693–699 (2005).
  • Péron JM, Esche C, Subbotin VM, Maliszewski C, Lotze MT, Shurin MR. FLT3-ligand administration inhibits liver metastases: role of NK cells. J. Immunol.161(11), 6164–6170 (1998).
  • Shimizu Y, Iwatsuki S, Herberman RB, Whiteside TL. Clonal analysis of tumor-infiltrating lymphocytes from human primary and metastatic liver tumors. Int. J. Cancer46(5), 878–883 (1990).
  • Hata K, Van Thiel DH, Herberman RB, Whiteside TL. Natural killer activity of human liver-derived lymphocytes in various liver diseases. Hepatology14(3), 495–503 (1991).
  • Taketomi A, Shimada M, Shirabe K, Kajiyama K, Gion T, Sugimachi K. Natural killer cell activity in patients with hepatocellular carcinoma: a new prognostic indicator after hepatectomy. Cancer83(1), 58–63 (1998).
  • Chuang WL, Liu HW, Chang WY. Natural killer cell activity in patients with hepatocellular carcinoma relative to early development and tumor invasion. Cancer65(4), 926–930 (1990).
  • Hamerman JA, Ogasawara K, Lanier LL. NK cells in innate immunity. Curr. Opin. Immunol.17(1), 29–35 (2005).
  • Chen Y, Wei H, Gao B, Hu Z, Zheng S, Tian Z. Activation and function of hepatic NK cells in hepatitis B infection: an underinvestigated innate immune response. J. Viral. Hepat.12(1), 38–45 (2005).
  • Li Y, Zhang T, Ho C, Orange JS, Douglas SD, Ho WZ. Natural killer cells inhibit hepatitis C virus expression. J. Leukoc. Biol.76(6), 1171–1179 (2004).
  • Khakoo SI, Thio CL, Martin MP et al. HLA and NK cell inhibitory receptor genes in resolving hepatitis C virus infection. Science305(5685), 872–874 (2004).
  • Golden-Mason L, Rosen HR. Natural killer cells: primary target for hepatitis C virus immune evasion strategies? Liver. Transpl.12(3), 363–372 (2006).
  • Ahmad A, Alvarez F. Role of NK and NKT cells in the immunopathogenesis of HCV-induced hepatitis. J. Leukoc. Biol.76(4), 743–759 (2004).
  • Dong Z, Wei H, Sun R, Hu Z, Gao B, Tian Z. Involvement of natural killer cells in PolyI:C-induced liver injury. J. Hepatol.41(6), 966–973 (2004).
  • Ochi M, Ohdan H, Mitsuta H et al. Liver NK cells expressing TRAIL are toxic against self hepatocytes in mice. Hepatology39(5), 1321–1331 (2004).
  • Sun R, Gao B. Negative regulation of liver regeneration by innate immunity (natural killer cells/interferon-γ). Gastroenterology127(5), 1525–1539 (2004).
  • Sun R, Park O, Horiguchi N et al. STAT1 contributes to dsRNA inhibition of liver regeneration after partial hepatectomy in mice. Hepatology44(4), 955–966 (2006).
  • Ohnishi H, Muto Y, Maeda T et al. Natural killer cell may impair liver regeneration in fulminant hepatic failure. Gastroenterol. Jpn28(Suppl. 4), 40–44 (1993).
  • Jeong WI, Park O, Radaeva S, Gao B. STAT1 inhibits liver fibrosis in mice by inhibiting stellate cell proliferation and stimulating NK cell cytotoxicity. Hepatology44(6), 1441–1451 (2006).
  • Rockey DC, Chung JJ. Interferon γ inhibits lipocyte activation and extracellular matrix mRNA expression during experimental liver injury: implications for treatment of hepatic fibrosis. J. Invest. Med.42(4), 660–670 (1994).
  • Mallat A, Preaux AM, Blazejewski S, Rosenbaum J, Dhumeaux D, Mavier P. Interferon α and γ inhibit proliferation and collagen synthesis of human Ito cells in culture. Hepatology21(4), 1003–1010 (1995).
  • Ulloa L, Doody J, Massague J. Inhibition of transforming growth factor-β/SMAD signalling by the interferon-γ/STAT pathway. Nature397(6721), 710–713 (1999).
  • Taimr P, Higuchi H, Kocova E, Rippe RA, Friedman S, Gores GJ. Activated stellate cells express the TRAIL receptor-2/death receptor-5 and undergo TRAIL-mediated apoptosis. Hepatology37(1), 87–95 (2003).
  • Mühlen KA, Schümann J, Wittke F et al. NK cells, but not NKT cells, are involved in Pseudomonas aeruginosa exotoxin A-induced hepatotoxicity in mice. J. Immunol.172(5), 3034–3041 (2004).
  • Liu ZX, Govindarajan S, Okamoto S, Dennert G. NK cells cause liver injury and facilitate the induction of T cell-mediated Immunity to a viral liver infection. J. Immunol.164(12), 6480–6486 (2000).
  • Jiang D, Liang J, Hodge J et al. Regulation of pulmonary fibrosis by chemokine receptor CXCR3. J. Clin. Invest.114(2), 291–299 (2004).
  • Kim JH, Kim HY, Kim S, Chung JH, Park WS, Chung DH. Natural killer T (NKT) cells attenuate bleomycin-induced pulmonary fibrosis by producing interferon-γ. Am. J. Pathol.167(5), 1231–1241 (2005).
  • Kimura T, Ishii Y, Morishima Y et al. Treatment with α-galactosylceramide attenuates the development of bleomycin-induced pulmonary fibrosis. J. Immunol.172(9), 5782–5789 (2004).
  • Pár G, Rukavina D, Podack ER et al. Decrease in CD3-negative-CD8dim(+) and Vδ2/Vγ9 TcR+ peripheral blood lymphocyte counts, low perforin expression and the impairment of natural killer cell activity is associated with chronic hepatitis C virus infection. J. Hepatol.37(4), 514–522 (2002).
  • Kawarabayashi N, Seki S, Hatsuse K et al. Decrease of CD56(+)T cells and natural killer cells in cirrhotic livers with hepatitis C may be involved in their susceptibility to hepatocellular carcinoma. Hepatology32(5), 962–969 (2000).
  • Morishima C, Paschal DM, Wang CC et al. Decreased NK cell frequency in chronic hepatitis C does not affect ex vivo cytolytic killing. Hepatology43(3), 573–580 (2006).
  • Shiratori Y, Imazeki F, Moriyama M et al. Histologic improvement of fibrosis in patients with hepatitis C who have sustained response to interferon therapy. Ann. Intern. Med.132(7), 517–524 (2000).
  • Guerret S, Desmoulière A, Chossegros P et al. Long-term administration of interferon-α in non-responder patients with chronic hepatitis C: follow-up of liver fibrosis over 5 years. J. Viral. Hepat.6(2), 125–133 (1999).
  • Inagaki Y, Nemoto T, Kushida M et al. Interferon alfa down-regulates collagen gene transcription and suppresses experimental hepatic fibrosis in mice. Hepatology38(4), 890–899 (2003).
  • Rockey DC, Maher JJ, Jarnagin WR, Gabbiani G, Friedman SL. Inhibition of rat hepatic lipocyte activation in culture by interferon-γ. Hepatology16(3), 776–784 (1992).
  • Weng HL, Wang BE, Jia JD et al. Effect of interferon-γ on hepatic fibrosis in chronic hepatitis B virus infection: a randomized controlled study. Clin. Gastroenterol. Hepatol.3(8), 819–828 (2005).
  • Muir AJ, Sylvestre PB, Rockey DC. Interferon γ-1b for the treatment of fibrosis in chronic hepatitis C infection. J. Viral. Hepat.13(5), 322–328 (2006).
  • Pockros PJ, Jeffers L, Afdhal N et al. Final results of a double-blind, placebo-controlled trial of the antifibrotic efficacy of interferon-γ1b in chronic hepatitis C patients with advanced fibrosis or cirrhosis. Hepatology45(3), 569–578 (2007).
  • Muddu AK, Guha IN, Elsharkawy AM, Mann DA. Resolving fibrosis in the diseased liver: translating the scientific promise to the clinic. Int. J. Biochem. Cell. Biol.39(4), 695–714 (2007).
  • Yokoyama WM. Natural killer cell receptors specific for major histocompatibility complex class I molecules. Proc. Natl Acad. Sci. USA92(8), 3081–3085 (1995).
  • Moretta A, Bottino C, Vitale M. Receptors for HLA class-I molecules in human natural killer cells. Annu. Rev. Immunol.14, 619–648 (1996).
  • Braud VM, Allan DS, O’Callaghan CA et al. HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C. Nature391(6669), 795–799 (1998).
  • Vance RE, Kraft JR, Altman JD, Jensen PE, Raulet DH. Mouse CD94/NKG2A is a natural killer cell receptor for the nonclassical major histocompatibility complex (MHC) class I molecule Qa-1(b). J. Exp. Med.188(10), 1841–1848 (1998).
  • Biassoni R, Cantoni C, Pende D et al. Human natural killer cell receptors and co-receptors. Immunol. Rev.181, 203–214 (2001).
  • Arnon TI, Achdout H, Levi O et al. Inhibition of the NKp30 activating receptor by pp65 of human cytomegalovirus. Nat. Immunol.6(5), 515–523 (2005).
  • Mandelboim O, Lieberman N, Lev M et al. Recognition of haemagglutinins on virus-infected cells by NKp46 activates lysis by human NK cells. Nature409(6823), 1055–1060 (2001).
  • Arnon TI, Lev M, Katz G, Chernobrov Y, Porgador A, Mandelboim O. Recognition of viral hemagglutinins by NKp44 but not by NKp30. Eur. J. Immunol.31(9), 2680–2689 (2001).
  • Arnon TI, Achdout H, Lieberman N et al. The mechanisms controlling the recognition of tumor- and virus-infected cells by NKp46. Blood103(2), 664–672 (2004).
  • Zilka A, Landau G, Hershkovitz O et al. Characterization of the heparin/heparan sulfate binding site of the natural cytotoxicity receptor NKp46. Biochemistry44(44), 14477–11485 (2005).
  • Lee N, Llano M, Carretero M et al. HLA-E is a major ligand for the natural killer inhibitory receptor CD94/NKG2A. Proc. Natl Acad. Sci. USA95(9), 5199–51204 (1998).
  • Vance RE, Jamieson AM, Raulet DH. Recognition of the class Ib molecule Qa-1(b) by putative activating receptors CD94/NKG2C and CD94/NKG2E on mouse natural killer cells. J. Exp. Med.190(12), 1801–1812 (1999).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.