233
Views
44
CrossRef citations to date
0
Altmetric
Review

An update on the use of NOD mice to study autoimmune (Type 1) diabetes

&
Pages 939-955 | Published online: 10 Jan 2014

References

  • Makino S, Kunimoto K, Muraoka Y, Mizushima Y, Katagiri K, Tochino Y. Breeding of a non-obese, diabetic strain of mice. Exp. Anim.29(1), 11–13 (1980).
  • Shoda LK, Young DL, Ramanujan S et al. A comprehensive review of interventions in the NOD mouse and implications for translation. Immunity23(2), 115–126 (2005).
  • Suri A, Walters JJ, Gross ML, Unanue ER. Natural peptides selected by diabetogenic DQ8 and murine I-Ag7 molecules show common sequence specificity. J. Clin. Invest.115(8), 2268–2276 (2005).
  • Wang J, Wicker LS, Santamaria P. IL-2 and its high-affinity receptor: genetic control of immunoregulation and autoimmunity. Semin. Immunol.21(6), 363–371 (2009).
  • Lieberman SM, Evans AM, Han B et al. Identification of the b cell antigen targeted by a prevalent population of pathogenic CD8+ T cells in autoimmune diabetes. Proc. Natl Acad. Sci. USA100(14), 8384–8388 (2003).
  • Jarchum I, Nichol L, Trucco M, Santamaria P, DiLorenzo TP. Identification of novel IGRP epitopes targeted in Type 1 diabetes patients. Clin. Immunol.127(3), 359–365 (2008).
  • Mallone R, Martinuzzi E, Blancou P et al. CD8+ T-cell responses identify βcell autoimmunity in human Type 1 diabetes. Diabetes56(3), 613–621 (2007).
  • Standifer NE, Ouyang Q, Panagiotopoulos C et al. Identification of novel HLA-A*0201-restricted epitopes in recent-onset Type 1 diabetic subjects and antibody-positive relatives. Diabetes55(11), 3061–3067 (2006).
  • Hanna J, Markoulaki S, Mitalipova M et al. Metastable pluripotent states in NOD-mouse-derived ESCs. Cell Stem Cell4(6), 513–524 (2009).
  • Nichols J, Jones K, Phillips JM et al. Validated germline-competent embryonic stem cell lines from nonobese diabetic mice. Nat. Med.15(7), 814–818 (2009).
  • Jarchum I, DiLorenzo TP. Ins2 deficiency augments spontaneous HLA-A*0201-restricted T cell responses to insulin. J. Immunol.185(2), 658–665 (2010).
  • Takaki T, Marron MP, Mathews CE et al. HLA-A*0201-restricted T cells from ‘humanized’ NOD mice recognize autoantigens of potential clinical relevance to Type 1 diabetes. J. Immunol.176(5), 3257–3265 (2006).
  • Zhang L, Nakayama M, Eisenbarth GS. Insulin as an autoantigen in NOD/human diabetes. Curr. Opin. Immunol.20(1), 111–118 (2008).
  • Daniel D, Gill RG, Schloot N, Wegmann D. Epitope specificity, cytokine production profile and diabetogenic activity of insulin-specific T cell clones isolated from NOD mice. Eur. J. Immunol.25(4), 1056–1062 (1995).
  • Wong FS, Karttunen J, Dumont C et al. Identification of an MHC class I-restricted autoantigen in Type 1 diabetes by screening an organ-specific cDNA library. Nat. Med.5(9), 1026–1031 (1999).
  • Nakayama M, Abiru N, Moriyama H et al. Prime role for an insulin epitope in the development of Type 1 diabetes in NOD mice. Nature435(7039), 220–223 (2005).
  • Krishnamurthy B, Dudek NL, McKenzie MD et al. Responses against islet antigens in NOD mice are prevented by tolerance to proinsulin but not IGRP. J. Clin. Invest.116(12), 3258–3265 (2006).
  • Fife BT, Guleria I, Gubbels Bupp M et al. Insulin-induced remission in new-onset NOD mice is maintained by the PD-1–PD-L1 pathway. J. Exp. Med.203(12), 2737–2747 (2006).
  • Levisetti MG, Suri A, Petzold SJ, Unanue ER. The insulin-specific T cells of nonobese diabetic mice recognize a weak MHC-binding segment in more than one form. J. Immunol.178(10), 6051–6057 (2007).
  • Mohan JF, Levisetti MG, Calderon B, Herzog JW, Petzold SJ, Unanue ER. Unique autoreactive T cells recognize insulin peptides generated within the islets of Langerhans in autoimmune diabetes. Nat. Immunol.11(4), 350–354 (2010).
  • Stadinski BD, Delong T, Reisdorph N et al. Chromogranin A is an autoantigen in Type 1 diabetes. Nat. Immunol.11(3), 225–231 (2010).
  • Stadinski B, Kappler J, Eisenbarth GS. Molecular targeting of islet autoantigens. Immunity32(4), 446–456 (2010).
  • Burton AR, Vincent E, Arnold PY et al. On the pathogenicity of autoantigen-specific T-cell receptors. Diabetes57(5), 1321–1330 (2008).
  • Haskins K. Pathogenic T-cell clones in autoimmune diabetes: more lessons from the NOD mouse. Adv. Immunol.87, 123–162 (2005).
  • Drexler K, Burtles S, Hurtenbach U. Limited heterogeneity of T-cell receptor Vb gene expression in the early stage of insulitis in NOD mice. Immunol. Lett.37(2–3), 187–196 (1993).
  • Lennon GP, Bettini M, Burton AR et al. T cell islet accumulation in Type 1 diabetes is a tightly regulated, cell-autonomous event. Immunity31(4), 643–653 (2009).
  • Lieberman SM, Takaki T, Han B, Santamaria P, Serreze DV, DiLorenzo TP. Individual nonobese diabetic mice exhibit unique patterns of CD8+ T cell reactivity to three islet antigens, including the newly identified widely expressed dystrophia myotonica kinase. J. Immunol.173(11), 6727–6734 (2004).
  • Wenzlau JM, Juhl K, Yu L et al. The cation efflux transporter ZnT8 (Slc30A8) is a major autoantigen in human Type 1 diabetes. Proc. Natl Acad. Sci. USA104(43), 17040–17045 (2007).
  • Li SW, Koya V, Li Y et al. Pancreatic duodenal homeobox 1 protein is a novel βcell-specific autoantigen for type I diabetes. Lab. Invest.90(1), 31–39 (2010).
  • Winer S, Tsui H, Lau A et al. Autoimmune islet destruction in spontaneous Type 1 diabetes is not βcell exclusive. Nat. Med.9(2), 198–205 (2003).
  • Driver JP, Serreze DV, Chen YG. Mouse models for the study of autoimmune Type 1 diabetes: a NOD to similarities and differences to human disease. Semin. Immunopathol. DOI: 10.1007/s00281-010-0204-1 (Epub ahead of print) (2010).
  • Araki M, Chung D, Liu S et al. Genetic evidence that the differential expression of the ligand-independent isoform of CTLA-4 is the molecular basis of the Idd5.1 Type 1 diabetes region in nonobese diabetic mice. J. Immunol. 183(8), 5146–5157 (2009).
  • Ueda H, Howson JM, Esposito L et al. Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature423(6939), 506–511 (2003).
  • Vijayakrishnan L, Slavik JM, Illes Z et al. An autoimmune disease-associated CTLA-4 splice variant lacking the B7 binding domain signals negatively in T cells. Immunity20(5), 563–575 (2004).
  • Oaks MK, Hallett KM, Penwell RT, Stauber EC, Warren SJ, Tector AJ. A native soluble form of CTLA-4. Cell. Immunol.201(2), 144–153 (2000).
  • Yamanouchi J, Rainbow D, Serra P et al. Interleukin-2 gene variation impairs regulatory T cell function and causes autoimmunity. Nat. Genet.39(3), 329–337 (2007).
  • Lowe CE, Cooper JD, Brusko T et al. Large-scale genetic fine mapping and genotype-phenotype associations implicate polymorphism in the IL2RA region in Type 1 diabetes. Nat. Genet.39(9), 1074–1082 (2007).
  • Vella A, Cooper JD, Lowe CE et al. Localization of a Type 1 diabetes locus in the IL2RA/CD25 region by use of tag single-nucleotide polymorphisms. Am. J. Hum. Genet.76(5), 773–779 (2005).
  • Kukreja A, Cost G, Marker J et al. Multiple immuno-regulatory defects in type-1 diabetes. J. Clin. Invest.109(1), 131–140 (2002).
  • Lindley S, Dayan CM, Bishop A, Roep BO, Peakman M, Tree TI. Defective suppressor function in CD4+CD25+ T-cells from patients with Type 1 diabetes. Diabetes54(1), 92–99 (2005).
  • Pozzilli P, Signore A, Williams AJ, Beales PE. NOD mouse colonies around the world – recent facts and figures. Immunol. Today14(5), 193–196 (1993).
  • Ohsugi T, Kurosawa T. Increased incidence of diabetes mellitus in specific pathogen-eliminated offspring produced by embryo transfer in NOD mice with low incidence of the disease. Lab. Anim. Sci.44(4), 386–388 (1994).
  • Cooke A, Tonks P, Jones FM et al. Infection with Schistosoma mansoni prevents insulin dependent diabetes mellitus in non-obese diabetic mice. Parasite Immunol.21(4), 169–176 (1999).
  • Bras A, Aguas AP. Diabetes-prone NOD mice are resistant to Mycobacterium aviumand the infection prevents autoimmune disease. Immunology89(1), 20–25 (1996).
  • Saunders KA, Raine T, Cooke A, Lawrence CE. Inhibition of autoimmune Type 1 diabetes by gastrointestinal helminth infection. Infect. Immun.75(1), 397–407 (2007).
  • Raine T, Zaccone P, Mastroeni P, Cooke A. Salmonella typhimurium infection in nonobese diabetic mice generates immunomodulatory dendritic cells able to prevent Type 1 diabetes. J. Immunol. 177(4), 2224–2233 (2006).
  • Cooke A. Review series on helminths, immune modulation and the hygiene hypothesis: how might infection modulate the onset of Type 1 diabetes?. Immunology126(1), 12–17 (2009).
  • Wen L, Ley RE, Volchkov PY et al. Innate immunity and intestinal microbiota in the development of Type 1 diabetes. Nature455(7216), 1109–1113 (2008).
  • Calcinaro F, Dionisi S, Marinaro M et al. Oral probiotic administration induces interleukin-10 production and prevents spontaneous autoimmune diabetes in the non-obese diabetic mouse. Diabetologia48(8), 1565–1575 (2005).
  • Karumuthil-Melethil S, Perez N, Li R, Vasu C. Induction of innate immune response through TLR2 and dectin 1 prevents Type 1 diabetes. J. Immunol.181(12), 8323–8334 (2008).
  • Staeva-Vieira T, Peakman M, von Herrath M. Translational mini-review series on Type 1 diabetes: immune-based therapeutic approaches for Type 1 diabetes. Clin. Exp. Immunol.148(1), 17–31 (2007).
  • Mestas J, Hughes CC. Of mice and not men: differences between mouse and human immunology. J. Immunol.172(5), 2731–2738 (2004).
  • Chatenoud L, Thervet E, Primo J, Bach JF. Anti-CD3 antibody induces long-term remission of overt autoimmunity in nonobese diabetic mice. Proc. Natl Acad. Sci. USA91(1), 123–127 (1994).
  • Herold KC, Gitelman SE, Masharani U et al. A single course of anti-CD3 monoclonal antibody hOKT3γ1(Ala-Ala) results in improvement in C-peptide responses and clinical parameters for at least 2 years after onset of Type 1 diabetes. Diabetes54(6), 1763–1769 (2005).
  • Keymeulen B, Vandemeulebroucke E, Ziegler AG et al. Insulin needs after CD3-antibody therapy in new-onset Type 1 diabetes. N. Engl. J. Med.352(25), 2598–2608 (2005).
  • Hu CY, Rodriguez-Pinto D, Du W et al. Treatment with CD20-specific antibody prevents and reverses autoimmune diabetes in mice. J. Clin. Invest.117(12), 3857–3867 (2007).
  • Xiu Y, Wong CP, Bouaziz JD et al. B lymphocyte depletion by CD20 monoclonal antibody prevents diabetes in nonobese diabetic mice despite isotype-specific differences in FcgR effector functions. J. Immunol.180(5), 2863–2875 (2008).
  • Zekavat G, Rostami SY, Badkerhanian A et al.In vivo BLyS/BAFF neutralization ameliorates islet-directed autoimmunity in nonobese diabetic mice. J. Immunol.181(11), 8133–8144 (2008).
  • Marino E, Villanueva J, Walters S, Liuwantara D, Mackay F, Grey ST. CD4+CD25+ T-cells control autoimmunity in the absence of B-cells. Diabetes58(7), 1568–1577 (2009).
  • Fiorina P, Vergani A, Dada S et al. Targeting CD22 reprograms B-cells and reverses autoimmune diabetes. Diabetes57(11), 3013–3024 (2008).
  • Serreze DV, Chapman HD, Varnum DS et al. B lymphocytes are essential for the initiation of T cell-mediated autoimmune diabetes: analysis of a new ‘speed congenic’ stock of NOD.Igµnull mice. J. Exp. Med.184(5), 2049–2053 (1996).
  • Serreze DV, Fleming SA, Chapman HD, Richard SD, Leiter EH, Tisch RM. B lymphocytes are critical antigen-presenting cells for the initiation of T cell-mediated autoimmune diabetes in nonobese diabetic mice. J. Immunol.161(8), 3912–3918 (1998).
  • Pescovitz MD, Greenbaum CJ, Krause-Steinrauf H et al. Rituximab, B-lymphocyte depletion, and preservation of βcell function. N. Engl. J. Med.361(22), 2143–2152 (2009).
  • Bresson D, Togher L, Rodrigo E et al. Anti-CD3 and nasal proinsulin combination therapy enhances remission from recent-onset autoimmune diabetes by inducing Tregs. J. Clin. Invest.116(5), 1371–1381 (2006).
  • Sherry NA, Chen W, Kushner JA et al. Exendin-4 improves reversal of diabetes in NOD mice treated with anti-CD3 monoclonal antibody by enhancing recovery of βcells. Endocrinology148(11), 5136–5144 (2007).
  • Yang Z, Chen M, Carter JD et al. Combined treatment with lisofylline and exendin-4 reverses autoimmune diabetes. Biochem. Biophys. Res. Commun.344(3), 1017–1022 (2006).
  • Suarez-Pinzon WL, Yan Y, Power R, Brand SJ, Rabinovitch A. Combination therapy with epidermal growth factor and gastrin increases βcell mass and reverses hyperglycemia in diabetic NOD mice. Diabetes54(9), 2596–2601 (2005).
  • Suarez-Pinzon WL, Power RF, Yan Y, Wasserfall C, Atkinson M, Rabinovitch A. Combination therapy with glucagon-like peptide-1 and gastrin restores normoglycemia in diabetic NOD mice. Diabetes57(12), 3281–3288 (2008).
  • Suarez-Pinzon WL, Cembrowski GS, Rabinovitch A. Combination therapy with a dipeptidyl peptidase-4 inhibitor and a proton pump inhibitor restores normoglycaemia in non-obese diabetic mice. Diabetologia52(8), 1680–1682 (2009).
  • Bluestone JA, Herold K, Eisenbarth G. Genetics, pathogenesis and clinical interventions in Type 1 diabetes. Nature464(7293), 1293–1300 (2010).
  • Datta S, Sarvetnick NE. IL-21 limits peripheral lymphocyte numbers through T cell homeostatic mechanisms. PLoS One3(9), e3118 (2008).
  • Spolski R, Kashyap M, Robinson C, Yu Z, Leonard WJ. IL-21 signaling is critical for the development of Type I diabetes in the NOD mouse. Proc. Natl Acad. Sci. USA105(37), 14028–14033 (2008).
  • Sutherland AP, Van Belle T, Wurster AL et al. Interleukin-21 is required for the development of Type 1 diabetes in NOD mice. Diabetes58(5), 1144–1155 (2009).
  • Emamaullee JA, Davis J, Merani S et al. Inhibition of Th17 cells regulates autoimmune diabetes in NOD mice. Diabetes58(6), 1302–1311 (2009).
  • You S, Poulton L, Cobbold S et al. Key role of the GITR/GITR ligand pathway in the development of murine autoimmune diabetes: a potential therapeutic target. PLoS One4(11), e7848 (2009).
  • Hawiger D, Tran E, Du W et al. ICOS mediates the development of insulin-dependent diabetes mellitus in nonobese diabetic mice. J. Immunol.180(5), 3140–3147 (2008).
  • Billotey C, Aspord C, Beuf O et al. T-cell homing to the pancreas in autoimmune mouse models of diabetes: in vivo MR imaging. Radiology236(2), 579–587 (2005).
  • Medarova Z, Tsai S, Evgenov N, Santamaria P, Moore A. In vivo imaging of a diabetogenic CD8+ T cell response during Type 1 diabetes progression. Magn. Reson. Med. 59(4), 712–720 (2008).
  • Turvey SE, Swart E, Denis MC et al. Noninvasive imaging of pancreatic inflammation and its reversal in Type 1 diabetes. J. Clin. Invest.115(9), 2454–2461 (2005).
  • Medarova Z, Bonner-Weir S, Lipes M, Moore A. Imaging βcell death with a near-infrared probe. Diabetes54(6), 1780–1788 (2005).
  • Martinuzzi E, Novelli G, Scotto M et al. The frequency and immunodominance of islet-specific CD8+ T-cell responses change after Type 1 diabetes diagnosis and treatment. Diabetes57(5), 1312–1320 (2008).
  • Ouyang Q, Standifer NE, Qin H et al. Recognition of HLA class I-restricted βcell epitopes in Type 1 diabetes. Diabetes55(11), 3068–3074 (2006).
  • Pinkse GG, Tysma OH, Bergen CA et al. Autoreactive CD8 T cells associated with b cell destruction in Type 1 diabetes. Proc. Natl Acad. Sci. USA102(51), 18425–18430 (2005).
  • Toma A, Haddouk S, Briand JP et al. Recognition of a subregion of human proinsulin by class I-restricted T cells in Type 1 diabetic patients. Proc. Natl Acad. Sci. USA102(30), 10581–10586 (2005).
  • Unger WW, Pinkse GG, Mulder-van der Kracht S et al. Human clonal CD8 autoreactivity to an IGRP islet epitope shared between mice and men. Ann. NY Acad. Sci.1103, 192–195 (2007).
  • Jarchum I, Baker JC, Yamada T et al.In vivo cytotoxicity of insulin-specific CD8+ T cells in HLA-A*0201-transgenic NOD mice. Diabetes56(10), 2551–2560 (2007).
  • Kanagawa O, Xu G, Tevaarwerk A, Vaupel BA. Protection of nonobese diabetic mice from diabetes by gene(s) closely linked to IFN-γ receptor loci. J. Immunol.164(7), 3919–3923 (2000).
  • Leiter EH, Reifsnyder PC, Wallace R, Li R, King B, Churchill GC. NOD x 129.H2g7 backcross delineates 129S1/SvImJ-derived genomic regions modulating Type 1 diabetes development in mice. Diabetes58(7), 1700–1703 (2009).
  • Steward CA, Humphray S, Plumb B et al. Genome-wide end-sequenced BAC resources for the NOD/MrkTac and NOD/ShiLtJ mouse genomes. Genomics95(2), 105–110 (2010).
  • Fennessy M, Metcalfe K, Hitman GA et al. A gene in the HLA class I region contributes to susceptibility to IDDM in the Finnish population. Childhood Diabetes in Finland (DiMe) Study Group. Diabetologia37(9), 937–944 (1994).
  • Nejentsev S, Howson JM, Walker NM et al. Localization of Type 1 diabetes susceptibility to the MHC class I genes HLA-B and HLA-A.Nature450(7171), 887–892 (2007).
  • Robles DT, Eisenbarth GS, Wang T et al. Identification of children with early onset and high incidence of anti-islet autoantibodies. Clin. Immunol.102(3), 217–224 (2002).
  • Enee E, Martinuzzi E, Blancou P, Bach JM, Mallone R, van Endert P. Equivalent specificity of peripheral blood and islet-infiltrating CD8+ T lymphocytes in spontaneously diabetic HLA-A2 transgenic NOD mice. J. Immunol.180(8), 5430–5438 (2008).
  • Pugliese A, Zeller M, Fernandez A Jr et al. The insulin gene is transcribed in the human thymus and transcription levels correlated with allelic variation at the INS VNTR-IDDM2 susceptibility locus for Type 1 diabetes. Nat. Genet.15(3), 293–297 (1997).
  • Vafiadis P, Bennett ST, Todd JA et al. Insulin expression in human thymus is modulated by INS VNTR alleles at the IDDM2 locus. Nat. Genet.15(3), 289–292 (1997).
  • van Halteren AG, Kardol MJ, Mulder A, Roep BO. Homing of human autoreactive T cells into pancreatic tissue of NOD-scid mice. Diabetologia48(1), 75–82 (2005).
  • King M, Pearson T, Shultz LD et al. A new Hu-PBL model for the study of human islet alloreactivity based on NOD-scid mice bearing a targeted mutation in the IL-2 receptor γ chain gene. Clin. Immunol.126(3), 303–314 (2008).
  • Brehm MA, Cuthbert A, Yang C et al. Parameters for establishing humanized mouse models to study human immunity: analysis of human hematopoietic stem cell engraftment in three immunodeficient strains of mice bearing the IL2rIL2rγnull mutation. Clin. Immunol.135(1), 84–98 (2010).
  • Palmer JP, Asplin CM, Clemons P et al. Insulin antibodies in insulin-dependent diabetics before insulin treatment. Science222(4630), 1337–1339 (1983).
  • Rudy G, Stone N, Harrison LC et al. Similar peptides from two β cell autoantigens, proinsulin and glutamic acid decarboxylase, stimulate T cells of individuals at risk for insulin-dependent diabetes. Mol. Med.1(6), 625–633 (1995).
  • Pontesilli O, Carotenuto P, Gazda LS, Pratt PF, Prowse SJ. Circulating lymphocyte populations and autoantibodies in non-obese diabetic (NOD) mice: a longitudinal study. Clin. Exp. Immunol.70(1), 84–93 (1987).
  • Wegmann DR, Norbury-Glaser M, Daniel D. Insulin-specific T cells are a predominant component of islet infiltrates in pre-diabetic NOD mice. Eur. J. Immunol.24(8), 1853–1857 (1994).
  • Gillard BK, Thomas JW, Nell LJ, Marcus DM. Antibodies against ganglioside GT3 in the sera of patients with Type I diabetes mellitus. J. Immunol.142(11), 3826–3832 (1989).
  • Ozawa Y, Kasuga A, Nomaguchi H et al. Detection of autoantibodies to the pancreatic islet heat shock protein 60 in insulin-dependent diabetes mellitus. J. Autoimmun.9(4), 517–524 (1996).
  • Abulafia-Lapid R, Elias D, Raz I, Keren-Zur Y, Atlan H, Cohen IR. T cell proliferative responses of Type 1 diabetes patients and healthy individuals to human hsp60 and its peptides. J. Autoimmun.12(2), 121–129 (1999).
  • Elias D, Markovits D, Reshef T, van der Zee R, Cohen IR. Induction and therapy of autoimmune diabetes in the non-obese diabetic (NOD/Lt) mouse by a 65-kDa heat shock protein. Proc. Natl Acad. Sci. USA87(4), 1576–1580 (1990).
  • Baekkeskov S, Aanstoot HJ, Christgau S et al. Identification of the 64K autoantigen in insulin-dependent diabetes as the GABA-synthesizing enzyme glutamic acid decarboxylase. Nature347(6289), 151–156 (1990).
  • DeAizpurua HJ, Honeyman MC, Harrison LC. A 64 kDa antigen/glutamic acid decarboxylase (GAD) in fetal pig pro-islets: co-precipitation with a 38 kDa protein and recognition by T cells in humans at risk for insulin-dependent diabetes. J. Autoimmun.5(6), 759–770 (1992).
  • Tisch R, Yang XD, Singer SM, Liblau RS, Fugger L, McDevitt HO. Immune response to glutamic acid decarboxylase correlates with insulitis in non-obese diabetic mice. Nature366(6450), 72–75 (1993).
  • Clark A, Yon SM, de Koning EJ, Holman RR. Autoantibodies to islet amyloid polypeptide in diabetes. Diabet. Med.8(7), 668–673 (1991).
  • Panagiotopoulos C, Qin H, Tan R, Verchere CB. Identification of a βcell-specific HLA class I restricted epitope in Type 1 diabetes. Diabetes52(11), 2647–2651 (2003).
  • Castano L, Russo E, Zhou L, Lipes MA, Eisenbarth GS. Identification and cloning of a granule autoantigen (carboxypeptidase-H) associated with type I diabetes. J. Clin. Endocrinol. Metab.73(6), 1197–1201 (1991).
  • Yang L, Zhou Z, Du T, Tan S, Zhnag Y, Jin P. [Detection of carboxypeptidase H specific T cells in peripheral blood of latent autoimmune diabetic patients with carboxypeptidase antibody positivity by ELISPOT assay]. Zhong Nan Da Xue Xue Bao Yi Xue Ban34(10), 1011–1016 (2009).
  • Rabin DU, Pleasic SM, Palmer-Crocker R, Shapiro JA. Cloning and expression of IDDM-specific human autoantigens. Diabetes41(2), 183–186 (1992).
  • Durinovic-Bello I, Hummel M, Ziegler AG. Cellular immune response to diverse islet cell antigens in IDDM. Diabetes45(6), 795–800 (1996).
  • Trembleau S, Penna G, Gregori S, Magistrelli G, Isacchi A, Adorini L. Early Th1 response in unprimed nonobese diabetic mice to the tyrosine phosphatase-like insulinoma-associated protein 2, an autoantigen in Type 1 diabetes. J. Immunol.165(12), 6748–6755 (2000).
  • Inman LR, McAllister CT, Chen L et al. Autoantibodies to the GLUT-2 glucose transporter of b cells in insulin-dependent diabetes mellitus of recent onset. Proc. Natl Acad. Sci. USA90(4), 1281–1284 (1993).
  • Monetini L, Barone F, Stefanini L et al. Establishment of T cell lines to bovine βcasein and βcasein-derived epitopes in patients with Type 1 diabetes. J. Endocrinol.176(1), 143–150 (2003).
  • Liddi R, Beales PE, Rosignoli G, Pozzilli P. Incomplete Freund’s adjuvant reduces diabetes in the non-obese diabetic mouse. Horm. Metab. Res.32(6), 201–206 (2000).
  • Honeyman MC, Cram DS, Harrison LC. Transcription factor jun-B is target of autoreactive T-cells in IDDM. Diabetes42(4), 626–630 (1993).
  • Hagopian WA, Michelsen B, Karlsen AE et al. Autoantibodies in IDDM primarily recognize the 65,000-Mr rather than the 67,000-Mr isoform of glutamic acid decarboxylase. Diabetes42(4), 631–636 (1993).
  • Honeyman MC, Cram DS, Harrison LC. Glutamic acid decarboxylase 67-reactive T cells: a marker of insulin-dependent diabetes. J. Exp. Med.177(2), 535–540 (1993).
  • Elliott JF, Qin HY, Bhatti S et al. Immunization with the larger isoform of mouse glutamic acid decarboxylase (GAD67) prevents autoimmune diabetes in NOD mice. Diabetes43(12), 1494–1499 (1994).
  • Pietropaolo M, Castano L, Babu S et al. Islet cell autoantigen 69 kD (ICA69). Molecular cloning and characterization of a novel diabetes-associated autoantigen. J. Clin. Invest.92(1), 359–371 (1993).
  • Roep BO, Duinkerken G, Schreuder GM, Kolb H, de Vries RR, Martin S. HLA-associated inverse correlation between T cell and antibody responsiveness to islet autoantigen in recent-onset insulin-dependent diabetes mellitus. Eur. J. Immunol.26(6), 1285–1289 (1996).
  • Karges W, Hammond-McKibben D, Cheung RK et al. Immunological aspects of nutritional diabetes prevention in NOD mice: a pilot study for the cow’s milk-based IDDM prevention trial. Diabetes46(4), 557–564 (1997).
  • Buschard K, Josefsen K, Horn T, Fredman P. Sulphatide and sulphatide antibodies in insulin-dependent diabetes mellitus. Lancet342(8875), 840 (1993).
  • Tiberti C, Dotta F, Anastasi E et al. Anti-ganglioside antibodies in new onset Type 1 diabetic patients and high risk subjects. Autoimmunity22(1), 43–48 (1995).
  • Arden SD, Roep BO, Neophytou PI et al. Imogen 38: a novel 38-kD islet mitochondrial autoantigen recognized by T cells from a newly diagnosed Type 1 diabetic patient. J. Clin. Invest.97(2), 551–561 (1996).
  • Chang YH, Hwang J, Shang HF, Tsai ST. Characterization of human DNA topoisomerase II as an autoantigen recognized by patients with IDDM. Diabetes45(4), 408–414 (1996).
  • Aanstoot HJ, Kang SM, Kim J et al. Identification and characterization of glima 38, a glycosylated islet cell membrane antigen, which together with GAD65 and IA2 marks the early phases of autoimmune response in Type 1 diabetes. J. Clin. Invest.97(12), 2772–2783 (1996).
  • Hawkes CJ, Wasmeier C, Christie MR, Hutton JC. Identification of the 37-kDa antigen in IDDM as a tyrosine phosphatase-like protein (phogrin) related to IA-2. Diabetes45(9), 1187–1192 (1996).
  • Kelemen K, Gottlieb PA, Putnam AL, Davidson HW, Wegmann DR, Hutton JC. HLA-DQ8-associated T cell responses to the diabetes autoantigen phogrin (IA-2 b) in human prediabetes. J. Immunol.172(6), 3955–3962 (2004).
  • Kelemen K, Crawford ML, Gill RG, Hutton JC, Wegmann D. Cellular immune response to phogrin in the NOD mouse: cloned T-cells cause destruction of islet transplants. Diabetes48(8), 1529–1534 (1999).
  • Dotta F, Gianani R, Previti M et al. Autoimmunity to the GM2–1 islet ganglioside before and at the onset of Type I diabetes. Diabetes45(9), 1193–1196 (1996).
  • Fierabracci A, Biro PA, Yiangou Y et al. Osteopontin is an autoantigen of the somatostatin cells in human islets: identification by screening random peptide libraries with sera of patients with insulin-dependent diabetes mellitus. Vaccine18(3–4), 342–354 (1999).
  • Pupilli C, Giannini S, Marchetti P et al. Autoantibodies to CD38 (ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase) in Caucasian patients with diabetes: effects on insulin release from human islets. Diabetes48(12), 2309–2315 (1999).
  • Kasimiotis H, Myers MA, Argentaro A et al. Sex-determining region Y-related protein SOX13 is a diabetes autoantigen expressed in pancreatic islets. Diabetes49(4), 555–561 (2000).
  • Gurr W, Yavari R, Wen L et al. A Reg family protein is overexpressed in islets from a patient with new-onset Type 1 diabetes and acts as T-cell autoantigen in NOD mice. Diabetes51(2), 339–346 (2002).
  • Qin HY, Mahon JL, Atkinson MA, Chaturvedi P, Lee-Chan E, Singh B. Type 1 diabetes alters anti-hsp90 autoantibody isotype. J. Autoimmun.20(3), 237–245 (2003).
  • Abulafia-Lapid R, Gillis D, Yosef O, Atlan H, Cohen IR. T cells and autoantibodies to human HSP70 in Type 1 diabetes in children. J. Autoimmun.20(4), 313–321 (2003).
  • Yang J, Danke NA, Berger D et al. Islet-specific glucose-6-phosphatase catalytic subunit-related protein-reactive CD4+ T cells in human subjects. J. Immunol.176(5), 2781–2789 (2006).
  • Shervani NJ, Takasawa S, Uchigata Y et al. Autoantibodies to REG, a βcell regeneration factor, in diabetic patients. Eur. J. Clin. Invest.34(11), 752–758 (2004).
  • Ola TO, Biro PA, Hawa MI et al. Importin b: a novel autoantigen in human autoimmunity identified by screening random peptide libraries on phage. J. Autoimmun.26(3), 197–207 (2006).
  • Gurr W, Shaw M, Li Y, Sherwin R. RegII is a βcell protein and autoantigen in diabetes of NOD mice. Diabetes56(1), 34–40 (2007).
  • Hardt PD, Ewald N, Brockling K et al. Distinct autoantibodies against exocrine pancreatic antigens in European patients with Type 1 diabetes mellitus and non-alcoholic chronic pancreatitis. JOP9(6), 683–689 (2008).
  • Endo T, Takizawa S, Tanaka S et al. Amylase α-2A autoantibodies: novel marker of autoimmune pancreatitis and fulminant Type 1 diabetes. Diabetes58(3), 732–737 (2009).
  • Takizawa S, Endo T, Wanjia X, Tanaka S, Takahashi M, Kobayashi T. HSP 10 is a new autoantigen in both autoimmune pancreatitis and fulminant Type 1 diabetes. Biochem. Biophys. Res. Commun.386(1), 192–196 (2009).
  • Kared H, Masson A, Adle-Biassette H, Bach JF, Chatenoud L, Zavala F. Treatment with granulocyte colony-stimulating factor prevents diabetes in NOD mice by recruiting plasmacytoid dendritic cells and functional CD4+CD25+ regulatory T-cells. Diabetes54(1), 78–84 (2005).
  • Steptoe RJ, Ritchie JM, Jones LK, Harrison LC. Autoimmune diabetes is suppressed by transfer of proinsulin-encoding Gr-1+ myeloid progenitor cells that differentiate in vivo into resting dendritic cells. Diabetes54(2), 434–442 (2005).
  • Maki T, Gottschalk R, Ogawa N, Monaco AP. Prevention and cure of autoimmune diabetes in nonobese diabetic mice by continuous administration of FTY720. Transplantation79(9), 1051–1055 (2005).
  • Han B, Serra P, Amrani A et al. Prevention of diabetes by manipulation of anti-IGRP autoimmunity: high efficiency of a low-affinity peptide. Nat. Med.11(6), 645–652 (2005).
  • Huang CC, Lu YF, Wen SN et al. A novel apoptosis-inducing anti-PSGL-1 antibody for T cell-mediated diseases. Eur. J. Immunol.35(7), 2239–2249 (2005).
  • Olcott AP, Tian J, Walker V et al. Antigen-based therapies using ignored determinants of b cell antigens can more effectively inhibit late-stage autoimmune disease in diabetes-prone mice. J. Immunol.175(3), 1991–1999 (2005).
  • Shigihara T, Shimada A, Oikawa Y et al. CXCL10 DNA vaccination prevents spontaneous diabetes through enhanced b cell proliferation in NOD mice. J. Immunol.175(12), 8401–8408 (2005).
  • Medicherla S, Protter AA, Ma JY et al. Preventive and therapeutic potential of p38α-selective mitogen-activated protein kinase inhibitor in nonobese diabetic mice with Type 1 diabetes. J. Pharmacol. Exp. Ther.318(1), 99–107 (2006).
  • Tarbell KV, Petit L, Zuo X et al. Dendritic cell-expanded, islet-specific CD4+CD25+CD62L+ regulatory T cells restore normoglycemia in diabetic NOD mice. J. Exp. Med.204(1), 191–201 (2007).
  • Meagher C, Arreaza G, Peters A et al. CCL4 protects from Type 1 diabetes by altering islet βcell-targeted inflammatory responses. Diabetes56(3), 809–817 (2007).
  • Stosic-Grujicic S, Cvetkovic I, Mangano K et al. A potent immunomodulatory compound, (S,R)-3-Phenyl-4,5-dihydro-5-isoxazole acetic acid, prevents spontaneous and accelerated forms of autoimmune diabetes in NOD mice and inhibits the immunoinflammatory diabetes induced by multiple low doses of streptozotocin in CBA/H mice. J. Pharmacol. Exp. Ther.320(3), 1038–1049 (2007).
  • Chang CL, Chang SL, Lee YM et al. Cytopiloyne, a polyacetylenic glucoside, prevents Type 1 diabetes in nonobese diabetic mice. J. Immunol.178(11), 6984–6993 (2007).
  • Xia CQ, Peng R, Qiu Y, Annamalai M, Gordon D, Clare-Salzler MJ. Transfusion of apoptotic βcells induces immune tolerance to βcell antigens and prevents Type 1 diabetes in NOD mice. Diabetes56(8), 2116–2123 (2007).
  • Gaudreau S, Guindi C, Menard M, Besin G, Dupuis G, Amrani A. Granulocyte-macrophage colony-stimulating factor prevents diabetes development in NOD mice by inducing tolerogenic dendritic cells that sustain the suppressive function of CD4+CD25+ regulatory T cells. J. Immunol.179(6), 3638–3647 (2007).
  • Phillips B, Nylander K, Harnaha J et al. A microsphere-based vaccine prevents and reverses new-onset autoimmune diabetes. Diabetes57(6), 1544–1555 (2008).
  • Bitan M, Weiss L, Zeira M et al. Heparanase prevents the development of Type 1 diabetes in non-obese diabetic mice by regulating T-cell activation and cytokines production. Diabetes Metab. Res. Rev.24(5), 413–421 (2008).
  • Besin G, Gaudreau S, Menard M, Guindi C, Dupuis G, Amrani A. Thymic stromal lymphopoietin and thymic stromal lymphopoietin-conditioned dendritic cells induce regulatory T-cell differentiation and protection of NOD mice against diabetes. Diabetes57(8), 2107–2117 (2008).
  • Mabley JG, Pacher P, Murthy KG et al. The novel inosine analogue, INO-2002, protects against diabetes development in multiple low-dose streptozotocin and non-obese diabetic mouse models of Type I diabetes. J. Endocrinol.198(3), 581–589 (2008).
  • Goudy KS, Wang B, Tisch R. Gene gun-mediated DNA vaccination enhances antigen-specific immunotherapy at a late preclinical stage of Type 1 diabetes in nonobese diabetic mice. Clin. Immunol.129(1), 49–57 (2008).
  • Louvet C, Szot GL, Lang J et al. Tyrosine kinase inhibitors reverse Type 1 diabetes in nonobese diabetic mice. Proc. Natl Acad. Sci. USA105(48), 18895–18900 (2008).
  • Perone MJ, Bertera S, Shufesky WJ et al. Suppression of autoimmune diabetes by soluble galectin-1. J. Immunol.182(5), 2641–2653 (2009).
  • Madec AM, Mallone R, Afonso G et al. Mesenchymal stem cells protect NOD mice from diabetes by inducing regulatory T cells. Diabetologia52(7), 1391–1399 (2009).
  • Chou FC, Shieh SJ, Sytwu HK. Attenuation of Th1 response through galectin-9 and T-cell Ig mucin 3 interaction inhibits autoimmune diabetes in NOD mice. Eur. J. Immunol.39(9), 2403–2411 (2009).
  • Li L, Yi Z, Wang B, Tisch R. Suppression of ongoing T cell-mediated autoimmunity by peptide-MHC class II dimer vaccination. J. Immunol.183(7), 4809–4816 (2009).
  • Haase C, Yu L, Eisenbarth G, Markholst H. Antigen-dependent immunotherapy of non-obese diabetic mice with immature dendritic cells. Clin. Exp. Immunol.160(3), 331–339 (2010).
  • Hoang PT, Park P, Cobb LJ et al. The neurosurvival factor humanin inhibits βcell apoptosis via signal transducer and activator of transcription 3 activation and delays and ameliorates diabetes in nonobese diabetic mice. Metabolism59(3), 343–349 (2010).
  • Jayaraman S, Patel T, Patel V et al. Transfusion of nonobese diabetic mice with allogeneic newborn blood ameliorates autoimmune diabetes and modifies the expression of selected immune response genes. J. Immunol.184(6), 3008–3015 (2010).
  • Xia CQ, Chernatynskaya A, Lai Y, Campbell KA, Clare-Salzler MJ. Experimental extracorporeal photopheresis therapy significantly delays the development of diabetes in non-obese diabetic mice. Clin. Immunol.135(3), 374–383 (2010).
  • Vincent BG, Young EF, Buntzman AS et al. Toxin-coupled MHC class I tetramers can specifically ablate autoreactive CD8+ T cells and delay diabetes in nonobese diabetic mice. J. Immunol.184(8), 4196–4204 (2010).
  • Nishimura M, Yokoi N, Miki T et al. Construction of a multi-functional cDNA library specific for mouse pancreatic islets and its application to microarray. DNA Res.11(5), 315–323 (2004).
  • Koulmanda M, Bhasin M, Hoffman L et al. Curative and b cell regenerative effects of a1-antitrypsin treatment in autoimmune diabetic NOD mice. Proc. Natl Acad. Sci. USA105(42), 16242–16247 (2008).
  • Tsai S, Shameli A, Yamanouchi J et al. Reversal of autoimmunity by boosting memory-like autoregulatory T cells. Immunity32(4), 568–580 (2010).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.