139
Views
15
CrossRef citations to date
0
Altmetric
Perspective

Nutrigenomics and inflammatory bowel diseases

Pages 573-583 | Published online: 10 Jan 2014

References

  • Afman L, Muller M. Nutrigenomics: from molecular nutrition to prevention of disease. J. Am. Diet Assoc.106(4), 569–576 (2006).
  • Ekbom A. Twin studies in IBD and other disorders. J. Pediatr. Gastroenterol. Nutr.46(Suppl. 1), E9 (2008).
  • Woolner JT, Parker TJ, Kirby GA, Hunter JO. The development and evaluation of a diet for maintaining remission in Crohn’s disease. J. Hum. Nutr. Diet.11(1), 1–11 (1998).
  • Baker PI, Love DR, Ferguson LR. Role of gut microbiota in Crohn’s disease. Expert Rev. Gastroenterol. Hepatol.3(5), 535–546 (2009).
  • Jowett SL, Seal CJ, Pearce MS et al. Influence of dietary factors on the clinical course of ulcerative colitis: a prospective cohort study. Gut53(10), 1479–1484 (2004).
  • Petermann I, Triggs CM, Huebner C et al. Mushroom intolerance: a novel diet–gene interaction in Crohn’s disease. Br. J. Nutr.102(4), 506–508 (2009).
  • Barnett M, Bermingham E, McNabb W et al. Investigating micronutrients and epigenetic mechanisms in relation to inflammatory bowel disease. Mutat. Res. DOI: 10.1016/j.mrfmmm.2010.02.006 (2010) (In Press).
  • van Limbergen J, Wilson DC, Satsangi J. The genetics of Crohn’s disease. Annu. Rev. Genomics Hum. Genet.10, 89–116 (2009).
  • Ferguson LR, Philpott M, Dryland P. Nutrigenomics in the whole-genome scanning era: Crohn’s disease as example. Cell. Mol. Life Sci.64(23), 3105–3118 (2007).
  • Mathews C. New links to the pathogenesis of Crohn disease provided by genome-wide association scans. Nat. Rev. Genet.9(1), 9–14 (2008).
  • Kugathasan S, Baldassano RN, Bradfield JP et al. Loci on 20q13 and 21q22 are associated with pediatric-onset inflammatory bowel disease. Nat. Genet.40(10), 1211–1215 (2008).
  • Hugot JP, Chamaillard M, Zouali H et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature411(6837), 599–603 (2001).
  • Ogura Y, Bonen DK, Inohara N et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature411(6837), 603–606 (2001).
  • Girardin SE, Boneca, IG, Viala J et al. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J. Biol. Chem.278(11), 8869–8872 (2003).
  • Gearry RB, Richardson A, Frampton C et al. High incidence of Crohn’s disease in Canterbury, New Zealand: results of an epidemiologic study. Inflamm. Bowel Dis.12(10), 936–943 (2006).
  • Hugot JP. CARD15/NOD2 mutations in Crohn’s disease. Ann. NY Acad. Sci.1072(1), 9–18 (2006).
  • Philpott M, Mackay L, Ferguson LR, Forbes D, Skinner M. Cell culture models in developing nutrigenomics foods for inflammatory bowel disease. Mutation Res.622(1–2), 94–102 (2007).
  • Huebner C, Ferguson LR, Han DY et al. Nucleotide-binding oligomerization domain containing 1 (NOD1) haplotypes and single nucleotide polymorphisms modify susceptibility to inflammatory bowel diseases in a New Zealand Caucasian population: a case–control study. BMC Res. Notes2, 52 (2009).
  • Arbour NC, Lorenz E, Schutte BC et al. TLR4 mutations are associated with endotoxin hyporesponsiveness in humans. Nat Genet.25(2), 187–191 (2000).
  • Browning B, Huebner C, Petermann I et al. Has Toll-like receptor 4 been prematurely rejected as an inflammatory bowel disease gene? Association study combined with meta-analysis shows strong evidence for association. Am. J. Gastroenterol.102(11), 2504–2512 (2007).
  • Ferguson L, Browning BL, Huebner C et al. Single nucleotide polymorphisms in human Paneth cell defensin A5 may confer susceptibility to inflammatory bowel disease in a New Zealand Caucasian population. Dig. Liver Dis.40(9), 723–730 (2008).
  • Petermann I, Huebner C, Browning BL et al. Interactions among genes influencing bacterial recognition increase IBD risk in a population-based New Zealand cohort. Hum. Immunol.70(6), 440–446 (2009).
  • Rioux JD, Ramnik JX, Taylor KD et al. Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nat. Genet.39(5), 596–604 (2007).
  • Hampe J, Franke A, Rosenstiel P et al. A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat Genet.39(2), 207–211 (2007).
  • Reis E, Sousa C. Immunology: eating in to avoid infection. Science315(5817), 1376–1377 (2007).
  • Lee HK, Lund JM, Ramanathan B, Mizushima N, Iwasaki A. Autophagy-dependent viral recognition by plasmacytoid dendritic cells. Science315(5817), 1398–1401 (2007).
  • Mizushima N, Klionsky D. Protein turnover via autophagy: implications for metabolism. Annu. Rev. Nutr.27, 19–40 (2007).
  • Sinsimer D, Fallows D, Peixoto B, Krahenbuhl J, Kaplan G, Manca C. Mycobacterium leprae actively modulates the cytokine response in naive human monocytes. Infect. Immun.78(1), 293–300 (2010).
  • Travassos L, Carneiro LA, Girardin S, Philpott DJ. Nod proteins link bacterial sensing and autophagy. Autophagy6(3), 409–411 (2010).
  • Travassos L, Carneiro LA, Ramjeet M et al. Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nat. Immunol.11(1), 55–62 (2010).
  • Cooney R, Baker J, Brain O et al. NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation. Nat. Med.16(1), 90–97 (2010).
  • Duerr RH, Taylor KD, Brant SR et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science314(5804), 1461–1463 (2006).
  • Xavier RJ, Podolsky DK. Unravelling the pathogenesis of inflammatory bowel disease. Nature448(7152), 427–434 (2007).
  • Barrett JC, Hansoul S, Nicolae DL et al. Genome-wide association defines more than 30 distinct susceptibility loci for Crohn’s disease. Nat. Genet.40(8), 955–962 (2008).
  • Ferguson L, Han DY, Fraser AG et al. Genetic factors in chronic inflammation: single nucleotide polymorphisms in the STAT–JAK pathway, susceptibility to DNA damage and Crohn’s disease in a New Zealand population. Mutat. Res. (2010) DOI: 10.1016/j.mrfmmm.2010.01.017 (Epub ahead of print).
  • Ferguson LR, Huebner C, Petermann I et al. Single nucleotide polymorphism in the tumor necrosis factor-α gene affects inflammatory bowel diseases risk. World J. Gastroenterol.14(29), 4652–4661 (2008).
  • Fisher SA, Tremelling M, Anderson CA et al. Genetic determinants of ulcerative colitis include the ECM1 locus and five loci implicated in Crohn’s disease. Nat. Genet.40(6), 710–712 (2008).
  • Fernando MM, Stevens CR, Walsh EC et al. Defining the role of the MHC in autoimmunity: a review and pooled analysis. PLoS Genetics.4(4), e1000024 (2008).
  • Wang S, Raven JF, Baltzis D et al. The catalytic activity of the eukaryotic initiation factor-2 α kinase PKR is required to negatively regulate Stat1 and Stat3 via activation of the T-cell protein-tyrosine phosphatase. J. Biol. Chem.281, 9439–9449 (2006).
  • Lu X, Chen J, Sasmono RT et al. T-cell protein tyrosine phosphatase, distinctively expressed in activated-B-cell-like diffuse large B-cell lymphomas, is the nuclear phosphatase of STAT6. Mol. Cell. Biol.27(6), 2166–2179 (2007).
  • Amre DK, Mack DR, Morgan K et al. Investigation of reported associations between the 20q13 and 21q22 loci and pediatric-onset Crohn’s disease in Canadian children. Am. J. Gastroenterol.140(11), 2824–2828 (2009).
  • Glocker E, Kotlarz D, Boztug K et al. Inflammatory bowel disease and mutations affecting the interleukin-10 receptor. N. Engl. J. Med.361(21), 2033–2045 (2009).
  • Goyette P, Lefebvre C, Ng A et al. Gene-centric association mapping of chromosome 3p implicates MST1 in IBD pathogenesis. Mucosal Immunol.1(2), 131–138 (2008).
  • Peltekova VD, Wintle RF, Rubin LA et al. Functional variants of OCTN cation transporter genes are associated with Crohn disease. Nat Genet.36(5), 471–475 (2004).
  • Ferguson L, Han DY, Huebner C et al. Single nucleotide polymorphisms in IL4, OCTN1 and OCTN2 genes in association with inflammatory bowel disease phenotypes in a Caucasian population in Canterbury, New Zealand. The Open Gastroenterology Journal2(7), 50–56 (2008).
  • Stoll M, Corneliussen B, Costello CM et al. Genetic variation in DLG5 is associated with inflammatory bowel disease. Nat. Genet.36(5), 476–480 (2004).
  • Browning B, Annese V, Barclay ML et al. Gender-stratified analysis of DLG5 R30Q in 4707 Crohn’s disease patients and 4973 controls from 12 Caucasian cohorts. J. Med.Genet.45, 36–42 (2008).
  • Festen EA, Stokkers PC, van Diemen CC et al. Genetic analysis in a Dutch study sample identifies more ulcerative colitis susceptibility loci and shows their additive role in disease risk. Am. J. Gastroenterol.105(2), 395–402 (2010).
  • Franke A, Balschun T, Karlsen TH et al. Sequence variants in IL10, ARPC2 and multiple other loci contribute to ulcerative colitis susceptibility. Nat. Genet.40(11), 1319–1323 (2008).
  • Glas J, Stallhofer J, Ripke S et al. Novel genetic risk markers for ulcerative colitis in the IL2/IL21 region are in epistasis with IL23R and suggest a common genetic background for ulcerative colitis and celiac disease. Am. J. Gastroenterol.104(7), 1737–1744 (2009).
  • Huebner C, Petermann I, Browning BL et al. Genetic association study of MDR1 and inflammatory bowel disease reveals partial protective effect of heterozygous variants in ulcerative colitis. Inflamm. Bowel Dis.15(12), 1784–1793 (2009).
  • Juyal G, Midha V, Amre D, Sood A, Seidman E, Thelma BK. Associations between common variants in the MDR1 (ABCB1) gene and ulcerative colitis among North Indians. Pharmacogenet. Genomics19(1), 77–85 (2009).
  • Lees CW, Satsangi J. Genetics of inflammatory bowel disease: implications for disease pathogenesis and natural history. Expert Rev. Gastroenterol. Hepatol.3(5), 513–534 (2009).
  • Lee G, Buchman AL. DNA-driven nutritional therapy of inflammatory bowel disease. Nutrition25(9), 885–891 (2009).
  • Stardelova G, Misevska P, Zdravkovska M, Trajkov D, Serafimoski V. Total parenteral nutrition in treatment of patients with inflammatory bowel disease. Prilozi29(1), 21–43 (2008).
  • Geerling B, Badart-Smook A, Stockbrugger RW, Brummer RJ. Comprehensive nutritional status in recently diagnosed patients with inflammatory bowel disease compared with population controls. Eur. J. Clin. Nutr.54(6), 514–521 (2000).
  • Geerling BJ, Dagnelie PC, Badart-Smook A, Russel MG, Stockbrügger RW, Brummer R. Diet as a risk factor for the development of ulcerative colitis. Am. J. Gastroenterol.95(4), 1008–1013 (2000).
  • Russel MG, Engels LG, Muris JW et al. Modern life in the epidemiology of inflammatory bowel disease: a case–control study with special emphasis on nutritional factors. Eur. J. Gastroenterol. Hepatol.10(3), 243–249 (1998).
  • Triggs C, Munday K, Hu R et al. Dietary factors in chronic inflammation: food tolerances and intolerances of a New Zealand Caucasian Crohn’s disease population. Mutat. Res. DOI: 10.1016/j.mrfmmm.2010.01.020 (2010) (Epub ahead of print).
  • Scalabrino G. Vitamin-regulated cytokines and growth factors in the CNS and elsewhere. J. Neurochem.111(6), 1309–1326 (2009).
  • Lionetti P, Callegari ML, Ferrari S et al. Enteral nutrition and microflora in pediatric Crohn’s disease. J. Parenter. Enteral. Nutr.29(4), S173–S175; discussion S175–S178 (2005).
  • Jones JL, Foxx-Orenstein AE. The role of probiotics in inflammatory bowel disease. Dig. Dis. Sci.52(3), 607–611 (2007).
  • Lim CC, Ferguson LR, Tannock GW. Dietary fibres as ‘prebiotics’: implications for colorectal cancer. Mol. Nutr. Food Res.49(6), 609–619 (2005).
  • Baines K, Wood LG, Gibson PG. The nutrigenomics of asthma: molecular mechanisms of airway neutrophilia following dietary antioxidant withdrawal. OMICS3(5), 355–365 (2009).
  • Philpott M, Mackay L, Ferguson LR, Forbes D, Skinner M. Cell culture models in developing nutrigenomics foods for inflammatory bowel disease. Mutat. Res.622(1–2), 94–102 (2007).
  • Wang T, Dabbas B, Laperriere D et al. Direct and indirect induction by 1,25-dihydroxyvitamin D3 of the NOD2/CARD15-defensin β2 innate immune pathway defective in Crohn disease. J. Biol. Chem.285, 2227–2231 (2010).
  • Leung CH, Lam W, Ma DL, Gullen EA, Cheng YC. Butyrate mediates nucleotide-binding and oligomerisation domain (NOD) 2-dependent mucosal immune responses against peptidoglycan. Eur. J. Immunol.39(12), 3529–3537 (2009).
  • Borthakur A, Bhattacharyya S, Dudeja PK, Tobacman JK. Carrageenan induces interleukin-8 production through distinct Bcl10 pathway in normal human colonic epithelial cells. Am. J. Physiol. Gastrointest. Liver Physiol.292(3), G829–G838 (2007).
  • Cukovic-Cavka S, Likic R, Francetic I, Rustemovic N, Opacic M, Vucelic B. Lactobacillus acidophilus as a cause of liver abscess in a NOD2/CARD15-positive patient with Crohn’s disease. Digestion73(2–3), 107–110 (2006).
  • Sadeghi K, Wessner B, Laggner U et al. Vitamin D3 down-regulates monocyte TLR expression and triggers hyporesponsiveness to pathogen-associated molecular patterns. Eur. J. Immunol.36(2), 361–370 (2006).
  • Simmons JD, Mullighan C, Welsh KI, Jewell DP. Vitamin D receptor gene polymorphism: association with Crohn’s disease susceptibility. Gut47(2), 211–214 (2000).
  • Martin K, Radlmayr M, Borchers R, Heinzlmann M, Folwaczny C. Candidate genes colocalized to linkage regions in inflammatory bowel disease. Digestion66(2), 121–126 (2002).
  • Kadowaki M, Karim, MR, Carpi A, Miotto G. Nutrient control of macroautophagy in mammalian cells. Mol. Aspects Med.27(5–6), 426–443 (2006).
  • Scherz-Shouval R, Shvets E, Fass E, Shorer H, Gil L, Elazar Z. Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J.26(7), 1749–1760 (2007).
  • Gossner G, Choi M, Tan L et al. Genistein-induced apoptosis and autophagocytosis in ovarian cancer cells. Gynecol. Oncol.105(1), 23–30 (2007).
  • Hazan R, Levine A, Abeliovich H. Benzoic acid, a weak organic acid food preservative, exerts specific effects on intracellular membrane trafficking pathways in Saccharomyces cerevisiae. Appl. Environ. Microbiol.70(8), 4449–4457 (2004).
  • Onodera J, Ohsumi Y. Autophagy is required for maintenance of amino acid levels and protein synthesis under nitrogen starvation. J. Biol. Chem.280(36), 31582–31586 (2005).
  • Zachos M, Tondeur M, Griffiths AM. Enteral nutritional therapy for induction of remission in Crohn’s disease. Cochrane Database Syst. Rev.24(1), CD000542 (2007).
  • Kim J, Yoon M, Jie C. Signal transducer and activator of transcription 3 (STAT3) mediates amino acid inhibition of insulin signalling through serine 727 phosphorylation. J. Biol. Chem.284(51), 35425–35432 (2009).
  • Xie L, Li XK, Funeshima-Fuji N et al. Amelioration of experimental autoimmune encephalomyelitis by curcumin treatment through inhibition of IL-17 production. Int. Immunopharmacol.9(5), 575–581 (2009).
  • Danesi F, Philpott M, Huebner C, Bordoni A, Ferguson LR. Food-derived bioactives as potential regulators of the IL-12/IL-23 pathway implicated in inflammatory bowel diseases. Mutat. Res. DOI: 10.1016/j.mrfmmm.2010.01.001 (2010) (In Press).
  • Guerreiro CS, Ferreira P, Tavares L et al. Fatty acids, IL6, and TNFα polymorphisms: an example of nutrigenetics in Crohn’s disease. Am. J. Gastroenterol.104(9), 2241–2249 (2009).
  • Fontaine-Bisson B, El-Sohemy A. Genetic polymorphisms of tumor necrosis factor-α modify the association between dietary polyunsaturated fatty acids and plasma high-density lipoprotein-cholesterol concentrations in a population of young adults. J. Nutrigenet. Nutrigenomics1(5), 215–223 (2008).
  • Castagnini C, Luceri C, Toti S et al. Reduction of colonic inflammation in HLA-B27 transgenic rats by feeding Marie Ménard apples, rich in polyphenols. Br. J. Nutr.102(11), 1620–1628 (2009).
  • Kimchi-Sarfaty C, Oh JM, Kim IW et al. A ‘silent’ polymorphism in the MDR1 gene changes substrate specificity. Science315(5811), 525–528 (2007).
  • Ferguson LR, De Flora S. Multiple drug resistance, antimutagenesis and anticarcinogenesis. Mutat. Res.591(1–2), 24–33 (2005).
  • Nones K, Dommels YE, Martell S et al. The effects of dietary curcumin and rutin on colonic inflammation and gene expression in multidrug resistance gene-deficient (mdr1a-/-) mice, a model of inflammatory bowel diseases. Br. J. Nutr.101(2), 169–181 (2009).
  • Roy N, Barnett M, Knoch B, Dommels Y, McNabb W. Nutrigenomics applied to an animal model of inflammatory bowel diseases: transcriptomic analysis of the effects of eicosapentaenoic acid- and arachidonic acid-enriched diets. Mutation Res.622(1–2), 103–116 (2007).
  • Kornman K, Rogus J, Roh-Schmidt H et al. Interleukin-1 genotype-selective inhibition of inflammatory mediators by a botanical: a nutrigenetics proof of concept. Nutrition23, 844–852 (2007).
  • Feuk L. Inversion variants in the human genome: role in disease and genome architecture. Genome Med.2(2), 11 (2010).
  • Stankiewicz P, Lupski JR. Structural variation in the human genome and its role in disease. Annu. Rev. Med.61, 437–455 (2010).
  • Dalca AV, Brudno M. Genome variation discovery with high-throughput sequencing data. Brief Bioinform.11(1), 3–14 (2010).
  • Eleftherohorinou H, Wright V, Hoggart C et al. Pathway analysis of GWAS provides new insights into genetic susceptibility to 3 inflammatory diseases. PLoS One4(11), e8068 (2009).
  • Lin HM, Barnett M, Roy N et al. Metabolomic analysis identifies inflammatory and non-inflammatory metabolic effects of genetic modification in a mouse model of Crohn’s disease. J. Proteome Res.9(4), 1965–1975 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.