342
Views
73
CrossRef citations to date
0
Altmetric
Special Report

Mucosal T cells in gut homeostasis and inflammation

&
Pages 559-566 | Published online: 10 Jan 2014

References

  • Hayday A, Theodoridis E, Ramsburg E, Shires J. Intraepithelial lymphocytes: exploring the Third Way in immunology. Nat. Immunol.2(11), 997–1003 (2001).
  • Campbell DJ, Butcher EC. Rapid acquisition of tissue-specific homing phenotypes by CD4+ T cells activated in cutaneous or mucosal lymphoid tissues. J. Exp. Med.195(1), 135–141 (2002).
  • Iwata M, Hirakiyama A, Eshima Y et al. Retinoic acid imprints gut-homing specificity on T cells. Immunity21(4), 527–538 (2004).
  • Probert CS, Saubermann LJ, Balk S, Blumberg RS. Repertoire of the αβ T-cell receptor in the intestine. Immunol. Rev.215, 215–225 (2007).
  • Cheroutre H, Madakamutil L. Mucosal effector memory T cells: the other side of the coin. Cell. Mol. Life Sci.62(23), 2853–2866 (2005).
  • Hansen SG, Vieville C, Whizin N et al. Effector memory T cell responses are associated with protection of rhesus monkeys from mucosal simian immunodeficiency virus challenge. Nat. Med.15(3), 293–299 (2009).
  • Masopust D, Vezys V, Wherry EJ, Barber DL, Ahmed R. Cutting edge: gut microenvironment promotes differentiation of a unique memory CD8 T cell population. J. Immunol.176(4), 2079–2083 (2006).
  • Izcue A, Coombes JL, Powrie F. Regulatory T cells suppress systemic and mucosal immune activation to control intestinal inflammation. Immunol. Rev.212, 256–271 (2006).
  • Ishigame H, Kakuta S, Nagai T et al. Differential roles of interleukin-17A and -17F in host defense against mucoepithelial bacterial infection and allergic responses. Immunity30(1), 108–119 (2009).
  • Conti HR, Shen F, Nayyar N et al. Th17 cells and IL-17 receptor signaling are essential for mucosal host defense against oral candidiasis. J. Exp. Med.206(2), 299–311 (2009).
  • Chen W, Jin W, Hardegen N et al. Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-β induction of transcription factor Foxp3. J. Exp. Med.198(12), 1875–1886 (2003).
  • Veldhoen M, Hocking RJ, Atkins CJ, Locksley RM, Stockinger B. TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity24(2), 179–189 (2006).
  • Mucida D, Park Y, Kim G et al. Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. Science317(5835), 256–260 (2007).
  • Sun CM, Hall JA, Blank RB et al. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 Treg cells via retinoic acid. J. Exp. Med.204(8), 1775–1785 (2007).
  • Coombes JL, Siddiqui KR, Arancibia-Carcamo CV et al. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-β and retinoic acid-dependent mechanism. J. Exp. Med.204(8), 1757–1764 (2007).
  • Denning TL, Wang YC, Patel SR, Williams IR, Pulendran B. Lamina propria macrophages and dendritic cells differentially induce regulatory and interleukin 17-producing T cell responses. Nat. Immunol.8(10), 1086–1094 (2007).
  • Uematsu S, Fujimoto K, Jang MH et al. Regulation of humoral and cellular gut immunity by lamina propria dendritic cells expressing Toll-like receptor 5. Nat. Immunol.9(7), 769–776 (2008).
  • Ivanov II, Frutos Rde L, Manel N et al. Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe4(4), 337–349 (2008).
  • Atarashi K, Nishimura J, Shima T et al. ATP drives lamina propria T(H)17 cell differentiation. Nature455(7214), 808–812 (2008).
  • Ivanov II, Atarashi K, Manel N et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell139(3), 485–498 (2009).
  • Hall JA, Bouladoux N, Sun CM et al. Commensal DNA limits regulatory T cell conversion and is a natural adjuvant of intestinal immune responses. Immunity29(4), 637–649 (2008).
  • Crowe PT, Marsh MN. Morphometric analysis of intestinal mucosa. VI –Principles in enumerating intra-epithelial lymphocytes. Virchows Arch.424(3), 301–306 (1994).
  • Ma LJ, Acero LF, Zal T, Schluns KS. Trans-presentation of IL-15 by intestinal epithelial cells drives development of CD8αα IELs. J. Immunol.183(2), 1044–1054 (2009).
  • Yu Q, Tang C, Xun S et al. MyD88-dependent signaling for IL-15 production plays an important role in maintenance of CD8 αα TCR αβ and TCR γδ intestinal intraepithelial lymphocytes. J. Immunol.176(10), 6180–6185 (2006).
  • Gangadharan D, Lambolez F, Attinger A et al. Identification of pre- and postselection TCRαβ+ intraepithelial lymphocyte precursors in the thymus. Immunity25(4), 631–641 (2006).
  • Cheroutre H. IELs: enforcing law and order in the court of the intestinal epithelium. Immunol. Rev.206, 114–131 (2005).
  • Denning TL, Granger SW, Mucida D et al. Mouse TCRαβ+CD8αα intraepithelial lymphocytes express genes that down-regulate their antigen reactivity and suppress immune responses. J. Immunol.178(7), 4230–4239 (2007).
  • Shires J, Theodoridis E, Hayday AC. Biological insights into TCRγδ+ and TCRαβ+ intraepithelial lymphocytes provided by serial analysis of gene expression (SAGE). Immunity15(3), 419–434 (2001).
  • Leishman AJ, Naidenko OV, Attinger A et al. T cell responses modulated through interaction between CD8αα and the nonclassical MHC class I molecule, TL. Science294(5548), 1936–1939 (2001).
  • Cheroutre H, Lambolez F. Doubting the TCR coreceptor function of CD8αα. Immunity28(2), 149–159 (2008).
  • Jabri B, Ebert E. Human CD8+ intraepithelial lymphocytes: a unique model to study the regulation of effector cytotoxic T lymphocytes in tissue. Immunol. Rev.215, 202–214 (2007).
  • Komano H, Fujiura Y, Kawaguchi M et al. Homeostatic regulation of intestinal epithelia by intraepithelial γ δ T cells. Proc. Natl Acad. Sci. USA92(13), 6147–6151 (1995).
  • Boismenu R, Havran WL. Modulation of epithelial cell growth by intraepithelial γ δ T cells. Science266(5188), 1253–1255 (1994).
  • Roberts SJ, Smith AL, West αβ et al. T-cell αβ+ and γδ+ deficient mice display abnormal but distinct phenotypes toward a natural, widespread infection of the intestinal epithelium. Proc. Natl Acad. Sci. USA93(21), 11774–11779 (1996).
  • Hayday AC. γ δ cells: a right time and a right place for a conserved third way of protection. Annu. Rev. Immunol.18, 975–1026 (2000).
  • Inagaki-Ohara K, Dewi FN, Hisaeda H et al. Intestinal intraepithelial lymphocytes sustain the epithelial barrier function against Eimeria vermiformis infection. Infect. Immun.74(9), 5292–5301 (2006).
  • Saurer L, Seibold I, Rihs S et al. Virus-induced activation of self-specific TCR α β CD8αα intraepithelial lymphocytes does not abolish their self-tolerance in the intestine. J. Immunol.172(7), 4176–4183 (2004).
  • Poussier P, Ning T, Banerjee D, Julius M. A unique subset of self-specific intraintestinal T cells maintains gut integrity. J. Exp. Med.195(11), 1491–1497 (2002).
  • Kim BG, Li C, Qiao W et al. Smad4 signalling in T cells is required for suppression of gastrointestinal cancer. Nature441(7096), 1015–1019 (2006).
  • Abraham C, Cho JH. Inflammatory bowel disease. N. Engl. J. Med.361(21), 2066–2078 (2009).
  • Xavier RJ, Podolsky DK. Unravelling the pathogenesis of inflammatory bowel disease. Nature448(7152), 427–434 (2007).
  • Uhlig HH, McKenzie BS, Hue S et al. Differential activity of IL-12 and IL-23 in mucosal and systemic innate immune pathology. Immunity25(2), 309–318 (2006).
  • Hue S, Ahern P, Buonocore S et al. Interleukin-23 drives innate and T cell-mediated intestinal inflammation. J. Exp. Med.203(11), 2473–2483 (2006).
  • Duerr RH, Taylor KD, Brant SR et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science314(5804), 1461–1463 (2006).
  • Cheroutre H. In IBD eight can come before four. Gastroenterology131(2), 667–670 (2006).
  • Tajima M, Wakita D, Noguchi D et al. IL-6-dependent spontaneous proliferation is required for the induction of colitogenic IL-17-producing CD8+ T cells. J. Exp. Med.205(5), 1019–1027 (2008).
  • Jabri B, Sollid LM. Tissue-mediated control of immunopathology in coeliac disease. Nat. Rev. Immunol.9(12), 858–870 (2009).
  • Fina D, Sarra M, Caruso R et al. Interleukin 21 contributes to the mucosal T helper cell type 1 response in coeliac disease. Gut57(7), 887–892 (2008).
  • Monteleone I, Sarra M, Del Vecchio Blanco G et al. Characterization of IL-17A-producing cells in celiac disease mucosa. J. Immunol.184(4), 2211–2218 (2010).
  • Yokoyama S, Watanabe N, Sato N et al. Antibody-mediated blockade of IL-15 reverses the autoimmune intestinal damage in transgenic mice that overexpress IL-15 in enterocytes. Proc. Natl Acad. Sci. USA106(37), 15849–15854 (2009).
  • Kamanaka M, Kim ST, Wan YY et al. Expression of interleukin-10 in intestinal lymphocytes detected by an interleukin-10 reporter knockin tiger mouse. Immunity25(6), 941–952 (2006).
  • Uhlig HH, Coombes J, Mottet C et al. Characterization of Foxp3+CD4+CD25+ and IL-10-secreting CD4+CD25+ T cells during cure of colitis. J. Immunol.177(9), 5852–5860 (2006).
  • Mottet C, Uhlig HH, Powrie F. Cutting edge: cure of colitis by CD4+CD25+ regulatory T cells. J. Immunol.170(8), 3939–3943 (2003).
  • Rubtsov YP, Rasmussen JP, Chi EY et al. Regulatory T cell-derived interleukin-10 limits inflammation at environmental interfaces. Immunity28(4), 546–558 (2008).
  • Kuhl AA, Pawlowski NN, Grollich K et al. Aggravation of intestinal inflammation by depletion/deficiency of γδ T cells in different types of IBD animal models. J. Leukoc. Biol.81(1), 168–175 (2007).
  • O’Connor W Jr, Kamanaka M, Booth CJ et al. A protective function for interleukin 17A in T cell-mediated intestinal inflammation. Nat. Immunol.10(6), 603–609 (2009).
  • Sugimoto K, Ogawa A, Mizoguchi E et al. IL-22 ameliorates intestinal inflammation in a mouse model of ulcerative colitis. J. Clin. Invest.118(2), 534–544 (2008).
  • Prendergast A, Prado JG, Kang YH et al. HIV-1 infection is characterized by profound depletion of CD161+ Th17 cells and gradual decline in regulatory T cells. AIDS24(4), 491–502 (2010).
  • Raffatellu M, Santos RL, Verhoeven DE et al. Simian immunodeficiency virus-induced mucosal interleukin-17 deficiency promotes Salmonella dissemination from the gut. Nat. Med.14(4), 421–428 (2008).
  • McGeachy MJ, Bak-Jensen KS, Chen Y et al. TGF-β and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain T(H)-17 cell-mediated pathology. Nat. Immunol.8(12), 1390–1397 (2007).
  • Lee YK, Mukasa R, Hatton RD, Weaver CT. Developmental plasticity of Th17 and Treg cells. Curr. Opin. Immunol.21(3), 274–280 (2009).
  • O’Shea JJ, Paul WE. Mechanisms underlying lineage commitment and plasticity of helper CD4+ T cells. Science327(5969), 1098–1102 (2010).
  • Belyakov IM, Ahlers JD. What role does the route of immunization play in the generation of protective immunity against mucosal pathogens? J. Immunol.183(11), 6883–6892 (2009).
  • Manz MG. Human-hemato-lymphoid-system mice: opportunities and challenges. Immunity26(5), 537–541 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.