492
Views
70
CrossRef citations to date
0
Altmetric
Reviews

Mitochondria in lung diseases

, , &
Pages 631-646 | Published online: 09 Jan 2014

References

  • Green DR, Galluzzi L, Kroemer G. Mitochondria and the autophagy-inflammation-cell death axis in organismal aging. Science 333(6046), 1109–1112 (2011).
  • Scarpulla RC. Transcriptional paradigms in mammalian mitochondrial biogenesis and function. Physiol. Rev. 88(2), 611–638 (2008).
  • Pendyala S, Natarajan V. Redox regulation of Nox proteins. Respir. Physiol. Neurobiol. 174(3), 265–271 (2010).
  • Poyton RO, Ball KA, Castello PR. Mitochondrial generation of free radicals and hypoxic signaling. Trends Endocrinol. Metab. 20(7), 332–340 (2009).
  • Al Ghouleh I, Khoo NK, Knaus UG et al. Oxidases and peroxidases in cardiovascular and lung disease: new concepts in reactive oxygen species signaling. Free Radic. Biol. Med. 51(7), 1271–1288 (2011).
  • Bao L, Avshalumov MV, Patel JC et al. Mitochondria are the source of hydrogen peroxide for dynamic brain-cell signaling. J. Neurosci. 29(28), 9002–9010 (2009).
  • Doulias PT, Tenopoulou M, Greene JL, Raju K, Ischiropoulos H. Nitric oxide regulates mitochondrial fatty acid metabolism through reversible protein S-nitrosylation. Sci. Signal. 6(256), rs1 (2013).
  • Elchuri S, Oberley TD, Qi W et al. CuZnSOD deficiency leads to persistent and widespread oxidative damage and hepatocarcinogenesis later in life. Oncogene 24(3), 367–380 (2005).
  • Goth L. Catalase deficiency and type 2 diabetes. Diabetes Care 31(12), e93 (2008).
  • Muller FL, Song W, Liu Y et al. Absence of CuZn superoxide dismutase leads to elevated oxidative stress and acceleration of age-dependent skeletal muscle atrophy. Free Radic. Biol. Med. 40(11), 1993–2004 (2006).
  • Paradies G, Petrosillo G, Paradies V, Reiter RJ, Ruggiero FM. Melatonin, cardiolipin and mitochondrial bioenergetics in health and disease. J. Pineal Res. 48(4), 297–310 (2010).
  • Bargagli E, Olivieri C, Bennett D, Prasse A, Muller-Quernheim J, Rottoli P. Oxidative stress in the pathogenesis of diffuse lung diseases: a review. Respir. Med. 103(9), 1245–1256 (2009).
  • Crimi M, Rigolio R. The mitochondrial genome, a growing interest inside an organelle. Int. J. Nanomedicine 3(1), 51–57 (2008).
  • Michelakis ED. Mitochondrial medicine: a new era in medicine opens new windows and brings new challenges. Circulation 117(19), 2431–2434 (2008).
  • Tait SW, Green DR. Mitochondria and cell death: outer membrane permeabilization and beyond. Nat. Rev. Mol. Cell Biol. 11(9), 621–632 (2010).
  • Anand R, Langer T, Baker MJ. Proteolytic control of mitochondrial function and morphogenesis. Biochim. Biophys. Acta 1833(1), 195–204 (2013).
  • Benard G, Bellance N, James D et al. Mitochondrial bioenergetics and structural network organization. J. Cell Sci. 120( Pt 5), 838–848 (2007).
  • Bravo-Sagua R, Rodriguez AE, Kuzmicic J et al. Cell death and survival through the endoplasmic reticulum-mitochondrial axis. Curr. Mol. Med. 13(2), 317–329 (2013).
  • Campello S, Scorrano L. Mitochondrial shape changes: orchestrating cell pathophysiology. EMBO Rep. 11(9), 678–684 (2010).
  • Castanier C, Garcin D, Vazquez A, Arnoult D. Mitochondrial dynamics regulate the RIG-I-like receptor antiviral pathway. EMBO Rep. 11(2), 133–138 (2010).
  • Chalmers S, Saunter C, Wilson C, Coats P, Girkin JM, Mccarron JG. Mitochondrial motility and vascular smooth muscle proliferation. Arterioscler. Thromb. Vasc. Biol. 32(12), 3000–3011 (2012).
  • Chen H, Chan DC. Mitochondrial dynamics--fusion, fission, movement, and mitophagy--in neurodegenerative diseases. Hum. Mol. Genet. 18(R2), R169–R176 (2009).
  • De Brito OM, Scorrano L. Mitofusin-2 regulates mitochondrial and endoplasmic reticulum morphology and tethering: the role of Ras. Mitochondrion 9(3), 222–226 (2009).
  • Friedman JR, Lackner LL, West M, Dibenedetto JR, Nunnari J, Voeltz GK. ER tubules mark sites of mitochondrial division. Science 334(6054), 358–362 (2011).
  • Hoppins S, Nunnari J. Cell Biology. Mitochondrial dynamics and apoptosis--the ER connection. Science 337(6098), 1052–1054 (2012).
  • Huang P, Galloway CA, Yoon Y. Control of mitochondrial morphology through differential interactions of mitochondrial fusion and fission proteins. PLoS ONE 6(5), e20655 (2011).
  • Hyde BB, Twig G, Shirihai OS. Organellar vs cellular control of mitochondrial dynamics. Semin. Cell Dev. Biol. 21(6), 575–581 (2010).
  • Mabalirajan U, Dinda AK, Kumar S et al. Mitochondrial structural changes and dysfunction are associated with experimental allergic asthma. J. Immunol. 181(5), 3540–3548 (2008).
  • Korobova F, Ramabhadran V, Higgs HN. An actin-dependent step in mitochondrial fission mediated by the ER-associated formin INF2. Science 339(6118), 464–467 (2013).
  • Malhotra JD, Kaufman RJ. ER Stress and Its Functional Link to Mitochondria: Role in Cell Survival and Death. Cold Spring Harb. Perspect. Biol. 3(9), a004424 (2011).
  • Mallilankaraman K, Cardenas C, Doonan PJ et al. MCUR1 is an essential component of mitochondrial Ca2+ uptake that regulates cellular metabolism. Nat. Cell Biol. 14(12), 1336–1343 (2012).
  • Neuspiel M, Schauss AC, Braschi E et al. Cargo-selected transport from the mitochondria to peroxisomes is mediated by vesicular carriers. Cur. Biol. 18(2), 102–108 (2008).
  • Shinde AV, Motiani RK, Zhang X et al. STIM1 controls endothelial barrier function independently of orai1 and Ca2+ entry. Sci. Signal. 6(267), ra18 (2013).
  • Soubannier V, Mclelland GL, Zunino R et al. A vesicular transport pathway shuttles cargo from mitochondria to lysosomes. Curr. Biol. 22(2), 135–141 (2012).
  • Ahmad T, Aggarwal K, Pattnaik B et al. Computational classification of mitochondrial shapes reflects stress and redox state. Cell Death Dis. 4, e461 (2013).
  • Koopman WJ, Visch HJ, Verkaart S, Van Den Heuvel LW, Smeitink JA, Willems PH. Mitochondrial network complexity and pathological decrease in complex I activity are tightly correlated in isolated human complex I deficiency. Am. J. Physiol. Cell Physiol. 289(4), C881–C890 (2005).
  • Mannella CA. Structural diversity of mitochondria: functional implications. Ann. N. Y. Acad. Sci. 1147, 171–179 (2008).
  • Willems PH, Smeitink JA, Koopman WJ. Mitochondrial dynamics in human NADH:ubiquinone oxidoreductase deficiency. Int. J. Biochem. Cell Biol. 41(10), 1773–1782 (2009).
  • Willems PH, Swarts HG, Hink MA, Koopman WJ. Chapter 16 The use of fluorescence correlation spectroscopy to probe mitochondrial mobility and intramatrix protein diffusion. Methods Enzymol. 456, 287–302 (2009).
  • Palmer CS, Osellame LD, Stojanovski D, Ryan MT. The regulation of mitochondrial morphology: intricate mechanisms and dynamic machinery. Cell. Signal. 23(10), 1534–1545 (2011).
  • Song Z, Ghochani M, Mccaffery JM, Frey TG, Chan DC. Mitofusins and OPA1 mediate sequential steps in mitochondrial membrane fusion. Mol. Biol. Cell 20(15), 3525–3532 (2009).
  • Otera H, Wang C, Cleland MM et al. Mff is an essential factor for mitochondrial recruitment of Drp1 during mitochondrial fission in mammalian cells. J. Cell Biol. 191(6), 1141–1158 (2010).
  • Palmer CS, Osellame LD, Laine D, Koutsopoulos OS, Frazier AE, Ryan MT. MiD49 and MiD51, new components of the mitochondrial fission machinery. EMBO Rep .12(6), 565–573 (2011).
  • Autret A, Martin SJ. Emerging role for members of the Bcl-2 family in mitochondrial morphogenesis. Mol. Cell 36(3), 355–363 (2009).
  • Guillery O, Malka F, Frachon P, Milea D, Rojo M, Lombes A. Modulation of mitochondrial morphology by bioenergetics defects in primary human fibroblasts. Neuromuscul. Disord. 18(4), 319–330 (2008).
  • Heath-Engel HM, Shore GC. Mitochondrial membrane dynamics, cristae remodelling and apoptosis. Biochim. Biophys. Acta 1763(5–6), 549–560 (2006).
  • Landes T, Emorine LJ, Courilleau D, Rojo M, Belenguer P, Arnaune-Pelloquin L. The BH3-only Bnip3 binds to the dynamin Opa1 to promote mitochondrial fragmentation and apoptosis by distinct mechanisms. EMBO Rep. 11(6), 459–465 (2010).
  • Nagaraj R, Gururaja-Rao S, Jones KT et al. Control of mitochondrial structure and function by the Yorkie/YAP oncogenic pathway. Genes Dev. 26(18), 2027–2037 (2012).
  • Yamaguchi R, Lartigue L, Perkins G et al. Opa1-mediated cristae opening is Bax/Bak and BH3 dependent, required for apoptosis, and independent of Bak oligomerization. Mol. Cell 31(4), 557–569 (2008).
  • Berman SB, Chen YB, Qi B et al. Bcl-x L increases mitochondrial fission, fusion, and biomass in neurons. J. Cell Biol. 184(5), 707–719 (2009).
  • Rolland SG, Lu Y, David CN, Conradt B. The BCL-2-like protein CED-9 of C. elegans promotes FZO-1/Mfn1,2- and EAT-3/Opa1-dependent mitochondrial fusion. J. Cell Biol. 186(4), 525–540 (2009).
  • Neutzner A, Benard G, Youle RJ, Karbowski M. Role of the ubiquitin conjugation system in the maintenance of mitochondrial homeostasis. Ann. N. Y. Acad. Sci. 1147, 242–253 (2008).
  • Yang Y, Ouyang Y, Yang L et al. Pink1 regulates mitochondrial dynamics through interaction with the fission/fusion machinery. Proc. Natl Acad. Sci. U.S.A. 105(19), 7070–7075 (2008).
  • Ziviani E, Tao RN, Whitworth AJ. Drosophila parkin requires PINK1 for mitochondrial translocation and ubiquitinates mitofusin. Proc. Natl Acad. Sci. U.S.A. 107(11), 5018–5023 (2010).
  • Amiott EA, Cohen MM, Saint-Georges Y, Weissman AM, Shaw JM. A mutation associated with CMT2A neuropathy causes defects in Fzo1 GTP hydrolysis, ubiquitylation, and protein turnover. Mol. Biol. Cell 20(23), 5026–5035 (2009).
  • Zungu M, Schisler J, Willis MS. All the little pieces. -Regulation of mitochondrial fusion and fission by ubiquitin and small ubiquitin-like modifer and their potential relevance in the heart. Circ. J. 75(11), 2513–2521 (2011).
  • Zunino R, Braschi E, Xu L, Mcbride HM. Translocation of SenP5 from the nucleoli to the mitochondria modulates DRP1-dependent fission during mitosis. J. Biol. Chem. 284(26), 17783–17795 (2009).
  • Zunino R, Schauss A, Rippstein P, Andrade-Navarro M, Mcbride HM. The SUMO protease SENP5 is required to maintain mitochondrial morphology and function. J. Cell Sci. 120( Pt 7), 1178–1188 (2007).
  • Finkel T, Hwang PM. The Krebs cycle meets the cell cycle: mitochondria and the G1-S transition. Proc. Natl Acad. Sci. U.S.A. 106(29), 11825–11826 (2009).
  • Mitra K, Wunder C, Roysam B, Lin G, Lippincott-Schwartz J. A hyperfused mitochondrial state achieved at G1-S regulates cyclin E buildup and entry into S phase. Proc. Natl Acad. Sci. U.S.A. 106(29), 11960–11965 (2009).
  • Schieke SM, Mccoy JP Jr, Finkel T. Coordination of mitochondrial bioenergetics with G1 phase cell cycle progression. Cell Cycle 7(12), 1782–1787 (2008).
  • Owusu-Ansah E, Yavari A, Mandal S, Banerjee U. Distinct mitochondrial retrograde signals control the G1-S cell cycle checkpoint. Nat. Genet. 40(3), 356–361 (2008).
  • Estela A, Pla-Martin D, Sanchez-Piris M, Sesaki H, Palau F. Charcot-Marie-Tooth-related gene GDAP1 complements cell cycle delay at G2/M phase in Saccharomyces cerevisiae fis1 gene-defective cells. J. Biol. Chem. 286(42), 36777–36786 (2011).
  • Ammit AJ, Panettieri RA Jr. Airway smooth muscle cell hyperplasia: a therapeutic target in airway remodeling in asthma? Prog. Cell Cycle Res. 5, 49–57 (2003).
  • Ammit AJ, Panettieri RA Jr. Invited review: the circle of life: cell cycle regulation in airway smooth muscle. J. Appl. Physiol. 91(3), 1431–1437 (2001).
  • Belenguer P, Pellegrini L. The dynamin GTPase OPA1: More than mitochondria? Biochim. Biophys. Acta 1833(1), 176–183 (2013).
  • Pidoux G, Witczak O, Jarnaess E et al. Optic atrophy 1 is an A-kinase anchoring protein on lipid droplets that mediates adrenergic control of lipolysis. EMBO J. 30(21), 4371–4386 (2011).
  • Chen L, Gong Q, Stice JP, Knowlton AA. Mitochondrial OPA1, apoptosis, and heart failure. Cardiovasc. Res. 84(1), 91–99 (2009).
  • Zorzano A, Liesa M, Sebastian D, Segales J, Palacin M. Mitochondrial fusion proteins: dual regulators of morphology and metabolism. Semin. Cell Dev. Biol. 21(6), 566–574 (2010).
  • Zuchner S, Mersiyanova IV, Muglia M et al. Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A. Nat. Genet. 36(5), 449–451 (2004).
  • Chen H, Vermulst M, Wang YE et al. Mitochondrial fusion is required for mtDNA stability in skeletal muscle and tolerance of mtDNA mutations. Cell 141(2), 280–289 (2010).
  • De Brito OM, Scorrano L. Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature 456(7222), 605–610 (2008).
  • Germain M, Mathai JP, Mcbride HM, Shore GC. Endoplasmic reticulum BIK initiates DRP1-regulated remodelling of mitochondrial cristae during apoptosis. EMBO J. 24(8), 1546–1556 (2005).
  • Merkwirth C, Langer T. Mitofusin 2 builds a bridge between ER and mitochondria. Cell 135(7), 1165–1167 (2008).
  • Rizzuto R, Marchi S, Bonora M et al. Ca(2+) transfer from the ER to mitochondria: when, how and why. Biochim. Biophys. Acta 1787(11), 1342–1351 (2009).
  • Kopach O, Kruglikov I, Pivneva T, Voitenko N, Fedirko N. Functional coupling between ryanodine receptors, mitochondria and Ca(2+) ATPases in rat submandibular acinar cells. Cell Calcium 43(5), 469–481 (2008).
  • Rowland AA, Voeltz GK. Endoplasmic reticulum-mitochondria contacts: function of the junction. Nat. Rev. Mol. Cell Biol. 13(10), 607–625 (2012).
  • Singaravelu K, Nelson C, Bakowski D et al. Mitofusin 2 regulates STIM1 migration from the Ca2+ store to the plasma membrane in cells with depolarized mitochondria. J. Biol. Chem. 286(14), 12189–12201 (2011).
  • Ruiz-Meana M, Fernandez-Sanz C, Garcia-Dorado D. The SR-mitochondria interaction: a new player in cardiac pathophysiology. Cardiovasc. Res. 88(1), 30–39 (2010).
  • Celsi F, Pizzo P, Brini M et al. Mitochondria, calcium and cell death: a deadly triad in neurodegeneration. Biochim. Biophys. Acta 1787(5), 335–344 (2009).
  • Delmotte P, Yang B, Thompson MA, Pabelick CM, Prakash YS, Sieck GC. Inflammation alters regional mitochondrial Ca(2)+ in human airway smooth muscle cells. Am. J. Physiol. Cell Physiol. 303(3), C244–C256 (2012).
  • Girodet PO, Ozier A, Bara I, Tunon De Lara JM, Marthan R, Berger P. Airway remodeling in asthma: new mechanisms and potential for pharmacological intervention. Pharmacol. Ther. 130(3), 325–337 (2011).
  • Santo-Domingo J, Demaurex N. Calcium uptake mechanisms of mitochondria. Biochim. Biophys. Acta 1797(6–7), 907–912 (2010).
  • Saotome M, Safiulina D, Szabadkai G et al. Bidirectional Ca2+-dependent control of mitochondrial dynamics by the Miro GTPase. Proc. Natl Acad. Sci. U.S.A. 105(52), 20728–20733 (2008).
  • Valsecchi F, Esseling JJ, Koopman WJ, Willems PH. Calcium and ATP handling in human NADH:ubiquinone oxidoreductase deficiency. Biochim. Biophys. Acta 1792(12), 1130–1137 (2009).
  • Delmotte P, Sanderson MJ. Effects of formoterol on contraction and Ca2+ signaling of mouse airway smooth muscle cells. Am. J. Respir. Cell Mol. Biol. 42(3), 373–381 (2010).
  • Jia L, Delmotte P, Aravamudan B, Pabelick CM, Prakash YS, Sieck GC. The effect of the inflammatory cytokines TNFalpha and IL-13 on STIM1 aggregation in human airway smooth muscle [Ca] regulation. Am. J. Respir. Cell Mol. Biol. (2013) ( In Press).
  • Sathish V, Leblebici F, Kip SN et al. Regulation of sarcoplasmic reticulum Ca2+ reuptake in porcine airway smooth muscle. Am. J. Physiol. Lung Cell. Mol. Physiol. 294(4), L787–L796 (2008).
  • Sathish V, Thompson MA, Bailey JP, Pabelick CM, Prakash YS, Sieck GC. Effect of proinflammatory cytokines on regulation of sarcoplasmic reticulum Ca2+ reuptake in human airway smooth muscle. Am. J. Physiol. Lung Cell. Mol. Physiol. 297(1), L26–L34 (2009).
  • Wang Y, Deng X, Mancarella S et al. The calcium store sensor, STIM1, reciprocally controls Orai and CaV1.2 channels. Science 330(6000), 105–109 (2010).
  • Wang Y, Deng X, Zhou Y et al. STIM protein coupling in the activation of Orai channels. Proc. Natl Acad. Sci. U.S.A. 106(18), 7391–7396 (2009).
  • Saxton WM, Hollenbeck PJ. The axonal transport of mitochondria. J. Cell. Sci. 125( Pt 9), 2095–2104 (2012).
  • Schwarz TL. Mitochondrial trafficking in neurons. Cold Spring Harb. Perspect. Biol. 5(6), (2013).
  • Howard J, Hyman AA. Dynamics and mechanics of the microtubule plus end. Nature 422(6933), 753–758 (2003).
  • Kardon JR, Vale RD. Regulators of the cytoplasmic dynein motor. Nat. Rev. Mol. Cell Biol. 10(12), 854–865 (2009).
  • Misawa T, Takahama M, Kozaki T et al. Microtubule-driven spatial arrangement of mitochondria promotes activation of the NLRP3 inflammasome. Nat. Immunol. 14(5), 454–460 (2013).
  • Roberts RA, Laskin DL, Smith CV et al. Nitrative and oxidative stress in toxicology and disease. Toxicol. Sci. 112(1), 4–16 (2009).
  • Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O. Oxidative stress and antioxidant defense. World Allergy Organ. J. 5(1), 9–19 (2012).
  • Naik E, Dixit VM. Mitochondrial reactive oxygen species drive proinflammatory cytokine production. J. Exp. Med. 208(3), 417–420 (2011).
  • Reddy PH. Mitochondrial dysfunction and oxidative stress in asthma: implications for mitochondria-targeted antioxidant therapeutics. Pharmaceuticals (Basel) 4(3), 429–456 (2011).
  • Nathan C, Cunningham-Bussel A. Beyond oxidative stress: an immunologist's guide to reactive oxygen species. Nat. Rev. Immunol. 13(5), 349–361 (2013).
  • Aravamudan B, Thompson M, Pabelick C, Prakash YS. Brain-derived neurotrophic factor induces proliferation of human airway smooth muscle cells. J. Cell Mol. Med. 16(4), 812–823 (2012).
  • Bulua AC, Simon A, Maddipati R et al. Mitochondrial reactive oxygen species promote production of proinflammatory cytokines and are elevated in TNFR1-associated periodic syndrome (TRAPS). J. Exp. Med. 208(3), 519–533 (2011).
  • Dada LA, Sznajder JI. Mitochondrial Ca(2)+ and ROS take center stage to orchestrate TNF-alpha-mediated inflammatory responses. J. Clin. Invest. 121(5), 1683–1685 (2011).
  • Ferecatu I, Borot MC, Bossard C et al. Polycyclic aromatic hydrocarbon components contribute to the mitochondria-antiapoptotic effect of fine particulate matter on human bronchial epithelial cells via the aryl hydrocarbon receptor. Part. Fibre. Toxicol. 7, 18 (2010).
  • Hanania NA. Targeting airway inflammation in asthma: current and future therapies. Chest 133(4), 989–998 (2008).
  • Kamp DW. Asbestos-induced lung diseases: an update. Transl. Res. 153(4), 143–152 (2009).
  • Kolliputi N, Waxman AB. IL-6 cytoprotection in hyperoxic acute lung injury occurs via suppressor of cytokine signaling-1-induced apoptosis signal-regulating kinase-1 degradation. Am. J. Respir. Cell Mol. Biol. 40(3), 314–324 (2009).
  • Lin HY, Lai RH, Lin ST et al. Suppressor of cytokine signaling 6 (SOCS6) promotes mitochondrial fission via regulating DRP1 translocation. Cell Death Differ. 20(1), 139–153 (2013).
  • Pelaia G, Renda T, Gallelli L et al. Molecular mechanisms underlying airway smooth muscle contraction and proliferation: implications for asthma. Respir. Med. 102(8), 1173–1181 (2008).
  • Waxman AB, Kolliputi N. IL-6 protects against hyperoxia-induced mitochondrial damage via Bcl-2-induced Bak interactions with mitofusins. Am. J. Respir. Cell Mol. Biol. 41(4), 385–396 (2009).
  • Wu S, Zhou F, Zhang Z, Xing D. Mitochondrial oxidative stress causes mitochondrial fragmentation via differential modulation of mitochondrial fission-fusion proteins. FEBS J. 278(6), 941–954 (2011).
  • Hartman WR, Smelter DF, Sathish V et al. Oxygen dose responsiveness of human fetal airway smooth muscle cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 303(8), L711–L719 (2012).
  • Schumacker PT. Lung cell hypoxia: role of mitochondrial reactive oxygen species signaling in triggering responses. Proc. Am. Thorac. Soc. 8(6), 477–484 (2011).
  • Archer SL, Gomberg-Maitland M, Maitland ML, Rich S, Garcia JG, Weir EK. Mitochondrial metabolism, redox signaling, and fusion: a mitochondria-ROS-HIF-1alpha-Kv1.5 O2-sensing pathway at the intersection of pulmonary hypertension and cancer. Am. J. Physiol. Heart Circ. Physiol. 294(2), H570–H578 (2008).
  • Lambert CM, Roy M, Robitaille GA, Richard DE, Bonnet S. HIF-1 inhibition decreases systemic vascular remodelling diseases by promoting apoptosis through a hexokinase 2-dependent mechanism. Cardiovasc. Res. 88(1), 196–204 (2010).
  • Aichler M, Elsner M, Ludyga N et al. Clinical response to chemotherapy in oesophageal adenocarcinoma patients is linked to defects in mitochondria. J. Pathol. 230(4), 410–419 (2013).
  • Xue X, You S, Zhang Q et al. Mitaplatin increases sensitivity of tumor cells to cisplatin by inducing mitochondrial dysfunction. Mol. Pharm. 9(3), 634–644 (2012).
  • Arvizo RR, Moyano DF, Saha S et al. Probing novel roles of the mitochondrial uniporter in ovarian cancer cells using nanoparticles. J. Biol. Chem. 288(24), 17610–17618 (2013).
  • Bernardi P, Bonaldo P. Dysfunction of mitochondria and sarcoplasmic reticulum in the pathogenesis of collagen VI muscular dystrophies. Ann. N. Y. Acad. Sci. 1147, 303–311 (2008).
  • Cassidy-Stone A, Chipuk JE, Ingerman E et al. Chemical inhibition of the mitochondrial division dynamin reveals its role in Bax/Bak-dependent mitochondrial outer membrane permeabilization. Dev. Cell 14(2), 193–204 (2008).
  • Papanicolaou KN, Khairallah RJ, Ngoh GA et al. Mitofusin-2 maintains mitochondrial structure and contributes to stress-induced permeability transition in cardiac myocytes. Mol. Cell Biol. 31(6), 1309–1328 (2011).
  • Papanicolaou KN, Phillippo MM, Walsh K. Mitofusins and the mitochondrial permeability transition: the potential downside of mitochondrial fusion. Am. J. Physiol. Heart Circ. Physiol. 303(3), H243–H255 (2012).
  • Zhao T, Huang X, Han L et al. Central role of mitofusin 2 in autophagosome-lysosome fusion in cardiomyocytes. J. Biol. Chem. 287(28), 23615–23625 (2012).
  • Kuwano K. Epithelial cell apoptosis and lung remodeling. Cell. Mol. Immunol. 4(6), 419–429 (2007).
  • Estaquier J, Arnoult D. Inhibiting Drp1-mediated mitochondrial fission selectively prevents the release of cytochrome c during apoptosis. Cell Death Differ. 14(6), 1086–1094 (2007).
  • Ishihara N, Nomura M, Jofuku A et al. Mitochondrial fission factor Drp1 is essential for embryonic development and synapse formation in mice. Nat. Cell Biol. 11(8), 958–966 (2009).
  • Brooks C, Cho SG, Wang CY, Yang T, Dong Z. Fragmented mitochondria are sensitized to Bax insertion and activation during apoptosis. Am. J. Physiol. Cell Physiol. 300(3), C447–C455 (2011).
  • Cleland MM, Norris KL, Karbowski M et al. Bcl-2 family interaction with the mitochondrial morphogenesis machinery. Cell Death Differ. 18(2), 235–247 (2011).
  • Sheridan C, Delivani P, Cullen SP, Martin SJ. Bax- or Bak-induced mitochondrial fission can be uncoupled from cytochrome C release. Mol. Cell 31(4), 570–585 (2008).
  • Marsboom G, Toth PT, Ryan JJ et al. Dynamin-related protein 1-mediated mitochondrial mitotic fission permits hyperproliferation of vascular smooth muscle cells and offers a novel therapeutic target in pulmonary hypertension. Circ. Res. 110(11), 1484–1497 (2012).
  • Rehman J, Zhang HJ, Toth PT et al. Inhibition of mitochondrial fission prevents cell cycle progression in lung cancer. FASEB J. 26(5), 2175–2186 (2012).
  • Liesa M, Palacin M, Zorzano A. Mitochondrial dynamics in mammalian health and disease. Physiol. Rev. 89(3), 799–845 (2009).
  • Westermann B. Mitochondrial fusion and fission in cell life and death. Nat. Rev. Mol. Cell Biol. 11(12), 872–884 (2010).
  • Guo X, Chen KH, Guo Y, Liao H, Tang J, Xiao RP. Mitofusin 2 triggers vascular smooth muscle cell apoptosis via mitochondrial death pathway. Circ. Res. 101(11), 1113–1122 (2007).
  • Rehman J, Archer SL. A proposed mitochondrial-metabolic mechanism for initiation and maintenance of pulmonary arterial hypertension in fawn-hooded rats: the Warburg model of pulmonary arterial hypertension. Adv. Exp. Med. Biol. 661, 171–185 (2010).
  • Chen KH, Guo X, Ma D et al. Dysregulation of HSG triggers vascular proliferative disorders. Nat. Cell Biol. 6(9), 872–883 (2004).
  • Pawlikowska P, Gajkowska B, Orzechowski A. Mitofusin 2 (Mfn2): a key player in insulin-dependent myogenesis in vitro. Cell Tissue Res. 327(3), 571–581 (2007).
  • He C, Klionsky DJ. Regulation mechanisms and signaling pathways of autophagy. Annu. Rev. Genet. 43, 67–93 (2009).
  • Mizushima N, Levine B, Cuervo AM, Klionsky DJ. Autophagy fights disease through cellular self-digestion. Nature 451(7182), 1069–1075 (2008).
  • Grumati P, Coletto L, Sabatelli P et al. Autophagy is defective in collagen VI muscular dystrophies, and its reactivation rescues myofiber degeneration. Nat. Med. 16(11), 1313–1320 (2010).
  • Tolkovsky AM. Autophagy thwarts muscle disease. Nat. Med. 16(11), 1188–1190 (2010).
  • Youle RJ, Narendra DP. Mechanisms of mitophagy. Nat. Rev. Mol. Cell Biol. 12(1), 9–14 (2011).
  • Chen ZH, Kim HP, Sciurba FC et al. Egr-1 regulates autophagy in cigarette smoke-induced chronic obstructive pulmonary disease. PLoS ONE 3(10), e3316 (2008).
  • Chen ZH, Lam HC, Jin Y et al. Autophagy protein microtubule-associated protein 1 light chain-3B (LC3B) activates extrinsic apoptosis during cigarette smoke-induced emphysema. Proc. Natl Acad. Sci. U.S.A. 107(44), 18880–18885 (2010).
  • Glick D, Barth S, Macleod KF. Autophagy: cellular and molecular mechanisms. J. Pathol. 221(1), 3–12 (2010).
  • Kongara S, Karantza V. The interplay between autophagy and ROS in tumorigenesis. Front. Oncol. 2, 171 (2012).
  • Lee SJ, Smith A, Guo L et al. Autophagic protein LC3B confers resistance against hypoxia-induced pulmonary hypertension. Am. J. Respir. Crit. Care Med. 183(5), 649–658 (2011).
  • Ryter SW, Nakahira K, Haspel JA, Choi AM. Autophagy in pulmonary diseases. Annu. Rev. Physiol. 74, 377–401 (2012).
  • Thomas KJ, Jacobson MR. Defects in mitochondrial fission protein dynamin-related protein 1 are linked to apoptotic resistance and autophagy in a lung cancer model. PLoS ONE 7(9), e45319 (2012).
  • Egan DF, Shackelford DB, Mihaylova MM et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 331(6016), 456–461 (2011).
  • Zifa E, Daniil Z, Skoumi E et al. Mitochondrial genetic background plays a role in increasing risk to asthma. Mol. Biol. Rep. 39(4), 4697–4708 (2012).
  • Chen XH, Zhao YP, Xue M et al. TNF-alpha induces mitochondrial dysfunction in 3T3-L1 adipocytes. Mol. Cell Endocrinol. 328(1–2), 63–69 (2010).
  • Irrinki KM, Mallilankaraman K, Thapa RJ et al. Requirement of FADD, NEMO, and BAX/BAK for Aberrant Mitochondrial Function in Tumor Necrosis Factor Alpha-Induced Necrosis. Mol. Cell Biol. 31(18), 3745–3758 (2011).
  • Rowlands DJ, Islam MN, Das SR et al. Activation of TNFR1 ectodomain shedding by mitochondrial Ca2+ determines the severity of inflammation in mouse lung microvessels. J. Clin. Invest. 121(5), 1986–1999 (2011).
  • Simoes DC, Psarra AM, Mauad T et al. Glucocorticoid and estrogen receptors are reduced in mitochondria of lung epithelial cells in asthma. PLoS ONE 7(6), e39183 (2012).
  • Mabalirajan U, Rehman R, Ahmad T et al. Linoleic acid metabolite drives severe asthma by causing airway epithelial injury. Sci. Rep. 3, 1349 (2013).
  • Mabalirajan U, Rehman R, Ahmad T et al. 12/15-lipoxygenase expressed in non-epithelial cells causes airway epithelial injury in asthma. Sci. Rep. 3, 1540 (2013).
  • Calkins MJ, Manczak M, Mao P, Shirendeb U, Reddy PH. Impaired mitochondrial biogenesis, defective axonal transport of mitochondria, abnormal mitochondrial dynamics and synaptic degeneration in a mouse model of Alzheimer's disease. Hum. Mol. Genet. 20(23), 4515–4529 (2011).
  • Comhair SA, Ricci KS, Arroliga M et al. Correlation of systemic superoxide dismutase deficiency to airflow obstruction in asthma. Am. J. Respir. Crit. Care Med. 172(3), 306–313 (2005).
  • Michaeloudes C, Sukkar MB, Khorasani NM, Bhavsar PK, Chung KF. TGF-beta regulates Nox4, MnSOD and catalase expression, and IL-6 release in airway smooth muscle cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 300(2), L295–L304 (2011).
  • Sahawneh MA, Ricart KC, Roberts BR et al. Cu,Zn-superoxide dismutase increases toxicity of mutant and zinc-deficient superoxide dismutase by enhancing protein stability. J. Biol. Chem. 285(44), 33885–33897 (2010).
  • Van Der Toorn M, Rezayat D, Kauffman HF et al. Lipid-soluble components in cigarette smoke induce mitochondrial production of reactive oxygen species in lung epithelial cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 297(1), L109–L114 (2009).
  • Aguilera-Aguirre L, Bacsi A, Saavedra-Molina A, Kurosky A, Sur S, Boldogh I. Mitochondrial dysfunction increases allergic airway inflammation. J. Immunol. 183(8), 5379–5387 (2009).
  • Trian T, Benard G, Begueret H et al. Bronchial smooth muscle remodeling involves calcium-dependent enhanced mitochondrial biogenesis in asthma. J. Exp. Med. 204(13), 3173–3181 (2007).
  • Antigny F, Girardin N, Raveau D, Frieden M, Becq F, Vandebrouck C. Dysfunction of mitochondria Ca2+ uptake in cystic fibrosis airway epithelial cells. Mitochondrion 9(4), 232–241 (2009).
  • Evans AM, Hardie DG, Peers C, Mahmoud A. Hypoxic pulmonary vasoconstriction: mechanisms of oxygen-sensing. Curr. Opin. Anaesthesiol. 24(1), 13–20 (2011).
  • Kamdar O, Le W, Zhang J, Ghio AJ, Rosen GD, Upadhyay D. Air pollution induces enhanced mitochondrial oxidative stress in cystic fibrosis airway epithelium. FEBS Lett. 582(25–26), 3601–3606 (2008).
  • Bartal M. COPD and tobacco smoke. Monaldi. Arch. Chest Dis. 63(4), 213–225 (2005).
  • Chiba Y, Murata M, Ushikubo H et al. Effect of cigarette smoke exposure in vivo on bronchial smooth muscle contractility in vitro in rats. Am. J. Respir. Cell Mol. Biol. 33(6), 574–581 (2005).
  • Ejiofor S, Turner AM. Pharmacotherapies for COPD. Clin. Med. Insights. Circ. Respir. Pulm. Med. 7, 17–34 (2013).
  • Feinson JA, Chidekel AS. Adult smoking and environmental tobacco smoke: a persistent health threat to children. Del. Med. J. 78(6), 213–218 (2006).
  • Mathis C, Poussin C, Weisensee D et al. Human bronchial epithelial cells exposed in vitro to cigarette smoke at the air-liquid interface resemble bronchial epithelium from human smokers. Am. J. Physiol. Lung Cell. Mol. Physiol. 304(7), L489–L503 (2013).
  • Meyer A, Zoll J, Charles AL et al. Skeletal muscle mitochondrial dysfunction during chronic obstructive pulmonary disease: central actor and therapeutic target. Exp. Physiol. 98(6), 1063–1078 (2013).
  • Soulitzis N, Neofytou E, Psarrou M et al. Downregulation of lung mitochondrial prohibitin in COPD. Respir. Med. 106(7), 954–961 (2012).
  • Van Rijt SH, Keller IE, John G et al. Acute cigarette smoke exposure impairs proteasome function in the lung. Am. J. Physiol. Lung Cell. Mol. Physiol. 303(9), L814–L823 (2012).
  • Kirkham PA, Barnes PJ. Oxidative Stress in COPD. Chest 144(1), 266–273 (2013).
  • Rico De Souza A, Zago M, Pollock SJ, Sime PJ, Phipps RP, Baglole CJ. Genetic ablation of the aryl hydrocarbon receptor causes cigarette smoke-induced mitochondrial dysfunction and apoptosis. J. Biol. Chem. 286(50), 43214–43228 (2011).
  • Puente-Maestu L, Perez-Parra J, Godoy R et al. Abnormal mitochondrial function in locomotor and respiratory muscles of COPD patients. Eur. Respir. J. 33(5), 1045–1052 (2009).
  • Puente-Maestu L, Perez-Parra J, Godoy R et al. Abnormal transition pore kinetics and cytochrome C release in muscle mitochondria of patients with chronic obstructive pulmonary disease. Am. J. Respir. Cell Mol. Biol. 40(6), 746–750 (2009).
  • Puente-Maestu L, Tejedor A, Lazaro A et al. Site of mitochondrial reactive oxygen species production in skeletal muscle of chronic obstructive pulmonary disease and its relationship with exercise oxidative stress. Am. J. Respir. Cell Mol. Biol. 47(3), 358–362 (2012).
  • Cohen RT, Strunk RC, Field JJ et al. Environmental tobacco smoke and airway obstruction in children with sickle cell anemia. Chest doi:10.1378/chest.12-1569 (2013) ( Epub ahead of print).
  • Mazzei F, Guarrera S, Allione A et al. 8-Oxoguanine DNA-glycosylase repair activity and expression: a comparison between cryopreserved isolated lymphocytes and EBV-derived lymphoblastoid cell lines. Mutat. Res. 718(1–2), 62–67 (2011).
  • Paz-Elizur T, Sevilya Z, Leitner-Dagan Y, Elinger D, Roisman LC, Livneh Z. DNA repair of oxidative DNA damage in human carcinogenesis: potential application for cancer risk assessment and prevention. Cancer Lett. 266(1), 60–72 (2008).
  • Kamp DW, Shacter E, Weitzman SA. Chronic inflammation and cancer: the role of the mitochondria. Oncology (Williston Park) 25(5), 400–410, 413 (2011).
  • Giembycz MA. Can the anti-inflammatory potential of PDE4 inhibitors be realized: guarded optimism or wishful thinking? Br. J. Pharmacol. 155(3), 288–290 (2008).
  • Giembycz MA, Kaur M, Leigh R, Newton R. A Holy Grail of asthma management: toward understanding how long-acting beta(2)-adrenoceptor agonists enhance the clinical efficacy of inhaled corticosteroids. Br. J. Pharmacol. 153(6), 1090–1104 (2008).
  • Montuschi P. Leukotrienes, antileukotrienes and asthma. Mini Rev. Med. Chem. 8(7), 647–656 (2008).
  • Prenner BM. Asthma 2008: targeting immunoglobulin E to achieve disease control. J. Asthma 45(6), 429–436 (2008).
  • Mabalirajan U, Ahmad T, Leishangthem GD, Dinda AK, Agrawal A, Ghosh B. L-arginine reduces mitochondrial dysfunction and airway injury in murine allergic airway inflammation. Int. Immunopharmacol. 10(12), 1514–1519 (2010).
  • Robin E, Derichard A, Vallet B, Hassoun SM, Neviere R. Nitric oxide scavenging modulates mitochondrial dysfunction induced by hypoxia/reoxygenation. Pharmacol. Rep. 63(5), 1189–1194 (2011).
  • Leo S, Szabadkai G, Rizzuto R. The mitochondrial antioxidants MitoE(2) and MitoQ(10) increase mitochondrial Ca(2+) load upon cell stimulation by inhibiting Ca(2+) efflux from the organelle. Ann. N. Y. Acad. Sci. 1147, 264–274 (2008).
  • Lee IK, Kang KA, Zhang R, Kim BJ, Kang SS, Hyun JW. Mitochondria protection of baicalein against oxidative damage via induction of manganese superoxide dismutase. Environ. Toxicol. Pharmacol. 31(1), 233–241 (2011).
  • Naveenkumar C, Raghunandhakumar S, Asokkumar S, Devaki T. Baicalein abrogates reactive oxygen species (ROS)-mediated mitochondrial dysfunction during experimental pulmonary carcinogenesis in vivo. Basic Clin. Pharmacol. Toxicol. 112(4), 270–281 (2013).
  • Mabalirajan U, Dinda AK, Sharma SK, Ghosh B. Esculetin restores mitochondrial dysfunction and reduces allergic asthma features in experimental murine model. J. Immunol. 183(3), 2059–2067 (2009).
  • Gille L, Staniek K, Rosenau T, Duvigneau JC, Kozlov AV. Tocopheryl quinones and mitochondria. Mol. Nutr. Food Res. 54(5), 601–615 (2010).
  • Majima HJ, Indo HP, Suenaga S, Matsui H, Yen HC, Ozawa T. Mitochondria as possible pharmaceutical targets for the effects of vitamin E and its homologues in oxidative stress-related diseases. Curr. Pharm. Des.17(21), 2190–2195 (2011).
  • Du J, Wang Y, Hunter R et al. Dynamic regulation of mitochondrial function by glucocorticoids. Proc. Natl Acad. Sci. U.S.A. 106(9), 3543–3548 (2009).
  • Kumar S, Mabalirajan U, Rehman R et al. A novel cinnamate derivative attenuates asthma features and reduces bronchial epithelial injury in mouse model. Inter. Immunopharmacol. 15(1), 150–159 (2013).
  • Ye R, Zhang X, Kong X et al. Ginsenoside Rd attenuates mitochondrial dysfunction and sequential apoptosis after transient focal ischemia. Neuroscience 178, 169–180 (2011).
  • Rebbeck CA, Leroi AM, Burt A. Mitochondrial capture by a transmissible cancer. Science 331(6015), 303 (2011).
  • Islam MN, Das SR, Emin MT et al. Mitochondrial transfer from bone-marrow-derived stromal cells to pulmonary alveoli protects against acute lung injury. Nat. Med. 18(5), 759–765 (2012).
  • Kaipparettu BA, Ma Y, Park JH et al. Crosstalk from non-cancerous mitochondria can inhibit tumor properties of metastatic cells by suppressing oncogenic pathways. PLoS ONE 8(5), e61747 (2013).
  • Chan YC, Banerjee J, Choi SY, Sen CK. miR-210: the master hypoxamir. Microcirculation 19(3), 215–223 (2012).
  • Puissegur MP, Mazure NM, Bertero T et al. miR-210 is overexpressed in late stages of lung cancer and mediates mitochondrial alterations associated with modulation of HIF-1 activity. Cell Death Differ. 18(3), 465–478 (2011).
  • Wang K, Long B, Jiao JQ et al. miR-484 regulates mitochondrial network through targeting Fis1. Nat. Commun. 3, 781 (2012).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.