109
Views
17
CrossRef citations to date
0
Altmetric
Perspective

Crohn’s disease as an immunodeficiency

, , , &
Pages 585-596 | Published online: 10 Jan 2014

References

  • Rogler G, Andus T. Cytokines in inflammatory bowel disease. World J. Surg.22(4), 382–389 (1998).
  • Abraham C, Cho JH. Inflammatory bowel disease. N. Engl. J. Med.361(21), 2066–2078 (2009).
  • Hanauer SB. Inflammatory bowel disease: epidemiology, pathogenesis, and therapeutic opportunities. Inflamm. Bowel. Dis.12(Suppl. 1), S3–S9 (2006).
  • Brand S. Crohn’s disease: Th1, Th17 or both? The change of a paradigm: new immunological and genetic insights implicate Th17 cells in the pathogenesis of Crohn’s disease. Gut58(8), 1152–1167 (2009).
  • Neurath MF. IL-23: a master regulator in Crohn disease. Nat. Med.13(1), 26–28 (2007).
  • Boden EK, Snapper SB. Regulatory T cells in inflammatory bowel disease. Curr. Opin. Gastroenterol.24733–24741 (2008).
  • Peyrin-Biroulet L, Deltenre P, Ardizzone S et al. Azathioprine and 6-mercaptopurine for the prevention of postoperative recurrence in Crohn’s disease: a meta-analysis. Am. J. Gastroenterol.104(8), 2089–2096 (2009).
  • Rahman FZ, Marks DJ, Hayee BH et al. Phagocyte dysfunction and inflammatory bowel disease. Inflamm. Bowel. Dis.14(10), 1443–1452 (2008).
  • Marks DJ, Miyagi K, Rahman FZ et al. Inflammatory bowel disease in CGD reproduces the clinicopathological features of Crohn’s disease. Am. J. Gastroenterol.104(1), 117–124 (2009).
  • Segal AW. How neutrophils kill microbes. Annu. Rev. Immunol.23197–23223 (2005).
  • Segal AW, Loewi G. Neutrophil dysfunction in Crohn’s disease. Lancet2(7979), 219–221 (1976).
  • Marks DJ, Harbord MW, MacAllister R et al. Defective acute inflammation in Crohn’s disease: a clinical investigation. Lancet367(9511), 668–678 (2006).
  • Smith AM, Rahman FZ, Hayee B et al. Disordered macrophage cytokine secretion underlies impaired acute inflammation and bacterial clearance in Crohn’s disease. J. Exp. Med.206(9), 1883–1897 (2009).
  • Li Y, Karlin A, Loike JD et al. A critical concentration of neutrophils is required for effective bacterial killing in suspension. Proc. Natl Acad. Sci. USA99(12), 8289–8294 (2002).
  • Li Y, Karlin A, Loike JD et al. Determination of the critical concentration of neutrophils required to block bacterial growth in tissues. J. Exp. Med.200(5), 613–622 (2004).
  • Sewell GW, Marks DJ, Segal AW. The immunopathogenesis of Crohn’s disease: a three-stage model. Curr. Opin. Immunol.21(5), 506–513 (2009).
  • Adams DO. The granulomatous inflammatory response. A review. Am. J. Pathol.84(1), 164–192 (1976).
  • Kyle J. Urinary complications of Crohn’s disease. World J. Surg.4(2), 153–160 (1980).
  • Porter CK, Tribble DR, Aliaga PA et al. Infectious gastroenteritis and risk of developing inflammatory bowel disease. Gastroenterology135(3), 781–786 (2008).
  • Myrelid P, Olaison G, Sjodahl R et al. Thiopurine therapy is associated with postoperative intra-abdominal septic complications in abdominal surgery for Crohn’s disease. Dis. Colon Rectum52(8), 1387–1394 (2009).
  • Hildebrand H, Malmborg P, Askling J et al. Early-life exposures associated with antibiotic use and risk of subsequent Crohn’s disease. Scand. J. Gastroenterol.43(8), 961–966 (2008).
  • Farthing MJ. Bugs and the gut: an unstable marriage. Best. Pract. Res. Clin. Gastroenterol.18(2), 233–239 (2004).
  • Diaz PI, Chalmers NI, Rickard AH et al. Molecular characterization of subject-specific oral microflora during initial colonization of enamel. Appl. Environ. Microbiol.72(4), 2837–2848 (2006).
  • Darfeuille-Michaud A, Boudeau J, Bulois P et al. High prevalence of adherent-invasive Escherichia coli associated with ileal mucosa in Crohn’s disease. Gastroenterology127(2), 412–421 (2004).
  • Colombel JF, Loftus EV Jr, Tremaine WJ et al. The safety profile of infliximab in patients with Crohn’s disease: the Mayo clinic experience in 500 patients. Gastroenterology126(1), 19–31 (2004).
  • Lichtenstein GR, Feagan BG, Cohen RD et al. Serious infections and mortality in association with therapies for Crohn’s disease: TREAT registry. Clin. Gastroenterol. Hepatol.4(5), 621–630 (2006).
  • Colombel JF, Loftus EV Jr, Tremaine WJ et al. Early postoperative complications are not increased in patients with Crohn’s disease treated perioperatively with infliximab or immunosuppressive therapy. Am. J. Gastroenterol.99(5), 878–883 (2004).
  • Hofmann A, Beaulieu Y, Bernard F et al. Fulminant legionellosis in two patients treated with infliximab for Crohn’s disease: case series and literature review. Can. J. Gastroenterol.23(12), 829–833 (2009).
  • Warner EA, Moldawer LL. Using innate immunity to characterize the host response to microbial invasion in severe sepsis. Future Microbiol.3177–3189 (2008).
  • Hayee BH, Sewell G, Rahman FZ, Bloom SL, Smith AM, Segal AW. Differential bacterial clearance and cytokine secretion by macrophages explains localisation of Crohn’s disease to the gut. Gut59(4 Suppl. 1), A61 (2010).
  • Morain CO, Segal AA, Walker D et al. Abnormalities of neutrophil function do not cause the migration defect in Crohn’s disease. Gut22(10), 817–822 (1981).
  • Zarbock A, Ley K. Neutrophil adhesion and activation under flow. Microcirculation16(1), 31–42 (2009).
  • Zarbock A, Ley K. Mechanisms and consequences of neutrophil interaction with the endothelium. Am. J. Pathol.172(1), 1–7 (2008).
  • Arai F, Takahashi T, Furukawa K et al. Mucosal expression of interleukin-6 and interleukin-8 messenger RNA in ulcerative colitis and in Crohn’s disease. Dig. Dis. Sci.43(9), 2071–2079 (1998).
  • Murch SH, Braegger CP, Walker-Smith JA et al. Location of tumour necrosis factor α by immunohistochemistry in chronic inflammatory bowel disease. Gut34(12), 1705–1709 (1993).
  • Mazzucchelli L, Hauser C, Zgraggen K et al. Expression of interleukin-8 gene in inflammatory bowel disease is related to the histological grade of active inflammation. Am. J. Pathol.144(5), 997–1007 (1994).
  • Smythies LE, Maheshwari A, Clements R et al. Mucosal IL-8 and TGF-β recruit blood monocytes: evidence for cross-talk between the lamina propria stroma and myeloid cells. J. Leukoc. Biol.80(3), 492–499 (2006).
  • Zhou L, Braat H, Faber KN et al. Monocytes and their pathophysiological role in Crohn’s disease. Cell Mol. Life Sci.66(2), 192–202 (2009).
  • Casanova JL, Abel L. Revisiting Crohn’s disease as a primary immunodeficiency of macrophages. J. Exp. Med.206(9), 1839–1843 (2009).
  • Adams DO, Hamilton TA. The activated macrophage and granulomatous inflammation. Curr. Top. Pathol.79, 151–167 (1989).
  • Naito Y, Takagi T, Handa O et al. Enhanced intestinal inflammation induced by dextran sulfate sodium in tumor necrosis factor-α deficient mice. J. Gastroenterol. Hepatol.18(5), 560–569 (2003).
  • Wong M, Ziring D, Korin Y et al. TNFa blockade in human diseases: mechanisms and future directions. Clin. Immunol.126(2), 121–136 (2008).
  • Sandborn WJ, Hanauer SB, Katz S et al. Etanercept for active Crohn’s disease: a randomized, double-blind, placebo-controlled trial. Gastroenterology121(5), 1088–1094 (2001).
  • Palmer CD, Rahman FZ, Sewell GW et al. Diminished macrophage apoptosis and reactive oxygen species generation after phorbol ester stimulation in Crohn’s disease. PLoS. One.4(11), e7787 (2009).
  • Brannigan AE, O’Connell PR, Hurley H et al. Neutrophil apoptosis is delayed in patients with inflammatory bowel disease. Shock13(5), 361–366 (2000).
  • Boirivant M, Marini M, Di FG et al. Lamina propria T cells in Crohn’s disease and other gastrointestinal inflammation show defective CD2 pathway-induced apoptosis. Gastroenterology116(3), 557–565 (1999).
  • Yazisiz V, Avci AB, Erbasan F et al. Development of Crohn’s disease following anti-tumour necrosis factor therapy (etanercept). Colorectal Dis.10(9), 953–954 (2008).
  • Charach G, Grosskopf I, Weintraub M. Development of Crohn’s disease in a patient with multiple sclerosis treated with copaxone. Digestion77(3–4), 198–200 (2008).
  • Wehkamp J, Schmid M, Fellermann K et al. Defensin deficiency, intestinal microbes, and the clinical phenotypes of Crohn’s disease. J. Leukoc. Biol.77(4), 460–465 (2005).
  • Zeissig S, Burgel N, Gunzel D et al. Changes in expression and distribution of claudin 2, 5 and 8 lead to discontinuous tight junctions and barrier dysfunction in active Crohn’s disease. Gut56(1), 61–72 (2007).
  • Cario E, Gerken G, Podolsky DK. Toll-like receptor 2 controls mucosal inflammation by regulating epithelial barrier function. Gastroenterology132(4), 1359–1374 (2007).
  • Froy O. Regulation of mammalian defensin expression by Toll-like receptor-dependent and independent signalling pathways. Cell Microbiol.7(10), 1387–1397 (2005).
  • Hollander D, Vadheim CM, Brettholz E et al. Increased intestinal permeability in patients with Crohn’s disease and their relatives. A possible etiologic factor. Ann. Intern. Med.105(6), 883–885 (1986).
  • Barrett JC, Hansoul S, Nicolae DL et al. Genome-wide association defines more than 30 distinct susceptibility loci for Crohn’s disease. Nat. Genet.40(8), 955–962 (2008).
  • Buisine MP, Desreumaux P, Leteurtre E et al. Mucin gene expression in intestinal epithelial cells in Crohn’s disease. Gut49(4), 544–551 (2001).
  • Beatty PL, Plevy SE, Sepulveda AR et al. Cutting edge: transgenic expression of human MUC1 in IL-10-/- mice accelerates inflammatory bowel disease and progression to colon cancer. J. Immunol.179(2), 735–739 (2007).
  • van der Sluis M, De Koning BA, De Bruijn AC et al.Muc2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection. Gastroenterology131(1), 117–129 (2006).
  • Silva MA. Intestinal dendritic cells and epithelial barrier dysfunction in Crohn’s disease. Inflamm. Bowel. Dis.15(3), 436–453 (2009).
  • Lapaquette P, Glasser AL, Huett A et al. Crohn’s disease-associated adherent-invasive E. coli are selectively favoured by impaired autophagy to replicate intracellularly. Cell Microbiol.12(1), 99–113 (2010).
  • Glasser AL, Boudeau J, Barnich N et al. Adherent invasive Escherichia coli strains from patients with Crohn’s disease survive and replicate within macrophages without inducing host cell death. Infect. Immun.69(9), 5529–5537 (2001).
  • Stadnyk AW. Cytokine production by epithelial cells. FASEB J.8(13), 1041–1047 (1994).
  • Qin J, Li R, Raes J et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature464(4), 59–68 (2010).
  • Manichanh C, Rigottier-Gois L, Bonnaud E et al. Reduced diveristy of fecal microbiota in Crohn’s disease revealed by a metagenomic approach. Gut55205–55211 (2006).
  • Ott SJ, Musfeldt M, Wenderoth DF et al. Reduction in diversity of the colonic mucosa associated bacterial microflora in patients with active inflammatory bowel disease. Gut53(5), 685–693 (2004).
  • Lindsay JO, Whelan K, Stagg AJ et al. Clinical, microbiological, and immunological effects of fructo-oligosaccharide in patients with Crohn’s disease. Gut55(3), 348–355 (2006).
  • Sokol H, Pigneur B, Watterlot L et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc. Natl Acad. Sci. USA105(43), 16731–16736 (2008).
  • Martin HM, Campbell BJ, Hart CA et al. Enhanced Escherichia coli adherence and invasion in Crohn’s disease and colon cancer. Gastroenterology127(1), 80–93 (2004).
  • Mpofu CM, Campbell BJ, Subramanian S et al. Microbial mannan inhibits bacterial killing by macrophages: a possible pathogenic mechanism for Crohn’s disease. Gastroenterology133(5), 1487–1498 (2007).
  • Subramanian S, Roberts CL, Hart CA et al. Replication of colonic Crohn’s disease mucosal Escherichia coli isolates within macrophages and their susceptibility to antibiotics. Antimicrob. Agents Chemother.52(2), 427–434 (2008).
  • Vantrappen G, Ponette E, Geboes K et al. Yersinia enteritis and enterocolitis: gastroenterological aspects. Gastroenterology72(2), 220–227 (1977).
  • Isaacs KL, Sartor RB. Treatment of inflammatory bowel disease with antibiotics. Gastroenterol. Clin. North Am.33(2), 335–345 (2004).
  • Swift GL, Srivastava ED, Stone R et al. Controlled trial of anti-tuberculous chemotherapy for two years in Crohn’s disease. Gut35(3), 363–368 (1994).
  • Bridger S, Lee JC, Bjarnason I et al. In siblings with similar genetic susceptibility for inflammatory bowel disease, smokers tend to develop Crohn’s disease and non-smokers develop ulcerative colitis. Gut51(1), 21–25 (2002).
  • Lindberg E, Tysk C, Andersson K et al. Smoking and inflammatory bowel disease. A case control study. Gut29(3), 352–357 (1988).
  • Lindberg E, Jarnerot G, Huitfeldt B. Smoking in Crohn’s disease: effect on localisation and clinical course. Gut33(6), 779–782 (1992).
  • Sher ME, Bank S, Greenberg R et al. The influence of cigarette smoking on cytokine levels in patients with inflammatory bowel disease. Inflamm. Bowel. Dis.5(2), 73–78 (1999).
  • Aldhous MC, Prescott RJ, Roberts S et al. Does nicotine influence cytokine profile and subsequent cell cycling/apoptotic responses in inflammatory bowel disease? Inflamm. Bowel. Dis.14(11), 1469–1482 (2008).
  • Sopori M. Effects of cigarette smoke on the immune system. Nat. Rev. Immunol.2(5), 372–377 (2002).
  • Nielsen OH, Bjerrum JT, Csillag C et al. Influence of smoking on colonic gene expression profile in Crohn’s disease. PLoS One4(7), e6210 (2009).
  • de Jonge WJ, Ulloa L. The α7 nicotinic acetylcholine receptor as a pharmacological target for inflammation. Br. J. Pharmacol.151, 915–929 (2007).
  • Hamano R, Takahashi HK, Iwagaki H et al. Stimulation of α7 nicotinic acetylcholine receptor inhibits CD14 and the Toll-like receptor 4 expression in human monocytes. Shock26, 358–364 (2006).
  • Cope GF, Heatley RV, Kelleher JK. Smoking and colonic mucus in ulcerative colitis. Br. Med. J. (Clin. Res. Ed)293(6545), 481 (1986).
  • Issekutz AC. Vascular responses during acute neutrophilic inflammation. Their relationship to in vivo neutrophil emigration. Lab. Invest.45(5), 435–441 (1981).
  • Issekutz AC. Effect of vasoactive agents on polymorphonuclear leukocyte emigration in vivo. Lab. Invest.45(3), 234–240 (1981).
  • De Bruin AF, Schouten SB, de Kort PP et al. The impact of chronic smoking on rectal mucosal blood flow. Tech. Coloproctol.13(4), 269–272 (2009).
  • Srivastava ED, Russell MA, Feyerabend C et al. Effect of ulcerative colitis and smoking on rectal blood flow. Gut31(9), 1021–1024 (1990).
  • Shoda R, Matsueda K, Yamato S et al. Epidemiologic analysis of Crohn disease in Japan: increased dietary intake of n-6 polyunsaturated fatty acids and animal protein relates to the increased incidence of Crohn disease in Japan. Am. J. Clin. Nutr.63(5), 741–745 (1996).
  • Bamba T, Shimoyama T, Sasaki M et al. Dietary fat attenuates the benefits of an elemental diet in active Crohn’s disease: a randomized, controlled trial. Eur. J. Gastroenterol. Hepatol.15(2), 151–157 (2003).
  • Gassull MA, Fernandez-Banares F, Cabre E et al. Fat composition may be a clue to explain the primary therapeutic effect of enteral nutrition in Crohn’s disease: results of a double blind randomised multicentre European trial. Gut51(2), 164–168 (2002).
  • Shoda R, Matsueda K, Yamato S et al. Therapeutic efficacy of N-3 polyunsaturated fatty acid in experimental Crohn’s disease. J. Gastroenterol.30(Suppl. 8), 98–101 (1995).
  • Lewis R, Gorbach S. Modification of bile acids by intestinal bacteria. Arch. Intern. Med.130(4), 545–549 (1972).
  • Ridlon JM, Kang DJ, Hylemon PB. Bile salt biotransformations by human intestinal bacteria. J. Lipid Res.47(2), 241–259 (2006).
  • Vantrappen G, Ghoos Y, Rutgeerts P et al. Bile acid studies in uncomplicated Crohn’s disease. Gut18(9), 730–735 (1977).
  • Pereira SP, Bain IM, Kumar D et al. Bilecomposition in inflammatory bowel disease: ileal disease and colectomy, but not colitis, induce lithogenic bile. Aliment. Pharmacol. Ther.17(7), 923–933 (2003).
  • Lapidus A, Akerlund JE, Einarsson C. Gallbladder bile composition in patients with Crohn ‘s disease. World J. Gastroenterol.12(1), 70–74 (2006).
  • Zhao DL, Hirst BH. Bile salt-induced increases in duodenal brush-border membrane proton permeability, fluidity, and fragility. Dig. Dis. Sci.35(5), 589–595 (1990).
  • Zhao DL, Hirst BH. Comparison of bile salt perturbation of duodenal and jejunal isolated brush-border membranes. Digestion47(4), 200–207 (1990).
  • Merrett MN, Owen RW, Jewell DP. Ileal pouch dialysate is cytotoxic to epithelial cell lines, but not to CaCo-2 monolayers. Eur. J. Gastroenterol. Hepatol.9(12), 1219–1226 (1997).
  • Fasano A, Verga MC, Raimondi F et al. Effects of deconjugated bile acids on electrolyte and nutrient transport in the rabbit small intestine in vitro. J. Pediatr. Gastroenterol. Nutr.18(3), 327–333 (1994).
  • Raimondi F, Santoro P, Barone MV et al. Bile acids modulate tight junction structure and barrier function of Caco-2 monolayers via EGFR activation. Am. J. Physiol. Gastrointest. Liver Physiol.294(4), G906–G913 (2008).
  • O’Connor CJ, Wallace RG, Iwamoto K et al. Bile salt damage of egg phosphatidylcholine liposomes. Biochim. Biophys. Acta817(1), 95–102 (1985).
  • Powell AA, LaRue JM, Batta AK et al. Bile acid hydrophobicity is correlated with induction of apoptosis and/or growth arrest in HCT116 cells. Biochem. J.356(Pt 2), 481–486 (2001).
  • Gitter AH, Bendfeldt K, Schulzke JD et al. Leaks in the epithelial barrier caused by spontaneous and TNF-α-induced single-cell apoptosis. FASEB J.14(12), 1749–1753 (2000).
  • Lin JA, Watanabe J, Rozengurt N et al. Atherogenic diet causes lethal ileo-ceco-colitis in cyclooxygenase-2 deficient mice. Prostaglandins Other Lipid Mediat.84(3–4), 98–107 (2007).
  • Bernstein H, Holubec H, Bernstein C et al. Unique dietary-related mouse model of colitis. Inflamm. Bowel. Dis.12(4), 278–293 (2006).
  • Lashner BA, Loftus EV Jr. True or false? The hygiene hypothesis for Crohn’s disease. Am. J. Gastroenterol.101(5), 1003–1004 (2006).
  • Elliott DE, Urban JF Jr, Argo CK et al. Does the failure to acquire helminthic parasites predispose to Crohn’s disease? FASEB J.14(12), 1848–1855 (2000).
  • Summers RW, Elliott DE, Urban JF Jr et al. Trichuris suis therapy in Crohn’s disease. Gut54(1), 87–90 (2005).
  • Elliott DE, Urban JF Jr, Argo CK et al. Does the failure to acquire helminthic parasites predispose to Crohn’s disease? FASEB J.14(12), 1848–1855 (2000).
  • Stasi C, Orlandelli E. Role of the brain–gut axis in the pathophysiology of Crohn’s disease. Dig. Dis.26(2), 156–166 (2008).
  • Zinyama RB, Bancroft GJ, Sigola LB. Adrenaline suppression of the macrophage nitric oxide response to lipopolysaccharide is associated with differential regulation of tumour necrosis factor-α and interleukin-10. Immunology104(4), 439–446 (2001).
  • Li CY, Chou TC, Lee CH et al. Adrenaline inhibits lipopolysaccharide-induced macrophage inflammatory protein-1 α in human monocytes: the role of β-adrenergic receptors. Anesth. Analg.96(2), 518–523 (2003).
  • Tracey KJ. Reflex control of immunity. Nat. Rev. Immunol.9(6), 418–428 (2009).
  • Young MR, Matthews JP. Serotonin regulation of T-cell subpopulations and of macrophage accessory function. Immunology84(1), 148–152 (1995).
  • Sirota M, Schaub MA, Batzoglou S et al. Autoimmune disease classification by inverse association with SNP alleles. PLoS Genet.5(12), e1000792 (2009).
  • Manolio TA, Collins FS, Cox NJ et al. Finding the missing heritability of complex diseases. Nature461(7265), 747–753 (2009).
  • Cuthbert AP, Fisher SA, Mirza MM et al. The contribution of NOD2 gene mutations to the risk and site of disease in inflammatory bowel disease. Gastroenterology122(4), 867–874 (2002).
  • Hampe J, Cuthbert A, Croucher PJ et al. Association between insertion mutation in NOD2 gene and Crohn’s disease in German and British populations. Lancet357(9272), 1925–1928 (2001).
  • Hampe J, Franke A, Rosenstiel P et al. A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat. Genet.39(2), 207–211 (2007).
  • Van LJ, Russell RK, Nimmo ER et al. Autophagy gene ATG16L1 influences susceptibility and disease location but not childhood-onset in Crohn’s disease in Northern Europe. Inflamm. Bowel Dis.14(3), 338–346 (2008).
  • Cooney R, Jewell D. The genetic basis of inflammatory bowel disease. Dig. Dis.27(4), 428–442 (2009).
  • Cooney R, Baker J, Brain O et al. NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation. Nat. Med.16(1), 90–97 (2010).
  • Travassos LH, Carneiro LA, Ramjeet M et al. Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nat. Immunol.11(1), 55–62 (2010).
  • Fujita N, Saitoh T, Kageyama S et al. Differential involvement of Atg16L1 in Crohn disease and canonical autophagy: analysis of the organization of the Atg16L1 complex in fibroblasts. J. Biol. Chem.284(47), 32602–32609 (2009).
  • Saitoh T, Fujita N, Jang MH et al. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1β production. Nature456(7219), 264–268 (2008).
  • Pauleau AL, Murray PJ. Role of Nod2 in the response of macrophages to Toll-like receptor agonists. Mol. Cell. Biol.23(21), 7531–7539 (2003).
  • Kobayashi KS, Chamaillard M, Ogura Y et al. Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science307(5710), 731–734 (2005).
  • Kuballa P, Huett A, Rioux JD et al. Impaired autophagy of an intracellular pathogen induced by a Crohn’s disease associated ATG16L1 variant. PLoS. One3(10), e3391 (2008).
  • Hudspith B, Rayment N, Prescott N et al.In vitro responses of macrophages to E. coli challenge in Crohn’s disease. Gastroenterology136(5 (Suppl. 1), A250 (2009).
  • Buchmeier NA, Heffron F. Intracellular survival of wild-type Salmonella typhimurium and macrophage-sensitive mutants in diverse populations of macrophages. Infect. Immun.57(1), 1–7 (1989).
  • Glasser AL, Boudeau J, Barnich N et al. Adherent invasive Escherichia coli strains from patients with Crohn’s disease survive and replicate within macrophages without inducing host cell death. Infect. Immun.69(9), 5529–5537 (2001).
  • Lapaquette P, Glasser AL, Huett A et al. Crohn’s disease-associated adherent-invasive E. coli are selectively favoured by impaired autophagy to replicate intracellularly. Cell Microbiol.12(1), 99–113 (2010).
  • Fujita N, Saitoh T, Kageyama S et al. Differential involvement of Atg16L1 in Crohn disease and canonical autophagy: analysis of the organization of the Atg16L1 complex in fibroblasts. J. Biol. Chem.284(47), 32602–32609 (2009).
  • Takeda K, Clausen BE, Kaisho T et al. Enhanced Th1 activity and development of chronic enterocolitis in mice devoid of Stat3 in macrophages and neutrophils. Immunity10(1), 39–49 (1999).
  • Takeda K, Noguchi K, Shi W et al. Targeted disruption of the mouse Stat3 gene leads to early embryonic lethality. Proc. Natl Acad. Sci. USA94(8), 3801–3804 (1997).
  • Kobayashi M, Kweon MN, Kuwata H et al. Toll-like receptor-dependent production of IL-12p40 causes chronic enterocolitis in myeloid cell-specific Stat3-deficient mice. J. Clin. Invest111(9), 1297–1308 (2003).
  • Matsukawa A, Takeda K, Kudo S et al. Aberrant inflammation and lethality to septic peritonitis in mice lacking STAT3 in macrophages and neutrophils. J. Immunol.171(11), 6198–6205 (2003).
  • Kuhl AA, Kakirman H, Janotta M et al. Aggravation of different types of experimental colitis by depletion or adhesion blockade of neutrophils. Gastroenterology133(6), 1882–1892 (2007).
  • van Heel DA, Udalova IA, De Silva AP et al. Inflammatory bowel disease is associated with a TNF polymorphism that affects an interaction between the OCT1 and NFκB transcription factors. Hum. Mol. Genet.11(11), 1281–1289 (2002).
  • Okazaki T, Wang MH, Rawsthorne P et al. Contributions of IBD5, IL23R, ATG16L1, and NOD2 to Crohn’s disease risk in a population-based case–control study: evidence of gene–gene interactions. Inflamm. Bowel Dis.14(11), 1528–1541 (2008).
  • Ansari A, Hassan C, Duley J et al. Thiopurine methyltransferase activity and the use of azathioprine in inflammatory bowel disease. Aliment. Pharmacol. Ther.16(10), 1743–1750 (2002).
  • Farrell RJ, Murphy A, Long A et al. High multidrug resistance (P-glycoprotein 170) expression in inflammatory bowel disease patients who fail medical therapy. Gastroenterology118(2), 279–288 (2000).
  • Lees CW, Satsangi J. Genetics of inflammatory bowel disease: implications for disease pathogenesis and natural history. Expert. Rev. Gastroenterol. Hepatol.3(5), 513–534 (2009).
  • Csillag C, Nielsen OH, Borup R et al. Clinical phenotype and gene expression profile in Crohn’s disease. Am. J. Physiol Gastrointest. Liver Physiol.292(1), G298–G304 (2007).
  • Lawrance IC, Fiocchi C, Chakravarti S. Ulcerative colitis and Crohn’s disease: distinctive gene expression profiles and novel susceptibility candidate genes. Hum. Mol. Genet.10(5), 445–456 (2001).
  • Dieckgraefe BK, Korzenik JR, Anant S. Growth factors as treatment options for intestinal inflammation. Ann. NY Acad. Sci.1072, 300–306 (2006).
  • Dejaco C, Lichtenberger C, Miehsler W et al. An open-label pilot study of granulocyte colony-stimulating factor for the treatment of severe endoscopic postoperative recurrence in Crohn’s disease. Digestion68(2–3), 63–70 (2003).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.