297
Views
37
CrossRef citations to date
0
Altmetric
Special Report

Drug targeting strategies for the treatment of inflammatory bowel disease: a mechanistic update

, &
Pages 543-550 | Published online: 10 Jan 2014

References

  • Frieri G, Giacomelli R, Pimpo M et al. Mucosal 5-aminosalicylic acid concentration inversely correlates with severity of colonic inflammation in patients with ulcerative colitis. Gut47(3), 410–414 (2000).
  • Malaty HM, Fan X, Opekun AR, Thibodeaux C, Ferry GD. Rising incidence of inflammatory bowel disease among children: a 12-year study. J. Pediatr. Gastroenterol. Nutr.50(1), 27–31 (2010).
  • Turunen P, Kolho K, Auvinen A, Iltanen S, Huhtala H, Ashorn M. Incidence of inflammatory bowel disease in Finnish children, 1987–2003. Inflamm. Bowel Dis.12(8), 677–683 (2006).
  • Vind I, Riis L, Jess T et al. Increasing incidences of inflammatory bowel disease and decreasing surgery rates in Copenhagen City and County, 2003–2005: a population-based study from the Danish Crohn colitis database. Am. J. Gastroenterol.101(6), 1274–1282 (2006).
  • Mackey AC, Green L, Liang LC, Dinndorf P, Avigan M. Hepatosplenic T cell lymphoma associated with infliximab use in young patients treated for inflammatory bowel disease. J. Pediatr. Gastroenterol. Nutr.44(2), 265–267 (2007).
  • Friend DR. New oral delivery systems for treatment of inflammatory bowel disease. Adv. Drug Deliv. Rev.57(2), 247–265 (2005).
  • Kesisoglou F, Zimmermann E. Novel drug delivery strategies for the treatment of inflammatory bowel disease. Expert Opin. Drug Deliv.2(3), 451–463 (2005).
  • Klotz U, Schwab M. Topical delivery of therapeutic agents in the treatment of inflammatory bowel disease. Adv. Drug Deliv. Rev.57(2), 267–279 (2005).
  • Marshall JK, Irvine EJ. Putting rectal 5-aminosalicylic acid in its place: the role in distal ulcerative colitis. Am. J. Gastroenterol.95(7), 1628–1636 (2000).
  • Asteria CR, Ficari F, Bagnoli S, Milla M, Tonelli F. Treatment of perianal fistulas in Crohn’s disease by local injection of antibody to TNF-α accounts for a favourable clinical response in selected cases: a pilot study. Scand. J. Gastroenterol.41(9), 1064–1072 (2006).
  • Lichtiger S. Healing of perianal fistulae by local injection of antibody to TNF. Gastroenterology120(5), A621 (2001).
  • Kagan L, Hoffman A. Systems for region selective drug delivery in the gastrointestinal tract: biopharmaceutical considerations. Expert Opin. Drug Deliv.5(6), 681–692 (2008).
  • Torchilin VP. Drug targeting. Eur. J. Pharm. Sci.11(Suppl. 2), S81–S91 (2000).
  • Van den Mooter G. Colon drug delivery. Expert Opin. Drug Deliv.3(1), 111–125 (2006).
  • Sinha VR, Kumria R. Colonic drug delivery: prodrug approach. Pharm. Res.18(5), 557–564 (2001).
  • Fedorak RN, Bistritz L. Targeted delivery, safety, and efficacy of oral enteric-coated formulations of budesonide. Adv. Drug Deliv. Rev.57(2), 303–316 (2005).
  • Hofer KN. Oral budesonide in the management of Crohn’s disease. Ann. Pharmacother.37(10), 1457–1464 (2003).
  • Kumana C, Seaton T, Meghji M, Castelli M, Benson R, Sivakumaran T. Beclomethasone dipropionate enemas for treating inflammatory bowel disease without producing Cushing’s syndrome or hypothalamic pituitary adrenal suppression. Lancet13(1), 579–583 (1982).
  • Rhodes J, Robinson R, Beales I et al. Clinical trial: oral prednisolone metasulfobenzoate (Predocol) vs. oral prednisolone for active ulcerative colitis. Aliment. Pharmacol. Ther.27(3), 228–240 (2008).
  • Rubinstein A. Microbially controlled drug delivery to the colon. Biopharm. Drug Dispos.11(6), 465–475 (1990).
  • Youngberg C, Berardi R, Howatt W et al. Comparison of gastrointestinal pH in cystic fibrosis and healthy subjects. Dig. Dis. Sci.32(5), 472–480 (1987).
  • Leopold C, Eikeler D. Eudragit® E as coating material for the pH-controlled drug release in the topical treatment of inflammatory bowel disease (IBD). J. Drug Target.6(2), 85–94 (1998).
  • Meissner Y, Pellequer Y, Lamprecht A. Nanoparticles in inflammatory bowel disease: particle targeting versus pH-sensitive delivery. Int. J. Pharm.316(1–2), 138–143 (2006).
  • Rudolph MW, Klein S, Beckert TE, Petereit H-U, Dressman JB. A new 5-aminosalicylic acid multi-unit dosage form for the therapy of ulcerative colitis. Eur. J. Pharm. Biopharm.51(3), 183–190 (2001).
  • Haupt S, Rubinstein A. The colon as a possible target for orally administered peptide and protein drugs. Crit. Rev. Ther. Drug Carrier. Syst.19(6), 499–451 (2002).
  • Kumar P, Mishra B. Colon targeted drug delivery systems – an overview. Curr. Drug Deliv.5(3), 186–198 (2008).
  • Davis SS, Hardy JG, Fara JW. Transit of pharmaceutical dosage forms through the small intestine. Gut27(8), 886–892 (1986).
  • Yu LX, Amidon GL. A compartmental absorption and transit model for estimating oral drug absorption. Int. J. Pharm.186(2), 119–125 (1999).
  • Yu LX, Crison JR, Amidon GL. Compartmental transit and dispersion model analysis of small intestinal transit flow in humans. Int. J. Pharm.140(1), 111–118 (1996).
  • Gazzaniga A, Maroni A, Sangalli M, Zema L. Time-controlled oral delivery systems for colon targeting. Expert Opin. Drug Deliv.3(5), 583–597 (2006).
  • Maroni A, Zema L, Cerea M, Sangalli M. Oral pulsatile drug delivery systems. Expert Opin. Drug Deliv.2(5), 855–871 (2005).
  • Hu Z, Kimura G, Ito Y et al. Technology to obtain sustained release characteristics of drugs after delivered to the colon. J. Drug Target.6(6), 439–448 (1999).
  • Jeong Y-I, Ohno T, Hu Z et al. Evaluation of an intestinal pressure-controlled colon delivery capsules prepared by a dipping method. J. Control. Release71(2), 175–182 (2001).
  • Chourasia M, Jain S. Pharmaceutical approaches to colon targeted drug delivery systems. J. Pharm. Pharm. Sci.6(1), 33–66 (2003).
  • Jain S, Jain A. Target-specific drug release to the colon. Expert Opin. Drug Deliv.5(5), 483–498 (2008).
  • Fiorino G, Fries W, De La Rue S, Malesci A, Repici A, Danese S. New drug delivery systems in inflammatory bowel disease: MMX and tailored delivery to the gut. Curr. Med. Chem.17(17), 1851–1857 (2010).
  • Kale-Pradhan PB, Pradhan RS, Wilhelm SM. Multi-matrix system mesalamine: to use or not to use. Ann. Pharmacother.42(2), 265–269 (2008).
  • Kamm MA, Lichtenstein GR, Sandborn WJ et al. Effect of extended MMX mesalamine therapy for acute, mild-to-moderate ulcerative colitis. Inflamm. Bowel Dis.15(1), 1–8 (2009).
  • Hanauer SB, Feagan BG, Lichtenstein GR et al. Maintenance infliximab for Crohn‘s disease: the ACCENT I randomised trial. Lancet359(9317), 1541–1549 (2002).
  • Lichtenstein GR, Yan S, Bala M, Blank M, Sands BE. Infliximab maintenance treatment reduces hospitalizations, surgeries, and procedures in fistulizing Crohn’s disease. Gastroenterology128(4), 862–869 (2005).
  • Present DH, Rutgeerts P, Targan S et al. Infliximab for the treatment of fistulas in patients with Crohn’s disease. N. Engl. J. Med.340(18), 1398–1405 (1999).
  • Sands BE, Anderson FH, Bernstein CN et al. Infliximab maintenance therapy for fistulizing Crohn’s disease. N. Engl. J. Med.350(9), 876–885 (2004).
  • Shteyer E, Wilschanski M. Novel therapeutic modalities in pediatric inflammatory bowel disease. Isr. Med. Assoc. J.10(11), 816–820 (2008).
  • Targan SR, Hanauer SB, van Deventer SJH et al. A short-term study of chimeric monoclonal antibody cA2 to tumor necrosis factor a for Crohn's disease. N. Engl. J. Med.337(15), 1029–1036 (1997).
  • Bosani M, Ardizzone S, Porro G. Biologic targeting in the treatment of inflammatory bowel diseases. Biologics3, 77–97 (2009).
  • Rutgeerts P, van Assche G, Vermeire S. Optimizing anti-TNF treatment in inflammatory bowel disease. Gastroenterology126(6), 1593–1610 (2004).
  • Rutgeerts P, Vermeire S, Van Assche G. Biological therapies for inflammatory bowel diseases. Gastroenterology136(4), 1182–1197 (2009).
  • Sandborn WJ, Colombel JF, Enns R et al. Natalizumab induction and maintenance therapy for Crohn’s disease. N. Engl. J. Med.353(18), 1912–1925 (2005).
  • Targan SR, Feagan BG, Fedorak RN et al. Natalizumab for the treatment of active Crohn’s disease: results of the ENCORE trial. Gastroenterology132(5), 1672–1683 (2007).
  • Van Assche G, Van Ranst M, Sciot R et al. Progressive multifocal leukoencephalopathy after natalizumab therapy for Crohn’s disease. N. Engl. J. Med.353(4), 362–368 (2005).
  • Ardizzone S, Bianchi Porro G. Biologic therapy for inflammatory bowel disease. Drugs65(16), 2253–2286 (2005).
  • Nakamura K, Honda K, Mizutani T, Akiho H, Harada N. Novel strategies for the treatment of inflammatory bowel disease: selective inhibition of cytokines and adhesion molecules. World J. Gastroenterol.12(29), 4628–4635 (2006).
  • Bouma G, Strober W. The immunological and genetic basis of inflammatory bowel disease. Nat. Rev. Immunol.3(7), 521–533 (2003).
  • Braus NA, Elliott DE. Advances in the pathogenesis and treatment of IBD. Clin. Immunol.132(1), 1–9 (2009).
  • Cho JH. The genetics and immunopathogenesis of inflammatory bowel disease. Nat. Rev. Immunol.8(6), 458–466 (2008).
  • Wirtz S, Neurath MF. Gene transfer approaches for the treatment of inflammatory bowel disease. Gene Ther.10(10), 854–860 (2003).
  • Atreya R, Mudter J, Finotto S et al. Blockade of interleukin 6 trans signaling suppresses T-cell resistance against apoptosis in chronic intestinal inflammation: evidence in Crohn disease and experimental colitis in vivo. Nat. Med.6(5), 583–588 (2000).
  • Pickles RJ, Fahrner JA, Petrella JM, Boucher RC, Bergelson JM. Retargeting the coxsackievirus and adenovirus receptor to the apical surface of polarized epithelial cells reveals the glycocalyx as a barrier to adenovirus-mediated gene transfer. J. Virol.74(13), 6050–6057 (2000).
  • Barbara G, Xing Z, Hogaboam CM, Gauldie J, Collins SM. Interleukin 10 gene transfer prevents experimental colitis in rats. Gut46(3), 344–349 (2000).
  • Kesisoglou F, Chamberlain JR, Schmiedlin-Ren P et al. Chimeric Ad5 vectors expressing the short fiber of Ad41 show reduced affinity for human intestinal epithelium. Mol. Pharm.2(6), 500–508 (2005).
  • Kesisoglou F, Schmiedlin-Ren P, Fleisher D, Roessler B, Zimmermann EM. Restituting intestinal epithelial cells exhibit increased transducibility by adenoviral vectors. J. Gene Med.8(12), 1379–1392 (2006).
  • Sasaki M, Mathis JM, Jennings M et al. Reversal of experimental colitis disease activity in mice following administration of an adenoviral IL-10 vector. J. Inflamm.2(1), 13 (2005).
  • Schmiedlin-Ren P, Kesisoglou F, Mapili J et al. Increased transduction of human intestinal epithelial cells by adenoviral vectors in inflammatory bowel disease. Inflamm. Bowel Dis.11(5), 464–472 (2005).
  • Elinav E, Adam N, Waks T, Eshhar Z. Amelioration of colitis by genetically engineered murine regulatory T cells redirected by antigen-specific chimeric receptor. Gastroenterology136(5), 1721–1731 (2009).
  • Wang L, Cheng C, Ko S-Y et al. Delivery of human immunodeficiency virus vaccine vectors to the intestine induces enhanced mucosal cellular immunity. J. Virol.83(14), 7166–7175 (2009).
  • Seppen J, Barry SC, Klinkspoor JH et al. Apical gene transfer into quiescent human and canine polarized intestinal epithelial cells by lentivirus vectors. J. Virol.74(16), 7642–7645 (2000).
  • During MJ, Xu R, Young D, Kaplitt MG, Sherwin RS, Leone P. Peroral gene therapy of lactose intolerance using an adeno-associated virus vector. Nat. Med.4(10), 1131–1135 (1998).
  • Polyak S, Mah C, Porvasnik S et al. Gene delivery to intestinal epithelial cells in vitro and in vivo with recombinant adeno-associated virus types 1, 2 and 5. Dig. Dis. Sci.53(5), 1261–1270 (2008).
  • Rogy M, Beinhauer B, Reinisch W, Huang L, Pokieser P. Transfer of interleukin-4 and interleukin-10 in patients with severe inflammatory bowel disease of the rectum. Hum. Gene Ther.11(12), 1731–1741 (2000).
  • Nakase H, Okazaki K, Tabata Y, Chiba T. Biodegradable microspheres targeting mucosal immune-regulating cells: new approach for treatment of inflammatory bowel disease. J. Gastroenterol.38(15), 59–62 (2003).
  • Nakase H, Okazaki K, Tabata Y et al. Development of an oral drug delivery system targeting immune-regulating cells in experimental inflammatory bowel disease: a new therapeutic strategy. J. Pharmacol. Exp. Ther.292(1), 15–21 (2000).
  • Tabata Y, Inoue Y, Ikada Y. Size effect on systemic and mucosal immune responses induced by oral administration of biodegradable microspheres. Vaccine14(17–18), 1677–1685 (1996).
  • Huang Y, Leobandung W, Foss A, Peppas NA. Molecular aspects of muco- and bioadhesion: tethered structures and site-specific surfaces. J. Control. Release65(1–2), 63–71 (2000).
  • Meissner Y, Lamprecht A. Alternative drug delivery approaches for the therapy of inflammatory bowel disease. J. Pharm. Sci.97(8), 2878–2891 (2008).
  • Serra L, Doménech J, Peppas NA. Engineering design and molecular dynamics of mucoadhesive drug delivery systems as targeting agents. Eur. J. Pharm. Biopharm.71(3), 519–528 (2009).
  • McGuckin MA, Eri R, Simms LA, Florin TH, Radford-Smith G. Intestinal barrier dysfunction in inflammatory bowel diseases. Inflamm. Bowel Dis.15(1), 100–113 (2009).
  • Laukoetter M, Nava P, Nusrat A. Role of the intestinal barrier in inflammatory bowel disease. World J. Gastroenterol.14(3), 401–407 (2008).
  • Nakase H, Okazaki K, Tabata Y et al. New cytokine delivery system using gelatin microspheres containing interleukin-10 for experimental inflammatory bowel disease. J. Pharmacol. Exp. Ther.301(1), 59–65 (2002).
  • Nakase H, Okazaki K, Tabata Y et al. An oral drug delivery system targeting immune-regulating cells ameliorates mucosal injury in trinitrobenzene sulfonic acid-induced colitis. J. Pharmacol. Exp. Ther.297(3), 1122–1128 (2001).
  • Lamprecht A, Ubrich N, Yamamoto H et al. Biodegradable nanoparticles for targeted drug delivery in treatment of inflammatory bowel disease. J. Pharmacol. Exp. Ther.299(2), 775–781 (2001).
  • Makhlof A, Tozuka Y, Takeuchi H. pH-Sensitive nanospheres for colon-specific drug delivery in experimentally induced colitis rat model. Eur. J. Pharm. Biopharm.72(1), 1–8 (2009).
  • Hassani S, Pellequer Y, Lamprecht A. Selective adhesion of nanoparticles to inflamed tissue in gastric ulcers. Pharm. Res.26(5), 1149–1154 (2009).
  • Lamprecht A, Schafer U, Lehr C. Size-dependent bioadhesion of micro- and nanoparticulate carriers to the inflamed colonic mucosa. Pharm. Res.18(6), 788–793 (2001).
  • Bravo-Osuna I, Vauthier C, Farabollini A, Palmieri GF, Ponchel G. Mucoadhesion mechanism of chitosan and thiolated chitosan-poly(isobutyl cyanoacrylate) core-shell nanoparticles. Biomaterials28(13), 2233–2243 (2007).
  • Tirosh B, Rubinstein A. Migration of adhesive and nonadhesive particles in the rat intestine under altered mucus secretion conditions. J. Pharm. Sci.87(4), 453–456 (1998).
  • Jubeh TT, Antler S, Haupt S, Barenholz Y, Rubinstein A. Local prevention of oxidative stress in the intestinal epithelium of the rat by adhesive liposomes of superoxide dismutase and tempamine. Mol. Pharm.2(1), 2–11 (2005).
  • Kesisoglou F, Zhou S, Niemiec S, Lee J, Zimmermann E, Fleisher D. Liposomal formulations of inflammatory bowel disease drugs: local versus systemic drug delivery in a rat model. Pharm. Res.22(8), 1320–1330 (2005).
  • Jubeh T, Barenholz Y, Rubinstein A. Differential adhesion of normal and inflamed rat colonic mucosa by charged liposomes. Pharm. Res.21(3), 447–453 (2004).
  • Tirosh B, Khatib N, Barenholz Y, Nissan A, Rubinstein A. Transferrin as a luminal target for negatively charged liposomes in the inflamed colonic mucosa. Mol. Pharm.6(4), 1083–1091 (2009).
  • Lehr C, Bouwstra J, Kok W, Noach A, de Boer A, Junginger H. Bioadhesion by means of specific binding of tomato lectin. Pharm. Res.9(4), 547–553 (1992).
  • Irache J, Durrer C, Duchene D, Ponchel G. Bioadhesion of lectin-latex conjugates to rat intestinal mucosa. Pharm. Res.13(11), 1716–1719 (2000).
  • Bies C, Lehr C-M, Woodley JF. Lectin-mediated drug targeting: history and applications. Adv. Drug Deliv. Rev.56(4), 425–435 (2004).
  • Gabor F, Bogner E, Weissenboeck A, Wirth M. The lectin-cell interaction and its implications to intestinal lectin-mediated drug delivery. Adv. Drug Deliv. Rev.56(4), 459–480 (2004).
  • Sakhalkar HS, Dalal MK, Salem AK et al. Leukocyte-inspired biodegradable particles that selectively and avidly adhere to inflamed endothelium in vitro and in vivo. Proc. Natl Acad. Sci. USA100(26), 15895–15900 (2003).
  • Sakhalkar HS, Hanes J, Fu J et al. Enhanced adhesion of ligand-conjugated biodegradable particles to colitic venules. FASEB J.19(7), 792–794 (2005).
  • Fedorak R, Madsen K. Probiotics and the management of inflammatory bowel disease. Inflamm. Bowel Dis.10(3), 286–299 (2004).
  • Heilpern D, Szilagyi A. Manipulation of intestinal microbial flora for therapeutic benefit in inflammatory bowel diseases: review of clinical trials of probiotics, pre-biotics and synbiotics. Rev. Recent Clin. Trials3(3), 167–184 (2008).
  • Isaacs K, Herfarth H. Role of probiotic therapy in IBD. Inflamm. Bowel Dis.14(11), 1597–1605 (2008).
  • Steidler L, Hans W, Schotte L et al. Treatment of murine colitis by Lactococcus lactis secreting interleukin-10. Science289(5483), 1352–1355 (2000).
  • Steidler L, Neirynck S, Huyghebaert N et al. Biological containment of genetically modified Lactococcus lactis for intestinal delivery of human interleukin 10. Nat. Biotech.21(7), 785–789 (2003).
  • Braat H, Rottiers P, Hommes DW et al. A Phase I trial with transgenic bacteria expressing interleukin-10 in Crohn’s disease. Clin. Gastroenterol. Hepatol.4(6), 754–759 (2006).
  • Sandborn WJ, Feagan BG, Stoinov S et al. Certolizumab pegol for the treatment of Crohn’s disease. N. Engl. J. Med.357(3), 228–238 (2007).
  • Pappas D, Bathon J, Hanicq D, Yasothan U, Kirkpatrick P. Golimumab. Nat. Rev. Drug Discov.8(9), 695–696 (2009).
  • Chang J, Lichtenstein G. Drug insight: antagonists of tumor-necrosis factor-a in the treatment of inflammatory bowel disease. Nat. Clin. Pract. Gastroenterol. Hepatol.3(4), 220–228 (2006).
  • Soler D, Chapman T, Yang L-L, Wyant T, Egan R, Fedyk ER. The binding specificity and selective antagonism of vedolizumab, an anti-α4β7 integrin therapeutic antibody in development for inflammatory bowel diseases. J. Pharmacol. Exp. Ther.330(3), 864–875 (2009).
  • Pullen N, Molloy E, Carter D et al. Pharmacological characterization of PF-00547659, an anti-human MAdCAM monoclonal antibody. Br. J. Pharmacol.157(2), 281–293 (2009).
  • Shanahan WJ. ISIS 2302, an antisense inhibitor of intercellular adhesion molecule 1. Expert. Opin. Investig. Drugs8(9), 1417–1429 (1999).
  • Sandborn W. How future tumor necrosis factor antagonists and other compounds will meet the remaining challenges in Crohn’s disease. Rev. Gastroenterol. Disord.4(3), S25–S33 (2004).
  • Sandborn WJ, Feagan BG, Fedorak RN et al. A randomized trial of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with moderate-to-severe Crohn’s disease. Gastroenterology135(4), 1130–1141 (2008).
  • Nishimoto N, Kishimoto T. Interleukin 6: from bench to bedside. Nat. Clin. Pract. Rheumatol.2(11), 619–626 (2006).
  • Price M, Probert C, Creed T. Basiliximab and infliximab for the treatment of steroid-refractory Crohn’s disease. Am. J. Gastroenterol.103(10), 2665 (2008).
  • Hommes DW, Mikhajlova TL, Stoinov S et al. Fontolizumab, a humanised anti-interferon g antibody, demonstrates safety and clinical activity in patients with moderate to severe Crohn’s disease. Gut55(8), 1131–1137 (2006).
  • Carson KR, Focosi D, Major EO et al. Monoclonal antibody-associated progressive multifocal leucoencephalopathy in patients treated with rituximab, natalizumab, and efalizumab: a review from the Research on Adverse Drug Events and Reports (RADAR) project. Lancet Oncol.10(8), 816–824 (2009).
  • Kasran A, Boon L, Wortel C et al. Safety and tolerability of antagonist anti-human CD40 Mab ch5D12 in patients with moderate to severe Crohn’s disease. Aliment. Pharmacol. Ther.22(2), 111–122 (2005).
  • Stronkhorst A, Radema S, Yong S et al. CD4 antibody treatment in patients with active Crohn’s disease: a 1 dose finding study. Gut40(3), 320–327 (1997).
  • Plevy S, Salzberg B, Van Assche G et al. A Phase I study of visilizumab, a humanized anti-CD3 monoclonal antibody, in severe steroid-refractory ulcerative colitis. Gastroenterology133(5), 1414–1422 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.