136
Views
38
CrossRef citations to date
0
Altmetric
Reviews

Paracrine functions of fibrocytes to promote lung fibrosis

, &

References

  • Chesney J, Bacher M, Bender A, Bucala R. The peripheral blood fibrocyte is a potent antigen-presenting cell capable of priming naive T cells in situ. Proc. Natl Acad. Sci. USA 94(12), 6307–6312 (1997).
  • Chesney J, Metz C, Stavitsky AB, Bacher M, Bucala R. Regulated production of type I collagen and inflammatory cytokines by peripheral blood fibrocytes. J. Immunol. 160(1), 419–425 (1998).
  • Bucala R, Spiegel LA, Chesney J, Hogan M, Cerami A. Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair. Mol. Med. 1(1), 71–81 (1994).
  • Myllyharju J, Kivirikko KI. Collagens, modifying enzymes and their mutations in humans, flies and worms. Trends Genet. 20(1), 33–43 (2004).
  • Strieter RM, Keeley EC, Burdick MD, Mehrad B. The role of circulating mesenchymal progenitor cells, fibrocytes, in promoting pulmonary fibrosis. Trans. Am. Clin. Climatol. Assoc. 120, 49–59 (2009).
  • Moore BB, Kolodsick JE, Thannickal VJ et al. CCR2-mediated recruitment of fibrocytes to the alveolar space after fibrotic injury. Am. J. Pathol. 166(3), 675–684 (2005).
  • Moore BB, Murray L, Das A, Wilke CA, Herrygers AB, Toews GB. The role of CCL12 in the recruitment of fibrocytes and lung fibrosis. Am. J. Respir. Cell Mol. Biol. 35(2), 175–181 (2006).
  • Phillips RJ, Burdick MD, Hong K et al. Circulating fibrocytes traffic to the lungs in response to CXCL12 and mediate fibrosis. J. Clin. Invest. 114(3), 438–446 (2004).
  • Tourkina E, Bonner M, Oates J et al. Altered monocyte and fibrocyte phenotype and function in scleroderma interstitial lung disease: reversal by caveolin-1 scaffolding domain peptide. Fibrogenesis Tissue Repair 4(1), 15 (2011).
  • Rafii R, Juarez MM, Albertson TE, Chan AL. A review of current and novel therapies for idiopathic pulmonary fibrosis. J. Thorac Dis. 5(1), 48–73 (2013).
  • Schmidt M, Sun G, Stacey M, Mori L, Mattoli S. Identification of circulating fibrocytes as precursors of bronchial myofibroblasts in asthma. J. Immunol. 170, 380–389 (2003).
  • Saunders R, Siddiqui S, Kaur D et al. Fibrocyte localization to the airway smooth muscle is a feature of asthma. J. Allergy Clin. Immunol. 123(2), 376–384 (2009).
  • Wang CH, Huang CD, Lin HC et al. Increased circulating fibrocytes in asthma with chronic airflow obstruction. Am. J. Respir. Crit. Care Med. 178(6), 583–591 (2008).
  • Bellini A, Marini MA, Bianchetti L, Barczyk M, Schmidt M, Mattoli S. Interleukin (IL)-4, IL-13, and IL-17A differentially affect the profibrotic and proinflammatory functions of fibrocytes from asthmatic patients. Mucosal. Immunol. 5(2), 140–149 (2012).
  • Mathai SK, Gulati M, Peng X et al. Circulating monocytes from systemic sclerosis patients with interstitial lung disease show an enhanced profibrotic phenotype. Lab. Invest. 90(6), 812–823 (2010).
  • Gan Y, Reilkoff R, Peng X et al. Role of semaphorin 7a signaling in transforming growth factor beta1-induced lung fibrosis and scleroderma-related interstitial lung disease. Arthritis Rheum. 63(8), 2484–2494 (2011).
  • Tourkina E, Richard M, Oates J et al. Caveolin-1 regulates leucocyte behaviour in fibrotic lung disease. Ann. Rheum. Dis. 69(6), 1220–1226 (2010).
  • Mehrad B, Burdick MD, Zisman DA, Keane MP, Belperio JA, Strieter RM. Circulating peripheral blood fibrocytes in human fibrotic interstitial lung disease. Biochem. Biophys. Res. Commun. 353(1), 104–108 (2007).
  • Andersson-Sjoland A, de Alba CG, Nihlberg K et al. Fibrocytes are a potential source of lung fibroblasts in idiopathic pulmonary fibrosis. Int. J. Biochem. Cell Biol. 40(10), 2129–2140 (2008).
  • Moeller A, Gilpin SE, Ask K et al. Circulating fibrocytes are an indicator of poor prognosis in idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 179(7), 588–594 (2009).
  • Fujiwara A, Kobayashi H, Masuya M et al. Correlation between circulating fibrocytes, and activity and progression of interstitial lung diseases. Respirology 17(4), 693–698 (2012).
  • Naik PK, Bozyk PD, Bentley JK et al. Periostin promotes fibrosis and predicts progression in patients with idiopathic pulmonary fibrosis. Am. J. Physiol. Lung Cell. Mol. Physiol. 303(12), L1046–L1056. (2012).
  • Garibaldi BT, D'Alessio FR, Mock JR et al. Regulatory T cells reduce acute lung injury fibroproliferation by decreasing fibrocyte recruitment. Am. J. Respir. Cell Mol. Biol. 48(1), 35–43 (2013).
  • Harris DA, Zhao Y, Lapar DJ et al. Inhibiting CXCL12 blocks fibrocyte migration and differentiation and attenuates bronchiolitis obliterans in a murine heterotopic tracheal transplant model. J. Thorac Cardiovasc. Surg. 145(3), 854–861 (2012).
  • Field JJ, Burdick MD, DeBaun MR et al. The role of fibrocytes in sickle cell lung disease. PLoS ONE 7(3), e33702 (2012).
  • LaPar DJ, Burdick MD, Emaminia A et al. Circulating fibrocytes correlate with bronchiolitis obliterans syndrome development after lung transplantation: a novel clinical biomarker. Ann. Thorac Surg. 92(2), 470–477 (2011).
  • Tanjore H, Xu XC, Polosukhin VV et al. Contribution of epithelial-derived fibroblasts to bleomycin-induced lung fibrosis. Am. J. Respir. Crit. Care Med. 180(7), 657–665 (2009).
  • Wang JF, Jiao H, Stewart TL, Shankowsky HA, Scott PG, Tredget EE. Fibrocytes from burn patients regulate the activities of fibroblasts. Wound Repair. Regen. 15(1), 113–121 (2007).
  • Bartram U, Speer CP. The role of transforming growth factor beta in lung development and disease. Chest 125(2), 754–765 (2004).
  • Schmidt M, Sun G, Stacey MA, Mori L, Mattoli S. Identification of circulating fibrocytes as precursors of bronchial myofibroblasts in asthma. J. Immunol. 171(1), 380–389 (2003).
  • Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 425(6958), 577–584 (2003).
  • Puthawala K, Hadjiangelis N, Jacoby SC et al. Inhibition of integrin alpha(v)beta6, an activator of latent transforming growth factor-beta, prevents radiation-induced lung fibrosis. Am. J. Respir. Crit. Care Med. 177(1), 82–90 (2008).
  • Rosenbloom J, Mendoza FA, Jimenez SA. Strategies for anti-fibrotic therapies. Biochim. Biophys. Acta 1832(7), 1088–1103 (2013).
  • Wipff PJ, Hinz B. Integrins and the activation of latent transforming growth factor beta1 - an intimate relationship. Eur. J. Cell Biol. 87(8–9), 601–615 (2008).
  • Iwamoto N, Distler JH, Distler O. Tyrosine kinase inhibitors in the treatment of systemic sclerosis: from animal models to clinical trials. Curr. Rheumatol. Rep. 13(1), 21–27 (2011).
  • Arribillaga L, Dotor J, Basagoiti M et al. Therapeutic effect of a peptide inhibitor of TGF-beta on pulmonary fibrosis. Cytokine 53(3), 327–333 (2011).
  • Horan GS, Wood S, Ona V et al. Partial inhibition of integrin alpha(v)beta6 prevents pulmonary fibrosis without exacerbating inflammation. Am. J. Respir. Crit. Care Med. 177(1), 56–65 (2008).
  • Quan TE, Cowper S, Wu SP, Bockenstedt LK, Bucala R. Circulating fibrocytes: collagen-secreting cells of the peripheral blood. Int. J. Biochem. Cell Biol. 36(4), 598–606 (2004).
  • Pilling D, Fan T, Huang D, Kaul B, Gomer RH. Identification of markers that distinguish monocyte-derived fibrocytes from monocytes, macrophages, and fibroblasts. PLoS ONE 4(10), e7475 (2009).
  • Huang C, Ogawa R. Fibroproliferative disorders and their mechanobiology. Connect Tissue Res. 53(3), 187–196 (2012).
  • Leitinger B, Hohenester E. Mammalian collagen receptors. Matrix Biol. 26(3), 146–155 (2007).
  • Olaso E, Arteta B, Benedicto A, Crende O, Friedman SL. Loss of discoidin domain receptor 2 promotes hepatic fibrosis after chronic carbon tetrachloride through altered paracrine interactions between hepatic stellate cells and liver-associated macrophages. Am. J. Pathol. 179(6), 2894–2904 (2011).
  • Levental KR, Yu H, Kass L et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139(5), 891–906 (2009).
  • Wipff PJ, Rifkin DB, Meister JJ, Hinz B. Myofibroblast contraction activates latent TGF-beta1 from the extracellular matrix. J. Cell Biol. 179(6), 1311–1323 (2007).
  • Aiba S, Tagami H. Inverse correlation between CD34 expression and proline-4-hydroxylase immunoreactivity on spindle cells noted in hypertrophic scars and keloids. J. Cutan Pathol. 24(2), 65–69 (1997).
  • Fontana L, Chen Y, Prijatelj P et al. Fibronectin is required for integrin alphavbeta6-mediated activation of latent TGF-beta complexes containing LTBP-1. FASEB J. 19(13), 1798–1808 (2005).
  • Muro AF, Moretti FA, Moore BB et al. An essential role for fibronectin extra type III domain A in pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 177(6), 638–645 (2008).
  • Zuo F, Kaminski N, Eugui E et al. Gene expression analysis reveals matrilysin as a key regulator of pulmonary fibrosis in mice and humans. Proc. Natl Acad. Sci. USA 99(9), 6292–6297 (2002).
  • Oikonomidi S, Kostikas K, Tsilioni I, Tanou K, Gourgoulianis KI, Kiropoulos TS. Matrix metalloproteinases in respiratory diseases: from pathogenesis to potential clinical implications. Curr. Med. Chem. 16(10), 1214–1228 (2009).
  • Swiderski RE, Dencoff JE, Floerchinger CS, Shapiro SD, Hunninghake GW. Differential expression of extracellular matrix remodeling genes in a murine model of bleomycin-induced pulmonary fibrosis. Am. J. Pathol. 152(3), 821–828 (1998).
  • Hartlapp I, Abe R, Saeed RW et al. Fibrocytes induce an angiogenic phenotype in cultured endothelial cells and promote angiogenesis in vivo. FASEB J. 15(12), 2215–2224 (2001).
  • Garcia-de-Alba C, Becerril C, Ruiz V et al. Expression of matrix metalloproteases by fibrocytes: possible role in migration and homing. Am. J. Respir. Crit. Care Med. 182(9), 1144–1152 (2010).
  • Galligan CL, Fish EN. Circulating fibrocytes contribute to the pathogenesis of collagen antibody-induced arthritis. Arthritis Rheum. 64(11), 3583–3593 (2012).
  • Xu J, Mora A, Shim H, Stecenko A, Brigham KL, Rojas M. Role of the SDF-1/CXCR4 axis in the pathogenesis of lung injury and fibrosis. Am. J. Respir. Cell Mol. Biol. 37(3), 291–299 (2007).
  • van Deventer HW, Wu QP, Bergstralh DT et al. C-C chemokine receptor 5 on pulmonary fibrocytes facilitates migration and promotes metastasis via matrix metalloproteinase 9. Am. J. Pathol. 173(1), 253–264 (2008).
  • Wert SE, Yoshida M, LeVine AM et al. Increased metalloproteinase activity, oxidant production, and emphysema in surfactant protein D gene-inactivated mice. Proc. Natl Acad. Sci. USA 97(11), 5972–5977 (2000).
  • Cabrera S, Gaxiola M, Arreola JL et al. Overexpression of MMP9 in macrophages attenuates pulmonary fibrosis induced by bleomycin. Int. J. Biochem. Cell Biol. 39(12), 2324–2338 (2007).
  • Bornstein P, Sage EH. Matricellular proteins: extracellular modulators of cell function. Curr. Opin. Cell Biol. 14(5), 608–616 (2002).
  • Perbal B. CCN proteins: multifunctional signalling regulators. Lancet 363(9402), 62–64 (2004).
  • Leask A, Abraham DJ. The role of connective tissue growth factor, a multifunctional matricellular protein, in fibroblast biology. Biochem. Cell. Biol. 81(6), 355–363 (2003).
  • Abreu JG, Ketpura NI, Reversade B, De Robertis EM. Connective-tissue growth factor (CTGF) modulates cell signalling by BMP and TGF-beta. Nat. Cell Biol. 4(8), 599–604 (2002).
  • Sonnylal S, Shi-Wen X, Leoni P et al. Selective expression of connective tissue growth factor in fibroblasts in vivo promotes systemic tissue fibrosis. Arthritis Rheum. 62(5), 1523–1532 (2010).
  • Brigstock DR. Connective tissue growth factor (CCN2, CTGF) and organ fibrosis: lessons from transgenic animals. J. Cell Commun. Signal. 4(1), 1–4 (2010).
  • Bonniaud P, Margetts PJ, Kolb M et al. Adenoviral gene transfer of connective tissue growth factor in the lung induces transient fibrosis. Am. J. Respir. Crit. Care Med. 168(7), 770–778 (2003).
  • Lipson KE, Wong C, Teng Y, Spong S. CTGF is a central mediator of tissue remodeling and fibrosis and its inhibition can reverse the process of fibrosis. Fibrogenesis Tissue Repair. 5 Suppl 1, S24 (2012).
  • Weng CM, Chen BC, Wang CH et al. The ET receptor mediates fibrocyte differentiation in chronic obstructive asthma: the involvement of CTGF. Am. J. Respir. Crit. Care Med. (2013).
  • Horiuchi K, Amizuka N, Takeshita S et al. Identification and characterization of a novel protein, periostin, with restricted expression to periosteum and periodontal ligament and increased expression by transforming growth factor beta. J. Bone Miner. Res. 14(7), 1239–1249 (1999).
  • Okamoto M, Hoshino T, Kitasato Y et al. Periostin, a matrix protein, is a novel biomarker for idiopathic interstitial pneumonias. Eur. Respir. J. 37(5), 1119–1127 (2011).
  • Eckes B, Zweers MC, Zhang ZG et al. Mechanical tension and integrin alpha 2 beta 1 regulate fibroblast functions. J. Investig. Dermatol. Symp. Proc. 11(1), 66–72 (2006).
  • Tschumperlin DJ, Jones JC, Senior RM. The fibrotic matrix in control: does the extracellular matrix drive progression of idiopathic pulmonary fibrosis? Am. J. Respir. Crit. Care Med. 186(9), 814–816 (2012).
  • Sidhu SS, Yuan S, Innes AL et al. Roles of epithelial cell-derived periostin in TGF-beta activation, collagen production, and collagen gel elasticity in asthma. Proc. Natl Acad. Sci. USA 107(32), 14170–14175 (2010).
  • Ozaki T, Hayashi H, Tani K, Ogushi F, Yasuoka S, Ogura T. Neutrophil chemotactic factors in the respiratory tract of patients with chronic airway diseases or idiopathic pulmonary fibrosis. Am. Rev. Respir. Dis. 145(1), 85–91 (1992).
  • Wardlaw AJ, Hay H, Cromwell O, Collins JV, Kay AB. Leukotrienes, LTC4 and LTB4, in bronchoalveolar lavage in bronchial asthma and other respiratory diseases. J. Allergy Clin. Immunol. 84(1), 19–26 (1989).
  • Wilborn J, Bailie M, Coffey M, Burdick M, Strieter R, Peters-Golden M. Constitutive activation of 5-lipoxygenase in the lungs of patients with idiopathic pulmonary fibrosis. J. Clin. Invest. 97(8), 1827–1836 (1996).
  • Wilborn J, Crofford LJ, Burdick MD, Kunkel SL, Strieter RM, Peters-Golden M. Cultured lung fibroblasts isolated from patients with idiopathic pulmonary fibrosis have a diminished capacity to synthesize prostaglandin E2 and to express cyclooxygenase-2. J. Clin. Invest. 95(4), 1861–1868 (1995).
  • Vannella KM, McMillan TR, Charbeneau RP et al. Cysteinyl leukotrienes are autocrine and paracrine regulators of fibrocyte function. J. Immunol. 179(11), 7883–7890 (2007).
  • Baud L, Perez J, Denis M, Ardaillou R. Modulation of fibroblast proliferation by sulfidopeptide leukotrienes: effect of indomethacin. J. Immunol. 138(4), 1190–1195 (1987).
  • Phan SH, McGarry BM, Loeffler KM, Kunkel SL. Binding of leukotriene C4 to rat lung fibroblasts and stimulation of collagen synthesis in vitro. Biochemistry 27(8), 2846–2853 (1988).
  • Scotton CJ, Chambers RC. Molecular targets in pulmonary fibrosis: the myofibroblast in focus. Chest 132(4), 1311–1321 (2007).
  • Kisseleva T, Uchinami H, Feirt N et al. Bone marrow-derived fibrocytes participate in pathogenesis of liver fibrosis. J. Hepatol. 45(3), 429–438 (2006).
  • Vancheri C. Idiopathic pulmonary fibrosis: an altered fibroblast proliferation linked to cancer biology. Proc. Am. Thorac Soc. 9(3), 153–157 (2012).
  • Leask A, Parapuram SK, Shi-Wen X, Abraham DJ. Connective tissue growth factor (CTGF, CCN2) gene regulation: a potent clinical bio-marker of fibroproliferative disease? J. Cell Commun. Signal. 3(2), 89–94 (2009).
  • Naik PK, Bozyk PD, Bentley JK et al. Periostin promotes fibrosis and predicts progression in patients with idiopathic pulmonary fibrosis. Am. J. Physiol. Lung Cell Mol. Physiol. 303(12), L1046–L1056 (2012).
  • Kim CF, Jackson EL, Woolfenden AE et al. Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell 121(6), 823–835 (2005).
  • Rawlins EL, Okubo T, Xue Y et al. The role of Scgb1a1+ Clara cells in the long-term maintenance and repair of lung airway, but not alveolar, epithelium. Cell Stem Cell 4(6), 525–534 (2009).
  • Selman M, Pardo A. Role of epithelial cells in idiopathic pulmonary fibrosis: from innocent targets to serial killers. Proc. Am. Thorac Soc. 3(4), 364–372 (2006).
  • Sisson TH, Mendez M, Choi K et al. Targeted injury of type II alveolar epithelial cells induces pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 181(3), 254–263 (2010).
  • Wang R, Ibarra-Sunga O, Verlinski L, Pick R, Uhal BD. Abrogation of bleomycin-induced epithelial apoptosis and lung fibrosis by captopril or by a caspase inhibitor. Am. J. Physiol. Lung Cell Mol. Physiol. 279(1), L143–L151 (2000).
  • Hagimoto N, Kuwano K, Inoshima I et al. TGF-beta 1 as an enhancer of Fas-mediated apoptosis of lung epithelial cells. J. Immunol. 168(12), 6470–6478 (2002).
  • Rawlins EL, Okubo T, Que J et al. Epithelial stem/progenitor cells in lung postnatal growth, maintenance, and repair. Cold Spring Harb. Symp. Quant. Biol. 73, 291–295 (2008).
  • Gomperts BN, Strieter RM. Stem cells and chronic lung disease. Annu. Rev. Med. 58, 285–298 (2007).
  • Mason RJ, Williams MC, Moses HL, Mohla S, Berberich MA. Stem cells in lung development, disease, and therapy. Am. J. Respir. Cell Mol. Biol. 16(4), 355–363 (1997).
  • Rawlins EL, Hogan BL. Epithelial stem cells of the lung: privileged few or opportunities for many? Development 133(13), 2455–2465 (2006).
  • Kao HK, Chen B, Murphy GF, Li Q, Orgill DP, Guo L. Peripheral blood fibrocytes: enhancement of wound healing by cell proliferation, re-epithelialization, contraction, and angiogenesis. Ann. Surg. 254(6), 1066–1074 (2011).
  • Schmeckebier S, Mauritz C, Katsirntaki K et al. Keratinocyte growth factor and dexamethasone plus elevated cAMP levels synergistically support pluripotent stem cell differentiation into alveolar epithelial type II cells. Tissue Eng. Part A 19(7–8), 938–951 (2013).
  • Takase HM, Itoh T, Ino S et al. FGF7 is a functional niche signal required for stimulation of adult liver progenitor cells that support liver regeneration. Genes Dev. 27(2), 169–181 (2013).
  • Fuchs Y, Steller H. Programmed cell death in animal development and disease. Cell 147(4), 742–758 (2011).
  • Kim KK, Kugler MC, Wolters PJ et al. Alveolar epithelial cell mesenchymal transition develops in vivo during pulmonary fibrosis and is regulated by the extracellular matrix. Proc. Natl Acad. Sci. USA 103(35), 13180–13185 (2006).
  • Mani SA, Guo W, Liao MJ et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133(4), 704–715 (2008).
  • Morel AP, Lievre M, Thomas C, Hinkal G, Ansieau S, Puisieux A. Generation of breast cancer stem cells through epithelial-mesenchymal transition. PLoS ONE 3(8), e2888 (2008).
  • Kalluri R, Neilson EG. Epithelial-mesenchymal transition and its implications for fibrosis. J. Clin. Invest. 112(12), 1776–1784 (2003).
  • Savagner P, Kusewitt DF, Carver EA et al. Developmental transcription factor slug is required for effective re-epithelialization by adult keratinocytes. J. Cell Physiol. 202(3), 858–866 (2005).
  • Borie R, Quesnel C, Phin S et al. Detection of alveolar fibrocytes in idiopathic pulmonary fibrosis and systemic sclerosis. PLoS ONE 8(1), e53736 (2013).
  • Fontana L, Chen Y, Prijatelj P et al. Fibronectin is required for integrin alphavbeta6-mediated activation of latent TGF-beta complexes containing LTBP-1. FASEB J. 19(13), 1798 (2005).
  • Munger JS, Huang X, Kawakatsu H et al. The integrin alpha v beta 6 binds and activates latent TGF beta 1: a mechanism for regulating pulmonary inflammation and fibrosis. Cell 96(3), 319–328 (1999).
  • Nemzek JA, Fry C, Moore BB. Adoptive transfer of fibrocytes enhances splenic T-cell numbers and survival in septic peritonitis. Shock 40(2), 106–114 (2013).
  • Kolodsick JE, Toews GB, Jakubzick C et al. Protection from fluorescein isothiocyanate-induced fibrosis in IL-13-deficient, but not IL-4-deficient, mice results from impaired collagen synthesis by fibroblasts. J. Immunol. 172(7), 4068–4076 (2004).
  • Hanumegowda C, Farkas L, Kolb M. Angiogenesis in pulmonary fibrosis: too much or not enough? Chest 142(1), 200–207 (2012).
  • Agostini C, Gurrieri C. Chemokine/cytokine cocktail in idiopathic pulmonary fibrosis. Proc. Am. Thorac Soc. 3(4), 357–363 (2006).
  • Burdick MD, Murray LA, Keane MP et al. CXCL11 attenuates bleomycin-induced pulmonary fibrosis via inhibition of vascular remodeling. Am. J. Respir. Crit. Care Med. 171(3), 261–268 (2005).
  • Wan YY, Tian GY, Guo HS et al. Endostatin, an angiogenesis inhibitor, ameliorates bleomycin-induced pulmonary fibrosis in rats. Respir. Res. 14(1), 56 (2013).
  • Hashimoto N, Phan SH, Imaizumi K et al. Endothelial-mesenchymal transition in bleomycin-induced pulmonary fibrosis. Am. J. Respir. Cell Mol. Biol. 43(2), 161–172 (2010).
  • Zeisberg EM, Tarnavski O, Zeisberg M et al. Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat. Med. 13(8), 952–961 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.