412
Views
37
CrossRef citations to date
0
Altmetric
Reviews

Recent insights into the pathogenesis of hepatic encephalopathy and treatments

&

References

  • Bajaj JS, Wade JB, Sanyal AJ. Spectrum of neurocognitive impairment in cirrhosis: implications for the assessment of hepatic encephalopathy. Hepatology 50(6), 2014–2021 (2009).
  • Ferenci P, Lockwood A, Mullen K, Tarter R, Weissenborn K, Blei AT. Hepatic encephalopathy--definition, nomenclature, diagnosis, and quantification: final report of the working party at the 11th World Congresses of Gastroenterology, Vienna, 1998. Hepatology 35(3), 716–721 (2002).
  • Cauli O, Rodrigo R, Llansola M et al. Glutamatergic and gabaergic neurotransmission and neuronal circuits in hepatic encephalopathy. Metab. Brain Dis. 24(1), 69–80 (2009).
  • Riordan SM, Williams R. Treatment of hepatic encephalopathy. N. Engl. J. Med. 337(7), 473–479 (1997).
  • Bernal W, Hyyrylainen A, Gera A et al. Lessons from look-back in acute liver failure? A single centre experience of 3300 patients. J. Hepatol. 59(1), 74–80 (2013).
  • Dhiman RK, Kurmi R, Thumburu KK et al. Diagnosis and prognostic significance of minimal hepatic encephalopathy in patients with cirrhosis of liver. Dig. Dis. Sci. 55(8), 2381–2390 (2010).
  • Das A, Dhiman RK, Saraswat VA, Verma M, Naik SR. Prevalence and natural history of subclinical hepatic encephalopathy in cirrhosis. J. Gastroenterol Hepatol. 16(5), 531–535 (2001).
  • Alqahtani SA, Larson AM. Adult liver transplantation in the USA. Curr. Opin. Gastroenterol. 27(3), 240–247 (2011).
  • Amodio P, Del Piccolo F, Petteno E et al. Prevalence and prognostic value of quantified electroencephalogram (EEG) alterations in cirrhotic patients. J. Hepatol. 35(1), 37–45 (2001).
  • Quero JC, Schalm SW. Subclinical hepatic encephalopathy. Semin. Liver Dis. 16(3), 321–328 (1996).
  • Kircheis G, Knoche A, Hilger N et al. Hepatic encephalopathy and fitness to drive. Gastroenterology 137(5), 1706–1715, e1701–1709 (2009).
  • Bajaj JS, Saeian K, Schubert CM et al. Minimal hepatic encephalopathy is associated with motor vehicle crashes: the reality beyond the driving test. Hepatology 50(4), 1175–1183 (2009).
  • Dhiman RK, Chawla YK. Minimal hepatic encephalopathy. Indian J. Gastroenterol. 28(1), 5–16 (2009).
  • Butterworth RF. Pathophysiology of hepatic encephalopathy: a new look at ammonia. Metab. Brain Dis. 17(4), 221–227 (2002).
  • Olde Damink SW, Deutz NE, Dejong CH, Soeters PB, Jalan R. Interorgan ammonia metabolism in liver failure. Neurochem. Int. 41(2–3), 177–188 (2002).
  • Shawcross DL, Davies NA, Williams R, Jalan R. Systemic inflammatory response exacerbates the neuropsychological effects of induced hyperammonemia in cirrhosis. J. Hepatol. 40(2), 247–254 (2004).
  • Tranah TH, Vijay GK, Ryan JM, Shawcross DL. Systemic inflammation and ammonia in hepatic encephalopathy. Metab. Brain Dis. 28(1), 1–5 (2013).
  • Coltart I, Tranah TH, Shawcross DL. Inflammation and hepatic encephalopathy. Arch. Biochem. Biophys. 536(2), 189–196 (2013).
  • Wright G, Davies NA, Shawcross DL et al. Endotoxemia produces coma and brain swelling in bile duct ligated rats. Hepatology 45(6), 1517–1526 (2007).
  • Rose CF. Ammonia-lowering strategies for the treatment of hepatic encephalopathy. Clin. Pharmacol. Ther. 92(3), 321–331 (2012).
  • Romero-Gómez M, Ramos-Guerrero R, Grande L et al. Intestinal glutaminase activity is increased in liver cirrhosis and correlates with minimal hepatic encephalopathy. J. Hepatol. 41(1), 49–54 (2004).
  • Haussinger D, Lamers WH, Moorman AF. Hepatocyte heterogeneity in the metabolism of amino acids and ammonia. Enzyme 46(1–3), 72–93 (1992).
  • Anand U, Anand CV. Teaching the urea cycle: the role of liver in acid-base regulation. Biochem. Educ. 25(1), 20–21 (1997).
  • Wright G, Noiret L, Olde Damink SW, Jalan R. Interorgan ammonia metabolism in liver failure: the basis of current and future therapies. Liver Int. 31(2), 163–175 (2011).
  • Romero-Gomez M, Jover M, Galan JJ, Ruiz A. Gut ammonia production and its modulation. Metab. Brain Dis. 24(1), 147–157 (2009).
  • Dejong CH, Deutz NE, Soeters PB. Metabolic adaptation of the kidney to hyperammonemia during chronic liver insufficiency in the rat. Hepatology 18(4), 890–902 (1993).
  • Olde Damink SW, Jalan R, Dejong CH. Interorgan ammonia trafficking in liver disease. Metab. Brain Dis. 24(1), 169–181 (2009).
  • Mpabanzi L, van den Broek MA, Visschers RG et al. Urinary ammonia excretion increases acutely during living donor liver transplantation. Liver Int. 31(8), 1150–1154 (2011).
  • Olde Damink SW, Jalan R, Deutz NE et al. The kidney plays a major role in the hyperammonemia seen after simulated or actual GI bleeding in patients with cirrhosis. Hepatology 37(6), 1277–1285 (2003).
  • Rao KV, Panickar KS, Jayakumar AR, Norenberg MD. Astrocytes protect neurons from ammonia toxicity. Neurochem. Res. 30(10), 1311–1318 (2005).
  • Moser H. Electrophysiological evidence for ammonium as a substitute for potassium in activating the sodium pump in a crayfish sensory neuron. Can. J. Physiol. Pharmacol. 65(2), 141–145 (1987).
  • Bakouh N, Benjelloun F, Cherif-Zahar B, Planelles G. The challenge of understanding ammonium homeostasis and the role of the Rh glycoproteins. Transfus. Clin. Biol. 13(1–2), 139–146 (2006).
  • Keiding S, Sorensen M, Bender D, Munk OL, Ott P, Vilstrup H. Brain metabolism of 13N-ammonia during acute hepatic encephalopathy in cirrhosis measured by positron emission tomography. Hepatology 43(1), 42–50 (2006).
  • Balata S, Olde Damink SW, Ferguson K et al. Induced hyperammonemia alters neuropsychology, brain MR spectroscopy and magnetization transfer in cirrhosis. Hepatology 37(4), 931–939 (2003).
  • Fernandes SP, Dringen R, Lawen A, Robinson SR. Neurones express glutamine synthetase when deprived of glutamine or interaction with astrocytes. J. Neurochem. 114(5), 1527–1536 (2010).
  • Shawcross DL, Wendon JA. The neurological manifestations of acute liver failure. Neurochem. Int. 60(7), 662–671 (2012).
  • Clemmesen JO, Larsen FS, Kondrup J, Hansen BA, Ott P. Cerebral herniation in patients with acute liver failure is correlated with arterial ammonia concentration. Hepatology 29(3), 648–653 (1999).
  • Bernal W, Hall C, Karvellas CJ, Auzinger G, Sizer E, Wendon J. Arterial ammonia and clinical risk factors for encephalopathy and intracranial hypertension in acute liver failure. Hepatology 46(6), 1844–1852 (2007).
  • Cordoba J, Alonso J, Rovira A et al. The development of low-grade cerebral edema in cirrhosis is supported by the evolution of (1)H-magnetic resonance abnormalities after liver transplantation. J. Hepatol. 35(5), 598–604 (2001).
  • Cauli O, Llansola M, Agusti A et al. Cerebral oedema is not responsible for motor or cognitive deficits in rats with hepatic encephalopathy. Liver Int. doi:10.1111/liv.12258 (2013) ( Epub ahead of print).
  • Joshi D, O’apos;Grady J, Patel A et al. Cerebral oedema is rare in acute-on-chronic liver failure patients presenting with high-grade hepatic encephalopathy. Liver Int. doi:10.1111/liv.12257 (2013) ( Epub ahead of print).
  • Shawcross DL, Shabbir SS, Taylor NJ, Hughes RD. Ammonia and the neutrophil in the pathogenesis of hepatic encephalopathy in cirrhosis. Hepatology 51(3), 1062–1069 (2010).
  • Fan P, Szerb JC. Effects of ammonium ions on synaptic transmission and on responses to quisqualate and N-methyl-D-aspartate in hippocampal CA1 pyramidal neurons in vitro. Brain Res. 632(1–2), 225–231 (1993).
  • Bosoi CR, Rose CF. Identifying the direct effects of ammonia on the brain. Metab. Brain Dis. 24(1), 95–102 (2009).
  • Hermenegildo C, Monfort P, Felipo V. Activation of N-methyl-D-aspartate receptors in rat brain in vivo following acute ammonia intoxication: characterization by in vivo brain microdialysis. Hepatology 31(3), 709–715 (2000).
  • Llansola M, Rodrigo R, Monfort P et al. NMDA receptors in hyperammonemia and hepatic encephalopathy. Metab. Brain Dis. 22(3–4), 321–335 (2007).
  • Minana MD, Felipo V, Grisolia S. Protective effect of long term ammonium ingestion against acute ammonium intoxication. Biochem. Biophys. Res. Commun. 153(3), 979–983 (1988).
  • Kosenko E, Felipo V, Minana MD, Grau E, Grisolia S. Ammonium ingestion prevents depletion of hepatic energy metabolites induced by acute ammonium intoxication. Arch. Biochem. Biophys. 290(2), 484–488 (1991).
  • Kosenko E, Kaminsky YG, Felipo V, Minana MD, Grisolia S. Chronic hyperammonemia prevents changes in brain energy and ammonia metabolites induced by acute ammonium intoxication. Biochim. Biophys. Acta 1180(3), 321–326 (1993).
  • Hermenegildo C, Montoliu C, Llansola M et al. Chronic hyperammonemia impairs the glutamate-nitric oxide-cyclic GMP pathway in cerebellar neurons in culture and in the rat in vivo. Eur. J. Neurosci. 10(10), 3201–3209 (1998).
  • Corbalan R, Chatauret N, Behrends S, Butterworth RF, Felipo V. Region selective alterations of soluble guanylate cyclase content and modulation in brain of cirrhotic patients. Hepatology 36(5), 1155–1162 (2002).
  • Erceg S, Monfort P, Cauli O et al. Role of extracellular cGMP and of hyperammonemia in the impairment of learning in rats with chronic hepatic failure. Therapeutic implications. Neurochem. Int. 48(6–7), 441–446 (2006).
  • Erceg S, Monfort P, Hernandez-Viadel M, Llansola M, Montoliu C, Felipo V. Restoration of learning ability in hyperammonemic rats by increasing extracellular cGMP in brain. Brain Res. 1036(1–2), 115–121 (2005).
  • Erceg S, Monfort P, Hernandez-Viadel M, Rodrigo R, Montoliu C, Felipo V. Oral administration of sildenafil restores learning ability in rats with hyperammonemia and with portacaval shunts. Hepatology 41(2), 299–306 (2005).
  • Schafer DF, Jones EA. Hepatic encephalopathy and the γ-aminobutyric-acid neurotransmitter system. Lancet 1(8262), 18–20 (1982).
  • Ahboucha S, Butterworth RF. Pathophysiology of hepatic encephalopathy: a new look at GABA from the molecular standpoint. Metab. Brain Dis. 19(3–4), 331–343 (2004).
  • Jones EA. Potential mechanisms of enhanced GABA-mediated inhibitory neurotransmission in liver failure. Neurochem. Int. 43(4–5), 509–516 (2003).
  • Lavoie J, Layrargues GP, Butterworth RF. Increased densities of peripheral-type benzodiazepine receptors in brain autopsy samples from cirrhotic patients with hepatic encephalopathy. Hepatology 11(5), 874–878 (1990).
  • Ahboucha S, Pomier-Layrargues G, Mamer O, Butterworth RF. Increased levels of pregnenolone and its neuroactive metabolite allopregnanolone in autopsied brain tissue from cirrhotic patients who died in hepatic coma. Neurochem. Int. 49(4), 372–378 (2006).
  • Jalan R, Turjanski N, Taylor-Robinson SD et al. Increased availability of central benzodiazepine receptors in patients with chronic hepatic encephalopathy and alcohol related cirrhosis. Gut 46(4), 546–552 (2000).
  • Cauli O, Mansouri MT, Agusti A, Felipo V. Hyperammonemia Increases GABAergic Tone in the Cerebellum but Decreases It in the Rat Cortex. Gastroenterology 136(4), 1359–1367, e1352 (2009).
  • Bjerring PN, Eefsen M, Hansen BA, Larsen FS. The brain in acute liver failure. A tortuous path from hyperammonemia to cerebral edema. Metab. Brain Dis. 24(1), 5–14 (2009).
  • Zwingmann C, Chatauret N, Leibfritz D, Butterworth RF. Selective increase of brain lactate synthesis in experimental acute liver failure: Results of a [1H-13C] nuclear magnetic resonance study. Hepatology 37(2), 420–428 (2003).
  • Kosenko E, Kaminsky Y, Grau E et al. Brain ATP depletion induced by acute ammonia intoxication in rats is mediated by activation of the NMDA receptor and Na+,K(+)−ATPase. J. Neurochem. 63(6), 2172–2178 (1994).
  • Albrecht J, Norenberg MD. Glutamine: a Trojan horse in ammonia neurotoxicity. Hepatology 44(4), 788–794 (2006).
  • Sonnewald U, Westergaard N, Jones P, Taylor A, Bachelard HS, Schousboe A. Metabolism of [U-13C5] glutamine in cultured astrocytes studied by NMR spectroscopy: first evidence of astrocytic pyruvate recycling. J. Neurochem. 67(6), 2566–2572 (1996).
  • Bai G, Rama Rao KV, Murthy CR, Panickar KS, Jayakumar AR, Norenberg MD. Ammonia induces the mitochondrial permeability transition in primary cultures of rat astrocytes. J. Neurosci. Res. 66(5), 981–991 (2001).
  • Zoratti M, Szabo I, De Marchi U. Mitochondrial permeability transitions: how many doors to the house? Biochim. Biophys. Acta 1706(1–2), 40–52 (2005).
  • Rama Rao KV, Jayakumar AR, Norenberg MD. Role of oxidative stress in the ammonia-induced mitochondrial permeability transition in cultured astrocytes. Neurochem. Int. 47(1–2), 31–38 (2005).
  • Shawcross DL, Sharifi Y, Canavan JB et al. Infection and systemic inflammation, not ammonia, are associated with Grade 3/4 hepatic encephalopathy, but not mortality in cirrhosis. J. Hepatol. 54(4), 640–649 (2011).
  • Ong JP, Aggarwal A, Krieger D et al. Correlation between ammonia levels and the severity of hepatic encephalopathy. Am. J. Med. 114(3), 188–193 (2003).
  • Nicolao F, Efrati C, Masini A, Merli M, Attili AF, Riggio O. Role of determination of partial pressure of ammonia in cirrhotic patients with and without hepatic encephalopathy. J. Hepatol. 38(4), 441–446 (2003).
  • Rolando N, Philpott-Howard J, Williams R. Bacterial and fungal infection in acute liver failure. Semin. Liver Dis. 16(4), 389–402 (1996).
  • Rolando N, Wade J, Davalos M, Wendon J, Philpott-Howard J, Williams R. The systemic inflammatory response syndrome in acute liver failure. Hepatology 32(4 Pt 1), 734–739 (2000).
  • Vaquero J, Polson J, Chung C et al. Infection and the progression of hepatic encephalopathy in acute liver failure. Gastroenterology 125(3), 755–764 (2003).
  • Jalan R, Olde Damink SW, Deutz NE, Hayes PC, Lee A. Moderate hypothermia in patients with acute liver failure and uncontrolled intracranial hypertension. Gastroenterology 127(5), 1338–1346 (2004).
  • Jalan R, Pollok A, Shah SH, Madhavan K, Simpson KJ. Liver derived pro-inflammatory cytokines may be important in producing intracranial hypertension in acute liver failure. J. Hepatol. 37(4), 536–538 (2002).
  • Shawcross DL, Wright G, Olde Damink SW, Jalan R. Role of ammonia and inflammation in minimal hepatic encephalopathy. Metab. Brain Dis. 22(1), 125–138 (2007).
  • Marini JC, Broussard SR. Hyperammonemia increases sensitivity to LPS. Mol. Genet. Metab. 88(2), 131–137 (2006).
  • Felipo V, Urios A, Montesinos E et al. Contribution of hyperammonemia and inflammatory factors to cognitive impairment in minimal hepatic encephalopathy. Metab. Brain Dis. 27(1), 51–58 (2012).
  • Vorobioff J, Bredfeldt JE, Groszmann RJ. Hyperdynamic circulation in portal-hypertensive rat model: a primary factor for maintenance of chronic portal hypertension. Am. J. Physiol. 244(1), G52–57 (1983).
  • Cirera I, Bauer TM, Navasa M et al. Bacterial translocation of enteric organisms in patients with cirrhosis. J. Hepatol. 34(1), 32–37 (2001).
  • Llovet JM, Bartoli R, March F et al. Translocated intestinal bacteria cause spontaneous bacterial peritonitis in cirrhotic rats: molecular epidemiologic evidence. J. Hepatol. 28(2), 307–313 (1998).
  • Perez del Pulgar S, Pizcueta P, Engel P, Bosch J. Enhanced monocyte activation and hepatotoxicity in response to endotoxin in portal hypertension. J. Hepatol. 32(1), 25–31 (2000).
  • Bigatello LM, Broitman SA, Fattori L et al. Endotoxemia, encephalopathy, and mortality in cirrhotic patients. Am. J. Gastroenterol. 82(1), 11–15 (1987).
  • Montoliu C, Piedrafita B, Serra MA et al. IL-6 and IL-18 in blood may discriminate cirrhotic patients with and without minimal hepatic encephalopathy. J. Clin. Gastroenterol. 43(3), 272–279 (2009).
  • Panasiuk A, Wysocka J, Maciorkowska E et al. Phagocytic and oxidative burst activity of neutrophils in the end stage of liver cirrhosis. World J. Gastroenterol. 11(48), 7661–7665 (2005).
  • Bonnel AR, Bunchorntavakul C, Reddy KR. Immune dysfunction and infections in patients with cirrhosis. Clin. Gastroenterol. Hepatol. 9(9), 727–738 (2011).
  • Mookerjee RP, Stadlbauer V, Lidder S et al. Neutrophil dysfunction in alcoholic hepatitis superimposed on cirrhosis is reversible and predicts the outcome. Hepatology 46(3), 831–840 (2007).
  • Shawcross DL, Wright GA, Stadlbauer V et al. Ammonia impairs neutrophil phagocytic function in liver disease. Hepatology 48(4), 1202–1212 (2008).
  • Taylor NJ, Nishtala A, Manakkat Vijay GK et al. Circulating neutrophil dysfunction in acute liver failure. Hepatology 57(3), 1142–1152 (2013).
  • Stadlbauer V, Mookerjee RP, Hodges S, Wright GA, Davies NA, Jalan R. Effect of probiotic treatment on deranged neutrophil function and cytokine responses in patients with compensated alcoholic cirrhosis. J. Hepatol. 48(6), 945–951 (2008).
  • Vijay GKM, Abeles RD, Ramage S et al. PMO-125 Neutrophil intracellular toll-like receptor (TLR) 9 expression serves as a biomarker that determines presence and severity of encephalopathy in acute liver failure and cirrhosis. Gut 61( Suppl. 2), A123–A124 (2012).
  • Borzio M, Salerno F, Piantoni L et al. Bacterial infection in patients with advanced cirrhosis: a multicentre prospective study. Dig. Liver Dis. 33(1), 41–48 (2001).
  • Cauli O, Rodrigo R, Piedrafita B, Boix J, Felipo V. Inflammation and hepatic encephalopathy: ibuprofen restores learning ability in rats with portacaval shunts. Hepatology 46(2), 514–519 (2007).
  • Rodrigo R, Cauli O, Gomez-Pinedo U et al. Hyperammonemia induces neuroinflammation that contributes to cognitive impairment in rats with hepatic encephalopathy. Gastroenterology 139(2), 675–684 (2010).
  • Jiang W, Desjardins P, Butterworth RF. Direct evidence for central proinflammatory mechanisms in rats with experimental acute liver failure: protective effect of hypothermia. J. Cereb. Blood Flow Metab. 29(5), 944–952 (2009).
  • Jiang W, Desjardins P, Butterworth RF. Cerebral inflammation contributes to encephalopathy and brain edema in acute liver failure: protective effect of minocycline. J. Neurochem. 109(2), 485–493 (2009).
  • Rangroo Thrane V, Thrane AS, Chang J, Alleluia V, Nagelhus EA, Nedergaard M. Real-time analysis of microglial activation and motility in hepatic and hyperammonemic encephalopathy. Neuroscience 220, 247–255 (2012).
  • Butterworth RF. The liver-brain axis in liver failure: neuroinflammation and encephalopathy. Nat. Rev. Gastroenterol. Hepatol. 10(9), 522–528 (2013).
  • Sharma BC, Sharma P, Agrawal A, Sarin SK. Secondary prophylaxis of hepatic encephalopathy: an open-label randomized controlled trial of lactulose versus placebo. Gastroenterology 137(3), 885–891, 891 e891 (2009).
  • Alba L, Hay JE, Angulo P, Lee WM. Lactulose therapy in acute liver failure. J. Hepatol. 36, 33 (2002).
  • Polson J, Lee WM. AASLD position paper: The management of acute liver failure. Hepatology 41(5), 1179–1197 (2005).
  • Als-Nielsen B, Gluud LL, Gluud C. Non-absorbable disaccharides for hepatic encephalopathy: systematic review of randomised trials. BMJ 328(7447), 1046 (2004).
  • Prasad S, Dhiman RK, Duseja A, Chawla YK, Sharma A, Agarwal R. Lactulose improves cognitive functions and health-related quality of life in patients with cirrhosis who have minimal hepatic encephalopathy. Hepatology 45(3), 549–559 (2007).
  • Gluud LL, Dam G, Borre M et al. Lactulose, rifaximin or branched chain amino acids for hepatic encephalopathy: what is the evidence? Metab. Brain Dis. 28(2), 221–225 (2013).
  • Riordan SM, Williams R. Gut flora and hepatic encephalopathy in patients with cirrhosis. N. Engl. J. Med. 362(12), 1140–1142 (2010).
  • DuPont HL. Biologic properties and clinical uses of rifaximin. Expert Opin. Pharmacother. 12(2), 293–302 (2011).
  • Bucci L, Palmieri GC. Double-blind, double-dummy comparison between treatment with rifaximin and lactulose in patients with medium to severe degree hepatic encephalopathy. Curr. Med. Res. Opin. 13(2), 109–118 (1993).
  • Loguercio C, Federico A, De Girolamo V, Ferrieri A, Del Vecchio Blanco C. Cyclic treatment of chronic hepatic encephalopathy with rifaximin. Results of a double-blind clinical study. Minerva Gastroenterol. Dietol. 49(1), 53–62 (2003).
  • Sharma BC, Sharma P, Lunia MK, Srivastava S, Goyal R, Sarin SK. A randomized, double-blind, controlled trial comparing rifaximin plus lactulose with lactulose alone in treatment of overt hepatic encephalopathy. Am. J. Gastroenterol. 108(9), 1458–1463 (2013).
  • Festi D, Mazzella G, Orsini M et al. Rifaximin in the treatment of chronic hepatic-encephalopathy – results of a multicenter study of efficacy and safety. Curr. Ther. Res. Clin. E 54(5), 598–609 (1993).
  • Paik YH, Lee KS, Han KH et al. Comparison of rifaximin and lactulose for the treatment of hepatic encephalopathy: a prospective randomized study. Yonsei Med. J. 46(3), 399–407 (2005).
  • Mas A, Rodes J, Sunyer L et al. Comparison of rifaximin and lactitol in the treatment of acute hepatic encephalopathy: results of a randomized, double-blind, double-dummy, controlled clinical trial. J. Hepatol. 38(1), 51–58 (2003).
  • Jiang Q, Jiang XH, Zheng MH, Jiang LM, Chen YP, Wang L. Rifaximin versus nonabsorbable disaccharides in the management of hepatic encephalopathy: a meta-analysis. Eur. J. Gastroenterol. Hepatol. 20(11), 1064–1070 (2008).
  • Bass NM, Mullen KD, Sanyal A et al. Rifaximin treatment in hepatic encephalopathy. N. Engl. J. Med. 362(12), 1071–1081 (2010).
  • Kalambokis GN, Tsianos EV. Rifaximin reduces endotoxemia and improves liver function and disease severity in patients with decompensated cirrhosis. Hepatology 55(2), 655–656 (2012).
  • Rose C, Michalak A, Pannunzio P et al. L-ornithine-L-aspartate in experimental portal-systemic encephalopathy: therapeutic efficacy and mechanism of action. Metab. Brain Dis. 13(2), 147–157 (1998).
  • Gebhardt R, Beckers G, Gaunitz F et al. Treatment of cirrhotic rats with L-ornithine-L-aspartate enhances urea synthesis and lowers serum ammonia levels. J. Pharmacol. Exp. Ther. 283(1), 1–6 (1997).
  • Soarez PC, Oliveira AC, Padovan J, Parise ER, Ferraz MB. A critical analysis of studies assessing L-ornithine-L-aspartate (LOLA) in hepatic encephalopathy treatment. Arq. Gastroenterol. 46(3), 241–247 (2009).
  • Mittal VV, Sharma BC, Sharma P, Sarin SK. A randomized controlled trial comparing lactulose, probiotics, and L-ornithine L-aspartate in treatment of minimal hepatic encephalopathy. Eur. J. Gastroenterol. Hepatol. 23(8), 725–732 (2011).
  • Poo JL, Gongora J, Sanchez-Avila F et al. Efficacy of oral L-ornithine-L-aspartate in cirrhotic patients with hyperammonemic hepatic encephalopathy. Results of a randomized, lactulose-controlled study. Ann. Hepatol. 5(4), 281–288 (2006).
  • Acharya SK, Bhatia V, Sreenivas V, Khanal S, Panda SK. Efficacy of L-ornithine L-aspartate in acute liver failure: a double-blind, randomized, placebo-controlled study. Gastroenterology 136(7), 2159–2168 (2009).
  • Leonard JV, Morris AA. Urea cycle disorders. Semin. Neonatol. 7(1), 27–35 (2002).
  • Slack AJ, Auzinger G, Willars C et al. Ammonia clearance with haemofiltration in adults with liver disease. Liver Int. doi:10.1111/liv.12221 (2013) ( Epub ahead of print).
  • Stravitz RT, Larsen FS. Therapeutic hypothermia for acute liver failure. Crit. Care Med. 37(7 Suppl.), S258–S264 (2009).
  • Jalan R, O Damink SW, Deutz NE, Lee A, Hayes PC. Moderate hypothermia for uncontrolled intracranial hypertension in acute liver failure. Lancet 354(9185), 1164–1168 (1999).
  • Jalan R, Olde Damink SW, Deutz NE et al. Moderate hypothermia prevents cerebral hyperemia and increase in intracranial pressure in patients undergoing liver transplantation for acute liver failure. Transplantation 75(12), 2034–2039 (2003).
  • Jalan R, Olde Damink SW, Deutz NE, Hayes PC, Lee A. Restoration of cerebral blood flow autoregulation and reactivity to carbon dioxide in acute liver failure by moderate hypothermia. Hepatology 34(1), 50–54 (2001).
  • Larsen FS, Murphy N, Bernal W, Bjerring PN, Hauerberg J, Wendon J. 56 the prophylactive effect of mild hypothermia to prevent brain edema in patients with acute liver failure: results of a multicenter randomized, controlled trial. J. Hepatol. 54, S26 (2011).
  • Lee WM, Hynan LS, Rossaro L et al. Intravenous N-acetylcysteine improves transplant-free survival in early stage non-acetaminophen acute liver failure. Gastroenterology 137(3), 856–864, 864, e851 (2009).
  • Bémeur C, Vaquero J, Desjardins P, Butterworth R. N-Acetylcysteine attenuates cerebral complications of non-acetaminophen-induced acute liver failure in mice: antioxidant and anti-inflammatory mechanisms. Metab. Brain Dis. 25(2), 241–249 (2010).
  • Lee WM, Stravitz RT, Larson AM. Introduction to the revised American Association for the study of liver diseases position paper on acute liver failure 2011. Hepatology 55(3), 965–967 (2012).
  • Sherlock S, Summerskill WH, White LP, Phear EA. Portal-systemic encephalopathy; neurological complications of liver disease. Lancet 267(6836), 454–457 (1954).
  • Amodio P, Bemeur C, Butterworth R et al. The nutritional management of hepatic encephalopathy in patients with cirrhosis: International Society for Hepatic Encephalopathy and Nitrogen Metabolism Consensus. Hepatology 58(1), 325–336 (2013).
  • Cordoba J, Lopez-Hellin J, Planas M et al. Normal protein diet for episodic hepatic encephalopathy: results of a randomized study. J. Hepatol. 41(1), 38–43 (2004).
  • Plauth M, Merli M, Kondrup J et al. ESPEN guidelines for nutrition in liver disease and transplantation. Clin. Nutr. 16(2), 43–55 (1997).
  • Rana S, Sodhi CP, Mehta S et al. Protein-energy malnutrition and oxidative injury in growing rats. Hum. Exp. Toxicol. 15(10), 810–814 (1996).
  • Liu Q, Duan ZP, Ha DK, Bengmark S, Kurtovic J, Riordan SM. Synbiotic modulation of gut flora: effect on minimal hepatic encephalopathy in patients with cirrhosis. Hepatology 39(5), 1441–1449 (2004).
  • Malaguarnera M, Greco F, Barone G, Gargante MP, Malaguarnera M, Toscano MA. Bifidobacterium longum with fructo-oligosaccharide (FOS) treatment in minimal hepatic encephalopathy: a randomized, double-blind, placebo-controlled study. Dig. Dis. Sci. 52(11), 3259–3265 (2007).
  • Sharma P, Sharma BC, Puri V, Sarin SK. An open-label randomized controlled trial of lactulose and probiotics in the treatment of minimal hepatic encephalopathy. Eur. J. Gastroenterol. Hepatol. 20(6), 506–511 (2008).
  • Agrawal A, Sharma BC, Sharma P, Sarin SK. Secondary prophylaxis of hepatic encephalopathy in cirrhosis: an open-label, randomized controlled trial of lactulose, probiotics, and no therapy. Am. J. Gastroenterol. 107(7), 1043–1050 (2012).
  • McGee RG, Bakens A, Wiley K, Riordan SM, Webster AC. Probiotics for patients with hepatic encephalopathy. Cochrane Database Syst. Rev. (11), CD008716 (2011).
  • Bosoi CR, Parent-Robitaille C, Anderson K, Tremblay M, Rose CF. AST-120 (spherical carbon adsorbent) lowers ammonia levels and attenuates brain edema in bile duct-ligated rats. Hepatology 53(6), 1995–2002 (2011).
  • Hiraishi M. The effect of oral adsorbent on surgically induced hepatic failure. Jpn. J. Surg. 17(6), 517–527 (1987).
  • Pockros P, Hassanein T, Vierling J et al. 105 phase 2, multicenter, randomized study of ast-120 (spherical carbon adsorbent) vs. lactulose in the treatment of low-grade hepatic encephalopathy (he). J. Hepatol. 50, S43–S44 (2009).
  • Brusilow SW, Valle DL, Batshaw M. New pathways of nitrogen excretion in inborn errors of urea synthesis. Lancet 2(8140), 452–454 (1979).
  • Enns GM, Berry SA, Berry GT, Rhead WJ, Brusilow SW, Hamosh A. Survival after treatment with phenylacetate and benzoate for urea-cycle disorders. N. Engl. J. Med. 356(22), 2282–2292 (2007).
  • Sushma S, Dasarathy S, Tandon RK, Jain S, Gupta S, Bhist MS. Sodium benzoate in the treatment of acute hepatic encephalopathy: a double-blind randomized trial. Hepatology 16(1), 138–144 (1992).
  • Efrati C, Masini A, Merli M, Valeriano V, Riggio O. Effect of sodium benzoate on blood ammonia response to oral glutamine challenge in cirrhotic patients: a note of caution. Am. J. Gastroenterol. 95(12), 3574–3578 (2000).
  • Mendenhall CL, Rouster S, Marshall L, Weesner R. A new therapy for portal systemic encephalopathy. Am. J. Gastroenterol. 81(7), 540–543 (1986).
  • Uribe M, Bosques F, Poo J et al. A double blind randomized trial of sodium benzoate versus lactulose in patients with chronic portal systemic encephalopathy. [ Abstract]. Hepatology 8(5), 1449 (1988).
  • McGuire BM, Zupanets IA, Lowe ME et al. Pharmacology and safety of glycerol phenylbutyrate in healthy adults and adults with cirrhosis. Hepatology 51(6), 2077–2085 (2010).
  • Ghabril M, Zupanets IA, Vierling J et al. Glycerol phenylbutyrate in patients with cirrhosis and episodic hepatic encephalopathy: a pilot study of safety and effect on venous ammonia concentration. Clin. Pharmacol. Drug Dev. 2(3), 278–284 (2013).
  • Bak LK, Waagepetersen HS, Sorensen M et al. Role of branched chain amino acids in cerebral ammonia homeostasis related to hepatic encephalopathy. Metab. Brain Dis. 28(2), 209–215 (2013).
  • Als-Nielsen B, Koretz RL, Gluud LL, Gluud C. Branched-chain amino acids for hepatic encephalopathy. Cochrane Database Syst. Rev. (2), CD001939 (2004).
  • Gluud LL, Dam G, Borre M et al. Oral branched-chain amino acids have a beneficial effect on manifestations of hepatic encephalopathy in a systematic review with meta-analyses of randomized controlled trials. J. Nutr. 143(8), 1263–1268 (2013).
  • Jalan R, Wright G, Davies NA, Hodges SJ. L-Ornithine phenylacetate (OP): a novel treatment for hyperammonemia and hepatic encephalopathy. Med. Hypotheses 69(5), 1064–1069 (2007).
  • Ytrebo LM, Kristiansen RG, Maehre H et al. L-ornithine phenylacetate attenuates increased arterial and extracellular brain ammonia and prevents intracranial hypertension in pigs with acute liver failure. Hepatology 50(1), 165–174 (2009).
  • Ventura-Cots M, Arranz JA, Simon-Talero M et al. Safety of ornithine phenylacetate in cirrhotic decompensated patients: an open-label, dose-escalating, single-cohort study. J. Clin. Gastroenterol. 47(10), 881–887 (2013).
  • Lheureux PE, Penaloza A, Zahir S, Gris M. Science review: carnitine in the treatment of valproic acid-induced toxicity – what is the evidence? Crit. Care 9(5), 431–440 (2005).
  • Limketkai BN, Zucker SD. Hyperammonemic encephalopathy caused by carnitine deficiency. J. Gen. Intern. Med. 23(2), 210–213 (2008).
  • Ling P, Lee DJ, Yoshida EM, Sirrs S. Carnitine deficiency presenting with encephalopathy and hyperammonemia in a patient receiving chronic enteral tube feeding: a case report. J. Med. case Rep. 6(1), 227 (2012).
  • Karakoc E, Erdem S, Sokmensuer C, Kansu T. Encephalopathy due to carnitine deficiency in an adult patient with gluten enteropathy. Clin. Neurol. Neurosurg. 108(8), 794–797 (2006).
  • McKinney AM, Sarikaya B, Spanbauer J, Lohman BD, Uhlmann E. Acute hepatic (or hyperammonemic) encephalopathy: diffuse cortical injury and the significance of ammonia. AJNR 32(7), E142, author reply E143 (2011).
  • Therrien G, Rose C, Butterworth J, Butterworth RF. Protective effect of L-carnitine in ammonia-precipitated encephalopathy in the portacaval shunted rat. Hepatology 25(3), 551–556 (1997).
  • Malaguarnera M, Gargante MP, Cristaldi E et al. Acetyl-L-carnitine treatment in minimal hepatic encephalopathy. Dig. Dis. Sci. 53(11), 3018–3025 (2008).
  • Malaguarnera M, Bella R, Vacante M et al. Acetyl-L-carnitine reduces depression and improves quality of life in patients with minimal hepatic encephalopathy. Scand. J. Gastroenterol. 46(6), 750–759 (2011).
  • Malaguarnera M, Vacante M, Giordano M et al. Oral acetyl-L-carnitine therapy reduces fatigue in overt hepatic encephalopathy: a randomized, double-blind, placebo-controlled study. Am. J. Clin. Nutr. 93(4), 799–808 (2011).
  • Malaguarnera M, Pistone G, Astuto M et al. Effects of L-acetylcarnitine on cirrhotic patients with hepatic coma: randomized double-blind, placebo-controlled trial. Dig. Dis. Sci. 51(12), 2242–2247 (2006).
  • Malaguarnera M, Risino C, Cammalleri L et al. Branched chain amino acids supplemented with L-acetylcarnitine versus BCAA treatment in hepatic coma: a randomized and controlled double blind study. Eur. J. Gastroenterol. Hepatol. 21(7), 762–770 (2009).
  • Malaguarnera M, Vacante M, Motta M et al. Acetyl-L-carnitine improves cognitive functions in severe hepatic encephalopathy: a randomized and controlled clinical trial. Metab. Brain Dis. 26(4), 281–289 (2011).
  • Quinlan GJ, Martin GS, Evans TW. Albumin: biochemical properties and therapeutic potential. Hepatology 41(6), 1211–1219 (2005).
  • Jalan R, Kapoor D. Reversal of diuretic-induced hepatic encephalopathy with infusion of albumin but not colloid. Clin. Sci. 106(5), 467–474 (2004).
  • Hassanein TI, Tofteng F, Brown RS Jr et al. Randomized controlled study of extracorporeal albumin dialysis for hepatic encephalopathy in advanced cirrhosis. Hepatology 46(6), 1853–1862 (2007).
  • Kjaergard LL, Liu J, Als-Nielsen B, Gluud C. Artificial and bioartificial support systems for acute and acute-on-chronic liver failure: a systematic review. JAMA 289(2), 217–222 (2003).
  • Nakanishi T, Suzuki N, Kuragano T, Nagasawa Y, Hasuike Y. Current topics in therapeutic plasmapheresis. Clin. Exp. Nephrol. 1–9 (2013).
  • Stenbøg P, Busk T, Larsen F. Efficacy of liver assisting in patients with hepatic encephalopathy with special focus on plasma exchange. Metab. Brain Dis. 28(2), 333–335 (2013).
  • Stirling DP, Koochesfahani KM, Steeves JD, Tetzlaff W. Minocycline as a neuroprotective agent. Neuroscientist 11(4), 308–322 (2005).
  • Jiang W, Desjardins P, Butterworth RF. Minocycline attenuates oxidative/nitrosative stress and cerebral complications of acute liver failure in rats. Neurochem. Int. 55(7), 601–605 (2009).
  • Maddrey WC. Drug-induced hepatotoxicity: 2005. J. Clin. Gastroenterol. 39(4 Suppl. 2), S83–S89 (2005).
  • Als-Nielsen B, Gluud LL, Gluud C. Benzodiazepine receptor antagonists for hepatic encephalopathy. Cochrane Database Syst. Rev. (2), CD002798 (2004).
  • Bassett ML, Mullen KD, Skolnick P, Jones EA. Amelioration of hepatic encephalopathy by pharmacologic antagonism of the GABAA-benzodiazepine receptor complex in a rabbit model of fulminant hepatic failure. Gastroenterology 93(5), 1069–1077 (1987).
  • Arafa MH, Atteia HH. Sildenafil citrate attenuates the deleterious effects of elevated ammonia. Toxicol. Mech. Methods 23(6), 402–411 (2013).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.