76
Views
5
CrossRef citations to date
0
Altmetric
Review

The role of human defensins in gastrointestinal diseases

&
Pages 779-787 | Published online: 10 Jan 2014

References

  • Wehkamp J, Schauber J, Stange EF. Defensins and cathelicidins in gastrointestinal infections. Curr. Opin. Gastroenterol.23, 32–38 (2007).
  • Ramasundara M, Leach ST, Lemberg DA, Day AS. Defensins and inflammation: the role of defensins in inflammatory bowel disease. J. Gastroenterol. Hepatol.24, 202–208 (2009).
  • Wehkamp J, Stange EF. Paneth’s disease. J. Crohn’s Colitis4, 523–531 (2010).
  • Wehkamp J, Stange EF, Fellerman K. Defensin-immunology in inflammatory bowel disease. Gastroenterol. Clin. Biol.33(Suppl. 3), 137–144 (2009).
  • Wehkamp J, Fellerman K, Herrlinger KR et al. Human β-defensin 2 but not β-defensin 1 is expressed preferentially in colonic mucosa of inflammatory bowel disease. Eur. J. Gastroenterol. Hepatol.14, 745–752 (2002).
  • Fellerman K, Wehkamp J, Herrlinger KR, Stange EF. Crohn’s disease: a defensin deficiency syndrome? Eur. J. Gastroenterol. Hepatol.15, 627–634 (2003).
  • Salzman NH, Underwood MA, Bevins CL. Paneth cells, defensins, and the commensal microbiota: a hypothesis on intimate interplay at the intestinal mucosa. Semin. Immunol.19, 70–83 (2007).
  • Wehkamp J, Koslowski M, Wang G, Stange EF. Barrier dysfunction due to distinct defensing deficiencies in small intestinal and colonic Crohn’s disease. Mucosal Immunol.1(1), 67–74 (2008).
  • Langhorst J, Junge A, Rueffer A et al. Elevated human β-defensin-2 levels indicate an activation of the innate immune system in patients with irritable bowel syndrome. Am. J. Gastroenterol.104, 404–410 (2009).
  • Cunliffe RN. α-defensins in the gastrointestinal tract. Mol. Immunol.40, 463–467 (2003).
  • Voss E, Wehkamp J, Wehkamp K, Stange EF, Schroder JM, Harder J. NOD2/CARD15 mediates induction of the antimicrobial peptide human β-defensin-2. J. Biol. Chem.281, 2005–2011 (2006).
  • Wehkamp J, Harder J, Weichenthal M et al. Inducible and constitutive β-defensins are differentially expressed in Crohn´s disease and ulcerative colitis. Inflamm. Bowel Dis.4, 215–223 (2003).
  • Ouellette AJ, Hsieh MM, Nosek MT et al. Mouse Paneth cell defensins: primary structures and antibacterial activities of numerous cryptdin isoforms. Infect. Immun.62, 5040–5047 (1994).
  • Selsted ME, Miller SI, Henschen AH et al. Enteric defensins: antibioitic peptide components of intestinal host defense. J. Cell. Biol.118, 929–936 (1992).
  • Harder J, Bartels J, Christophers E et al. A peptide antibiotic from human skin. Nature387, 861 (1997).
  • Harder J, Bartels J, Christophers E et al. Isolation and characterization of human β-defensin-3, a novel human inducible peptide antibiotic. J. Biol. Chem.276, 5707–5713 (2001).
  • Zasloff M. Antibiotic peptides as mediators of innate immunity. Curr. Opin. Immunol.4, 3–7 (1992).
  • Wehkamp J, Salzman NH, Porter E et al. Reduced Paneth cell α-defensins in ileal Crohn’s disease. Proc. Natl Acad. Sci. USA13, 102(50), 18129–18134 (2005).
  • Wehkamp J, Fellerman K, Stange EF. Human defensins in Crohn’s Disease. A molecular link to mucosal barrier dysfunction. In: Mechanisms of Epithelial Defense (Volume 86). Kabelitz D, Schröder JM (Eds). Karger, Basel, Switzerland, 42–54 (2005).
  • Schutte BC, Mitros JP, Bartlett JA et al. Discovery of five conserved β-defensin gene clusters using a computational search strategy. Proc. Natl Acad. Sci. USA99, 2129–2133 (2002).
  • Wehkamp J, Schmid M, Stange EF. Defensins and other antimicrobial peptides in inflammatory bowel disease. Curr. Opin. Gastroenterol.23, 370–378 (2007).
  • Ouellette AJ, Bevins CL. Paneth cell defensins and innate immunity of the small bowel. Inflamm. Bowel Dis.7, 43–50 (2001).
  • Salzman NH, Hung K, Haribhai D et al. Enteric defensins are essential regulators of intestinal microbial ecology. Nat. Immunol.11(1), 76–82 (2010).
  • Ayabe T, Satchell DP, Wilson CL et al. Secretion of microbicidal α-defensins by intestinal Paneth cells in response to bacteria. Nat. Immunol.2, 113–118 (2000).
  • Zhao C, Wang I, Lehrer RI. Widespread expression of β-defensin hBD-1 in human secretory glands and epithelial cells. FEBS Lett.396(2–3), 319–322 (1996).
  • Lakatos PL, Altorjay I, Mandi Y et al. Interaction between seroreactivity to microbial antigens and genetics in Crohn’s disease: is there a role for defensins? Tissue Antigens71, 552–559 (2008).
  • Schroeder BO, Wu Z, Nuding SM et al. Reduction of disulphide bonds unmasks potent antimicrobial activity of human β-defensin 1. Nature469, 419–425 (2011).
  • Wehkamp J, Harder J, Wehkamp K et al. NF-κB and AP-1-mediated induction of human β-Defensin-2 in intestinal epithelial cells by Escherichia Coli Nissle 1917: a novel effect of a probiotic bacterium. Infect. Immun.10, 5750–5758 (2004).
  • Kobayashi T, Okamoto S, Hisamatsu T et al. IL23 differentially regulates the Th1/Th17 balance in ulcerative colitis and Crohn’s disease. Gut57(12), 1682–1689 (2008).
  • Frye M, Bargon J, Lembke B, Wagner TO, Gropp R. Differential expression of human α- and β-defensins mRNA in gastrointestinal epithelia. Eur. J. Clin. Invest.30(8), 695–701 (2000).
  • Langhorst J, Wieder A, Rueffer A et al. Activated innate immune system in irritable bowel disease? Gut9, 1325–1326 (2007).
  • O’Neil DA, Porter EM, Elewaut D et al. Expression and regulation of the human β-defensins hBD-1 and hBD-2 in intestinal epithelium. J. Immunol.163(12), 6718–6724 (1999).
  • Sellon RK, Tonkonogy S, Schulz M et al. Resident enteric bacteria are necessary for development of spontaneous colitis and immune system activation in interleukin-10-deficient mice. Infect. Immun.66, 5224–5231 (1998).
  • Zilbauer M, Jenke A, Wenzel G et al. Expression of human β-defensins in children with chronic inflammatory bowel disease. PLoS One5(10), e15389 (2010).
  • Simms LA, Doecke JD, Walsh MD, Huang N, Fowler EV, Radford-Smith GL. Reduced α-defensin expression is associated with inflammation and not NOD2 mutation status in ileal Crohn’s disease. Gut57, 903–910 (2008).
  • Fellermann K, Stange DE, Schaeffeler E et al. A chromosome 8 gene-cluster polymorphism with low human β-defensin 2 gene copy number predisposes to Crohn disease of the colon. Am. J. Hum. Genetics79, 439–448 (2006).
  • Ogura Y, Bonen DK, Inohara N et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature411, 603–606 (2006).
  • Vavricka SR, Rogler G. New insights into the pathogenesis of Crohn’s disease: are they relevant for therapeutic options? Swiss Med. Wkly139(37–38), 527–534 (2009).
  • Barreira-de-Acosta M, Mendoza JL, Lana R, Dominguez-Munoz JE, Diaz-Rubio M. NOD2/CARD15: geographic differences in the Spanish population and clinical applications in Crohn’s disease. Rev. Esp. Enferm. Dig.102(5), 321–326 (2010).
  • Barrett JC, Hansoul S, Nicolae DL et al. Genome-wide association defines more than 30 distinct susceptibility loci for Crohn’s disease. Nat. Genet.40, 955–962 (2008).
  • Franke A, Balschun T, Karlsen TH et al. Sequence variants in IL10, ARPC2 and multiple other loci contribute to ulcerative colitis susceptibility. Nat. Genet.40, 1319–1323 (2008).
  • Fisher SA, Tremelling M, Andersen CA et al. Genetic determinants of ulcerative colitis include the ECM1 locus and five loci implicated in Crohn’s disease. Nat. Genet.40, 710–712 (2008).
  • Stallmach A, Carstens O. Role of infections in the manifestation or reactivation of inflammatory bowel diseases. Inflamm. Bowel Dis.8, 213–218 (2002).
  • Card T, Logan RFA, Rodrigues LC, Wheeler JG. Antiobiotic use and the development of Crohn’s disease. Gut53, 246–250 (2004).
  • Bernstein CN. Epidemiologic clues to inflammatory bowel disease. Curr. Gastroenterol. Rep.12(6), 495–501 (2010).
  • Salzman NH, Bevins CL. Negative interactions with the microbiota: IBD. Adv. Exp. Med. Biol.635, 67–78 (2008).
  • Swidsinski A, Ladhoff A, Pernthaler A et al. Mucosal flora in inflammatory bowel disease. Gastroenterol.122, 44–54 (2002).
  • Nuding S, Fellerman K, Wehkamp J, Stange EF. Reduced mucosal antimicrobial activity in Crohn’s disease of the colon. Gut56, 1240–1247 (2007).
  • Aldhous MC, Noble CL, Satsangi J. Dysregulation of human β-defensin-2 protein in inflammatory bowel disease. PLoS One4(7), e6285 (2009).
  • Hollox EJ. β-Defensins and Crohn’s disease: confusion from counting copies. Am. J. Gastroenterol.105, 360–362 (2010).
  • Kanda N, Watanabe S. IL-12, IL-23, and IL-27 enhance human β-defensin-2 production in human keratinocytes. Eur. J. Immunol.38(5), 1287–1296 (2008).
  • Kao CY, Chen Y, Thai P et al. IL-17 markedly up-regulates β-defensin-2 expression in human airway epithelium via JAK and NF-κB signaling pathways. J. Immunol.173(5), 3482–3491 (2004).
  • Wehkamp J, Chu H, Shen B et al. Paneth cell antimicrobial peptides: topographical distribution and quantification in human gastrointestinal tissues. FEBS Lett.580(22), 5344–5350 (2006).
  • Elphick D, Liddell S, Mahida YR. Impaired luminal processing of human defensin-5 in Crohn’s disease: persistence in a complex with chymotrypsinogen and trypsin. Am. J. Pathol.172, 702–713 (2008).
  • Inohara N, Chamaillard M, McDonald C, Nunez G. NOD-LRR proteins: role in host–microbial interactions and inflammatory disease. Annu. Rev. Biochem.19, 355–383 (2005).
  • Lala S, Ogura Y, Osborne C et al. Crohn’s disease and the NOD2 gene: a role for paneth cells. Gastroenterol.125, 47–57 (2003).
  • Ogura Y, Lala S, Xin W et al. Crohn’s disease and the NOD2 (CARD15) gene in human intestinal epithelial cells. Gastroenterol.124, 1001–1009 (2003).
  • Gasche C, Grundtner P. Genotypes and phenotypes in Crohn’s disease: do they help in clinical management? Gut54, 162–174 (2005).
  • Bernard P, Flemin A, Lacombe A, Harley VR, Vilain E. Wnt4 inhibits β-catenin/TCF signalling by redirecting β-catenin to the cell membrane. Biol. Cell.100(3), 167–177 (2008).
  • Simms LA, Doecke JD, Roberts RL et al. KCNN4 gene variant is associated with ileal Crohn’s disease in the Australian and New Zealand population. Am. J. Gastroenterol.105(10), 2209–2217 (2010).
  • Bentley RW, Pearson J, Gearry RB et al. Association of higher DEFB4 genomic copy number with Crohn’s disease. Am. J. Gastroenterol.105, 354–359 (2010).
  • Fahlgren A, Hammarstrom S, Danielsson A et al. β-Defensin-3 and -4 in intestinal epithelial cells display increased mRNA expression in ulcerative colitis. Clin. Exp. Immunol.137, 397–385 (2003).
  • Noble CL, Abbas AR, Cornelius J et al. Regional variation in gene expression in the healthy colon is dysregulated in ulcerative colitis. Gut57(10), 1398–1405 (2008).
  • Möndel M, Schroeder BO, Zimmermann K et al. Probiotic E.coli treatment mediates antimicrobial human β-defensin synthesis and fecal excretion in humans. Mucosal Immunol.2(2), 166–172 (2009).
  • Dinan TG, Quigley EMM, Ahmed SMM et al. Hypothalamic–pituitary–gut axis dysregulation in irritable bowel syndrome: plasma cytokines as a potential biomarker? Gastroenterol.130, 304–311 (2006).
  • Thompson WG, Longstreth GF, Drossman DA et al. Functional bowel disorders and functional abdominal pain. Gut45(Suppl. 2), 43–47 (1999).
  • Spiller RC, Jenkins D, Thornley JP et al. Increased rectal mucosal enteroendocrine cells, T lymphocytes, and increased gut permeability following acute Campylobacter enteritis and in post-dysenteric irritable bowel syndrome. Gut47, 804–811 (2000).
  • Dunlop SP, Jenkins D, Neal KR et al. Relative importance of enterochromaffin cell hyperplasia, anxiety, and depression in postinfectious IBS. Gastroenterol.125, 1651–1659 (2003).
  • Cumberland P, Sethi D, Roderick PJ et al. The infectious intestinal disease study of England: a prospective evaluation of symptoms and health care use after an acute episode. Epidemiol. Infect.130, 453–460 (2003).
  • Gwee KA, Collins SM, Read NW et al. Increased rectal mucosal expression of interleukin 1β in recently acquired post-infectious irritable bowel syndrome. Gut52, 523–526 (2003).
  • Pimentel M, Chow EJ, Lin HC. Eradication of small intestinal bacterial overgrowth reduces symptoms of irritable bowel syndrome. Am. J. Gastroenterol.95, 3503–3506 (2000).
  • Gwee K. Post-infectious irritable bowel syndrome, an inflammation-immunological model with relevance for other IBS and functional dyspepsia. J. Neurogastroenterol. Motil.16(1), 30–34 (2010).
  • Lee KJ, Kim YB, Kim JH, Kwon HC, Kim DK, Cho SW. The alteration of enterochromaffin cell, mast cell, and lamina propria T lymphocyte numbers in irritable bowel syndrome and its relationship with psychological factors. J. Gastroenterol. Hepatol.23(11), 1689–1694 (2008).
  • Chadwick VS, Chen W, Shu D et al. Activation of the mucosal immune system in irritable bowel syndrome. Gastroenterol.122(7), 1778–1783 (2002).
  • Guilarte M, Santos J, de Torres I et al. Diarrhoea-predominant IBS patients show mast cell activation and hyperplasia in the jejunum. Gut56(2), 203–209 (2007).
  • Ohman L, Isaksson S, Lundgren A, Simrén M, Sjövall H. A controlled study of colonic immune activity and β7+ blood T lymphocytes in patients with irritable bowel syndrome. Clin. Gastroenterol. Hepatol.3(10), 980–986 (2005).
  • Elsenbruch S, Holtmann G, Oezcan D et al. Are there alterations of neuroendocrine and cellular immune responses to nutrients in women with irritable bowel syndrome? Am. J. Gastroenterol.99, 703–710 (2004).
  • Gonsalkorale WM, Perrey C, Pravica V, Whorwell PJ, Hutchinson IV. Interleukin 10 genotypes in irritable bowel syndrome: evidence for an inflammatory component? Gut52(1), 91–93 (2003).
  • Van der Veek PP, van den Berg M, de Kroon YE, Verspaget HW, Masclee AA. Role of tumor necrosis factor-α and interleukin-10 gene polymorphisms in irritable bowel syndrome. Am. J. Gastroenterol.100(11), 2510–2516 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.