222
Views
7
CrossRef citations to date
0
Altmetric
Reviews

The biological implication of cancer stem cells in hepatocellular carcinoma: a possible target for future therapy

&
Pages 749-757 | Published online: 10 Jan 2014

References

  • El-SeragHB, Rudolph KL. . Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology 132(7), 2557–2576 (2007).
  • Parkin DM, Bray F, Ferlay J, Pisani P. Estimating the world cancer burden: Globocan 2000. Int. J. Cancer. 94(2), 153–156 (2001).
  • Llovet JM, Burroughs A, Bruix J. Hepatocellular carcinoma. Lancet. 362(9399), 1907–1917 (2003).
  • EASL-EORTC clinical practice guidelines: management of hepatocellular carcinoma. J. Hepatol. 56(4), 908–943 (2012).
  • Bruix J, Llovet JM. HCC surveillance: who is the target population? Hepatology 37(3), 507–509 (2003).
  • Roskams T. Different types of liver progenitor cells and their niches. J. Hepatol. 45(1), 1–4 (2006).
  • Ma S, Chan KW, Hu L et al. Identification and characterization of tumorigenic liver cancer stem/progenitor cells. Gastroenterology 132(7), 2542–2556 (2007).
  • Ma S, Lee TK, Zheng BJ, Chan KW, Guan XY. CD133+ HCC cancer stem cells confer chemoresistance by preferential expression of the Akt/PKB survival pathway. Oncogene. 27(12), 1749–1758 (2008).
  • Yin S, Li J, Hu C et al. CD133 positive hepatocellular carcinoma cells possess high capacity for tumorigenicity. Int. J. Cancer. 120(7), 1444–1450 (2007).
  • Yang ZF, Ho DW, Ng MN et al. Significance of CD90+ cancer stem cells in human liver cancer. Cancer Cell 13(2), 153–166 (2008).
  • Yang ZF, Ngai P, Ho DW et al. Identification of local and circulating cancer stem cells in human liver cancer. Hepatology. 47(3), 919–928 (2008).
  • Yamashita T, Ji J, Budhu A et al. EpCAM-positive hepatocellular carcinoma cells are tumor-initiating cells with stem/progenitor cell features. Gastroenterology. 136(3), 1012–1024 (2009).
  • Lee TK, Castilho A, Cheung VC, Tang KH, Ma S, Ng IO. CD24(+) liver tumor-initiating cells drive self renewal and tumor initiation through STAT3-mediated NANOG regulation. Cell Stem Cell 9(1), 5063 (2011.
  • Yamashita T, Honda M, Nakamoto Y et al. Discrete nature of EpCAM(+) and CD90(+) cancer stem cells in human hepatocellular carcinoma. Hepatology 57(4), 1484–1497 (2013).
  • Yang W, Wang C, Lin Y et al. OV6(+) tumor-initiating cells contribute to tumor progression and invasion in human hepatocellular carcinoma. J. Hepatol. 57(3), 613–620 (2012).
  • Haraguchi N, Ishii H, Mimori K et al. CD13 is a therapeutic target in human liver cancer stem cells. J. Clin. Invest. 120(9), 3326–3339 (2010).
  • Zhu Z, Hao X, Yan M et al. Cancer stem/progenitor cells are highly enriched in CD133+CD44+ population in hepatocellular carcinoma. Int. J. Cancer. 126(9), 2067–2078 (2010).
  • Ma S, Chan KW, Lee TK et al. Aldehyde dehydrogenase discriminates the CD133 liver cancer stem cell populations. Mol. Cancer Res. 6(7), 1146–1153 (2008).
  • Cao L, Zhou Y, Zhai B et al. Sphere-forming cell subpopulations with cancer stem cell properties in human hepatoma cell lines. BMC. Gastroenterol. 11, 71 (2011.
  • Hu X, Ghisolfi L, Keates AC et al. Induction of cancer cell stemness by chemotherapy. Cell Cycle 11(14), 2691–2698 (2012.
  • Haraguchi N, Utsunomiya T, Inoue H et al. Characterization of a side population of cancer cells from human gastrointestinal system. Stem Cells. 24(3), 506–513 (2006).
  • Haraguchi N, Inoue H, Tanaka F et al. Cancer stem cells in human gastrointestinal cancers. Hum. Cell. 19(1), 24–29 (2006).
  • Chiba T, Kita K, Zheng YW et al. Side population purified from hepatocellular carcinoma cells harbors cancer stem cell-like properties. Hepatology. 44(1), 240–251 (2006).
  • Oikawa T, Kamiya A, Zeniya M et al. Sal-like protein 4 (SALL4), a stem cell biomarker in liver cancers. Hepatology 57(4), 1469–1483 (2013).
  • Ho DW, Yang ZF, Yi K et al. Gene expression profiling of liver cancer stem cells by RNA-sequencing. PLoS ONE 7(5), e37159 (2012.
  • Piao LS, Hur W, Kim TK et al. CD133+ liver cancer stem cells modulate radioresistance in human hepatocellular carcinoma. Cancer Lett. 315(2), 129–137 (2012).
  • Lan X, Wu YZ, Wang Y et al. CD133 silencing inhibits stemness properties and enhances chemoradiosensitivity in CD133-positive liver cancer stem cells. Int. J. Mol. Med. 31(2), 315–324 (2013).
  • Colombo F, Baldan F, Mazzucchelli S et al. Evidence of distinct tumour-propagating cell populations with different properties in primary human hepatocellular carcinoma. PLoS ONE 6(6), e21369 (2011.
  • Wilson GS, Hu Z, Duan W et al. Efficacy of Using Cancer Stem Cell Markers in Isolating and Characterizing Liver Cancer Stem Cells. Stem Cells. Dev. 22(19), 2655–2664 (2013)
  • Lee JS, Chu IS, Heo J et al. Classification and prediction of survival in hepatocellular carcinoma by gene expression profiling. Hepatology. 40(3), 667–676 (2004).
  • Lee JS, Heo J, Libbrecht L et al. A novel prognostic subtype of human hepatocellular carcinoma derived from hepatic progenitor cells. Nat. Med. 12(4), 410–416 (2006).
  • Yamashita T, Forgues M, Wang W et al. EpCAM and alpha-fetoprotein expression defines novel prognostic subtypes of hepatocellular carcinoma. Cancer Res. 68(5), 1451–1461 (2008).
  • Yu XH, Xu LB, Liu C, Zhang R, Wang J. Clinicopathological characteristics of 20 cases of hepatocellular carcinoma with bile duct tumor thrombi. Dig. Dis. Sci. 56(1), 252–259 (2011).
  • Lu JW, Chang JG, Yeh KT, Chen RM, Tsai JJ, Hu RM. Overexpression of Thy1/CD90 in human hepatocellular carcinoma is associated with HBV infection and poor prognosis. Acta Histochem. 113(8), 833–838 (2011).
  • Song W, Li H, Tao K et al. Expression and clinical significance of the stem cell marker CD133 in hepatocellular carcinoma. Int. J. Clin. Pract. 62(8), 1212–1218 (2008).
  • Sasaki A, Kamiyama T, Yokoo H et al. Cytoplasmic expression of CD133 is an important risk factor for overall survival in hepatocellular carcinoma. Oncol. Rep. 24(2), 537–546 (2010).
  • Lingala S, Cui YY, Chen X et al. Immunohistochemical staining of cancer stem cell markers in hepatocellular carcinoma. Exp. Mol. Pathol. 89(1), 27–35 (2010).
  • Zeng Z, Ren J, O'Neil M et al. Impact of stem cell marker expression on recurrence of TACE-treated hepatocellular carcinoma post liver transplantation. BMC Cancer. 12, 584 (2012.
  • Salnikov AV, Kusumawidjaja G, Rausch V et al. Cancer stem cell marker expression in hepatocellular carcinoma and liver metastases is not sufficient as single prognostic parameter. Cancer Lett. 275(2), 185–193 (2009).
  • Fan ST, Yang ZF, Ho DW, Ng MN, Yu WC, Wong J. Prediction of posthepatectomy recurrence of hepatocellular carcinoma by circulating cancer stem cells: a prospective study. Ann. Surg. 254(4), 569–576 (2011).
  • Ho JW, Pang RW, Lau C et al. Significance of circulating endothelial progenitor cells in hepatocellular carcinoma. Hepatology 44(4), 836–843 (2006).
  • Sun YF, Xu Y, Yang XR et al. Circulating stem cell-like epithelial cell adhesion molecule-positive tumor cells indicate poor prognosis of hepatocellular carcinoma after curative resection. Hepatology 57(4), 1458–1468 (2013).
  • He XC, Yin T, Grindley JC et al. PTEN-deficient intestinal stem cells initiate intestinal polyposis. Nat. Genet. 39(2), 189–198 (2007).
  • Hu C, Li H, Li J et al. Analysis of ABCG2 expression and side population identifies intrinsic drug efflux in the HCC cell line MHCC-97L and its modulation by Akt signaling. Carcinogenesis. 29(12), 22892297 (2008.
  • Yamashita T, Budhu A, Forgues M, Wang XW. Activation of hepatic stem cell marker EpCAM by Wnt- beta-catenin signaling in hepatocellular carcinoma. Cancer Res. 67(22), 10831–10839 (2007).
  • Yang W, Yan HX, Chen L et al. Wnt/beta-catenin signaling contributes to activation of normal and tumorigenic liver progenitor cells. Cancer Res. 68(11), 4287–4295 (2008).
  • Cheung RS, Brooling JT, Johnson MM, Riehle KJ, Campbell JS, Fausto N. Interactions between MYC and transforming growth factor alpha alter the growth and tumorigenicity of liver progenitor cells. Carcinogenesis 28(12), 2624–2631 (2007).
  • Zhao Y, Jian W, Gao W et al. RNAi silencing of c-Myc inhibits cell migration, invasion, and proliferation in HepG2 human hepatocellular carcinoma cell line: c-Myc silencing in hepatocellular carcinoma cell. Cancer Cell Int. 13(1), 23 (2013.
  • Wandzioch E, Zaret KS. Dynamic signaling network for the specification of embryonic pancreas and liver progenitors. Science 324(5935), 1707–1710 (2009).
  • Wu K, Ding J, Chen C et al. Hepatic transforming growth factor beta gives rise to tumor-initiating cells and promotes liver cancer development. Hepatology 56(6), 2255–2267 (2012).
  • Amin R, Mishra LLiver stem cells and tgf-Beta in hepatic carcinogenesis. Gastrointest. Cancer Res. 2(Suppl. 4), S27–S30 (2008.
  • Tang Y, Kitisin K, Jogunoori W et al. Progenitor/stem cells give rise to liver cancer due to aberrant TGF- beta and IL-6 signaling. Proc. Natl Acad. Sci. U.S.A. 105(7), 2445–2450 (2008).
  • Beachy PA, Karhadkar SS, Berman DM. Tissue repair and stem cell renewal in carcinogenesis. Nature 432(7015), 324–331 (2004).
  • Cheng WT, Xu K, Tian DY, Zhang ZG, Liu LJ, Chen Y. Role of Hedgehog signaling pathway in proliferation and invasiveness of hepatocellular carcinoma cells. Int. J. Oncol. 34(3), 829–836 (2009).
  • Huang S, He J, Zhang X et al. Activation of the hedgehog pathway in human hepatocellular carcinomas. Carcinogenesis. 27(7), 1334–1340 (2006).
  • Chen X, Lingala S, Khoobyari S, Nolta J, Zern MA, Wu J. Epithelial mesenchymal transition and hedgehog signaling activation are associated with chemoresistance and invasion of hepatoma subpopulations. J. Hepatol. 55(4), 838–845 (2011).
  • Tanimizu N, Miyajima A. Notch signaling controls hepatoblast differentiation by altering the expression of liver-enriched transcription factors. J. Cell Sci. 117(Pt. 15), 3165–3174 (2004.
  • Nijjar SS, Crosby HA, Wallace L, Hubscher SG, Strain AJ. Notch receptor expression in adult human liver: a possible role in bile duct formation and hepatic neovascularization. Hepatology 34(6), 1184-1192 (2001.
  • Villanueva A, Alsinet C, Yanger K et al. Notch signaling is activated in human hepatocellular carcinoma and induces tumor formation in mice. Gastroenterology 143(6), 1660–1669 (2012).
  • Gao J, Dong Y, Zhang B et al. Notch1 activation contributes to tumor cell growth and proliferation in human hepatocellular carcinoma HepG2 and SMMC7721 cells. Int. J. Oncol. 41(5), 1773–1781 (2012).
  • Ahn S, Hyeon J, Park CK. Notch1 and Notch4 are markers for poor prognosis of hepatocellular carcinoma. Hepatobiliary. Pancreat. Dis. Int. 12(3), 286–294 (2013).
  • Nishina S, Shiraha H, Nakanishi Y et al. Restored expression of the tumor suppressor gene RUNX3 reduces cancer stem cells in hepatocellular carcinoma by suppressing Jagged1-Notch signaling. Oncol. Rep. 26(3), 523–531 (2011).
  • Tanaka S, Shiraha H, Nakanishi Y et al. Runt-related transcription factor 3 reverses epithelial- mesenchymal transition in hepatocellular carcinoma. Int. J. Cancer. 131(11), 2537–2546 (2012).
  • Zhao J, Ma MZ, Ren H et al. Anti-HDGF targets cancer and cancer stromal stem cells resistant to chemotherapy. Clin. Cancer Res. 19(13), 3567–3576 (2013).
  • Llovet JM, Bruix J Molecular targeted therapies in hepatocellular carcinoma. Hepatology 48(4), 1312 1327 (2008.
  • Borel F, Konstantinova P, Jansen PL. Diagnostic and therapeutic potential of miRNA signatures in patients with hepatocellular carcinoma. J. Hepatol. 56(6), 1371–1383 (2012).
  • Chai S, Ma S. Clinical implications of miRNAs in liver cancer stem cells. Chin. J. Cancer 32(8), 419–426 (2013).
  • Dean M, Hamon Y, Chimini G. The human ATP-binding cassette (ABC) transporter superfamily. J. Lipid. Res. 42(7), 1007–1017 (2001).
  • Goodell MA. Stem cell identification and sorting using the Hoechst 33342 side population (SP). Curr. Protoc. Cytom., Chapter 9, Unit 9 (2005).
  • Zhou S, Schuetz JD, Bunting KD et al. The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat. Med. 7(9), 10281034 (2001.
  • Shi GM, Xu Y, Fan J et al. Identification of side population cells in human hepatocellular carcinoma cell lines with stepwise metastatic potentials. J. Cancer Res. Clin. Oncol. 134(11), 1155–1163 (2008).
  • Sun Z, Zhao Z, Li G et al. Relevance of two genes in the multidrug resistance of hepatocellular carcinoma: in vivo and clinical studies. Tumori 96(1), 90–96 (2010).
  • Sukowati CH, Rosso N, Pascut D et al. Gene and functional up-regulation of the BCRP/ABCG2 transporter in hepatocellular carcinoma. BMC Gastroenterol. 12, 160 (2012.
  • Vander Borght S, van Pelt J, van Malenstein H et al. Up-regulation of breast cancer resistance protein expression in hepatoblastoma following chemotherapy: A study in patients and in vitro. Hepatol. Res. 38(11), 1112–1121 (2008).
  • Chen Z, Liu F, Ren Q et al. Suppression of ABCG2 inhibits cancer cell proliferation. Int. J. Cancer. 126(4), 841–851 (2010).
  • Durnez A, Verslype C, Nevens F et al. The clinicopathological and prognostic relevance of cytokeratin 7 and 19 expression in hepatocellular carcinoma. A possible progenitor cell origin. Histopathology 49(2), 138–151 (2006).
  • Yang JD, Nakamura I, Roberts LR. The tumor microenvironment in hepatocellular carcinoma: Current status and therapeutic targets. Semin Cancer Biol. 21(1), 35–43 (2010).
  • Lindner U, Kramer J, Rohwedel J, Schlenke P. Mesenchymal Stem or Stromal Cells: Toward a Better Understanding of Their Biology? Transfus. Med. Hemother. 37(2), 75–83 (2010).
  • Olumi AF, Grossfeld GD, Hayward SW, Caroll PR, Tlsty TD, Cunha GR. Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium. Cancer Res. 59(19), 5002–5011 (1999).
  • Liu L, Dai Y, Chen J et al. Maelstrom promotes hepatocellular carcinoma metastasis by inducing epithelial-mesenchymal transition via Akt/GSK-3beta/snail signaling. Hepatology doi:10.1002/hep.26677 (2013) (Epub ahead of print).
  • Henrich CJ, Bokesch HR, Dean M et al. A high-throughput cell-based assay for inhibitors of ABCG2 activity. J. Biomol Screen. 11(2), 176–183 (2006).
  • Henrich CJ, Budhu A, Yu Z et al. High-throughput Screening for Identification of Inhibitors of EpCAM- Dependent Growth of Hepatocellular Carcinoma Cells. Chem. Biol. Drug. Des. 82(2), 131–139 (2013).
  • Chiba T, Suzuki E, Negishi M et al. 3-Deazaneplanocin A is a promising therapeutic agent for the eradication of tumor-initiating hepatocellular carcinoma cells. Int. J. Cancer. 130(11), 2557–2567 (2012).
  • Mazzocca A, Fransvea E, Dituri F, Lupo L, Antonaci S, Gianelli G. Down-regulation of connective tissue growth factor by inhibition of transforming growth factor beta blocks the tumor-stroma cross-talk and tumor progression in hepatocellular carcinoma. Hepatology 51(2), 523–534 (2010).
  • de Lope CR, Tremosini S, Forner A, Reig M, Bruix J. Management of HCC. J. Hepatol. 56(Suppl. 1), S75–S87 (2012).
  • Zhang L, Sun H, Zhao F et al. BMP4 administration induces differentiation of CD133+ hepatic cancer stem cells, blocking their contributions to hepatocellular carcinoma. Cancer Res. 72(16), 4276–4285 (2012).
  • Nagano H, Ishii H, Marubashi S et al. Novel therapeutic target for cancer stem cells in hepatocellular carcinoma. J. Hepatobiliary. Pancreat. Sci. 19(6), 600–605 (2012).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.