162
Views
10
CrossRef citations to date
0
Altmetric
Review

The road to remyelination in demyelinating diseases: current status and prospects for clinical treatment

, , &
Pages 535-549 | Published online: 10 Jan 2014

References

  • Squire LR. Fundamental Neuroscience. Elsevier, Amsterdam, The Netherlands (2012).
  • Campbell GR, Mahad DJ. Mitochondria as crucial players in demyelinated axons: lessons from neuropathology and experimental demyelination. Autoimmune Dis. 2011, 262847 (2011).
  • Mahad D, Ziabreva I, Lassmann H, Turnbull D. Mitochondrial defects in acute multiple sclerosis lesions. Brain 131(Pt 7), 1722–1735 (2008).
  • Brück W, Porada P, Poser S et al. Monocyte/macrophage differentiation in early multiple sclerosis lesions. Ann. Neurol. 38(5), 788–796 (1995).
  • Frohman EM, Racke MK, Raine CS. Multiple sclerosis – the plaque and its pathogenesis. N. Engl. J. Med. 354(9), 942–955 (2006).
  • Lucchinetti C, Brück W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H. Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann. Neurol. 47(6), 707–717 (2000).
  • Magaña SM, Keegan BM, Weinshenker BG et al. Beneficial plasma exchange response in central nervous system inflammatory demyelination. Arch. Neurol. 68(7), 870–878 (2011).
  • Weinshenker BG, O’Brien PC, Petterson TM et al. A randomized trial of plasma exchange in acute central nervous system inflammatory demyelinating disease. Ann. Neurol. 46(6), 878–886 (1999).
  • Keegan M, Pineda AA, McClelland RL, Darby CH, Rodriguez M, Weinshenker BG. Plasma exchange for severe attacks of CNS demyelination: predictors of response. Neurology 58(1), 143–146 (2002).
  • Ferguson B, Matyszak MK, Esiri MM, Perry VH. Axonal damage in acute multiple sclerosis lesions. Brain 120(Pt 3), 393–399 (1997).
  • Nesbit GM, Forbes GS, Scheithauer BW, Okazaki H, Rodriguez M. Multiple sclerosis: histopathologic and MR and/or CT correlation in 37 cases at biopsy and three cases at autopsy. Radiology 180(2), 467–474 (1991).
  • Trapp BD, Peterson J, Ransohoff RM, Rudick R, Mörk S, Bö L. Axonal transection in the lesions of multiple sclerosis. N. Engl. J. Med. 338(5), 278–285 (1998).
  • De Stefano N, Matthews PM, Arnold DL. Reversible decreases in N-acetylaspartate after acute brain injury. Magn. Reson. Med. 34(5), 721–727 (1995).
  • De Stefano N, Matthews PM, Fu L et al. Axonal damage correlates with disability in patients with relapsing–remitting multiple sclerosis. Results of a longitudinal magnetic resonance spectroscopy study. Brain 121(Pt 8), 1469–1477 (1998).
  • Lee MA, Blamire AM, Pendlebury S et al. Axonal injury or loss in the internal capsule and motor impairment in multiple sclerosis. Arch. Neurol. 57(1), 65–70 (2000).
  • Bjartmar C, Kidd G, Mörk S, Rudick R, Trapp BD. Neurological disability correlates with spinal cord axonal loss and reduced N-acetyl aspartate in chronic multiple sclerosis patients. Ann. Neurol. 48(6), 893–901 (2000).
  • Lisak RP. Neurodegeneration in multiple sclerosis: defining the problem. Neurology 68(22 Suppl. 3), S5–S12; discussion S43 (2007).
  • Bjartmar C, Kinkel RP, Kidd G, Rudick RA, Trapp BD. Axonal loss in normal-appearing white matter in a patient with acute MS. Neurology 57(7), 1248–1252 (2001).
  • Arnold DL, Riess GT, Matthews PM et al. Use of proton magnetic resonance spectroscopy for monitoring disease progression in multiple sclerosis. Ann. Neurol. 36(1), 76–82 (1994).
  • Wegner C, Esiri MM, Chance SA, Palace J, Matthews PM. Neocortical neuronal, synaptic, and glial loss in multiple sclerosis. Neurology 67(6), 960–967 (2006).
  • Mews I, Bergmann M, Bunkowski S, Gullotta F, Brück W. Oligodendrocyte and axon pathology in clinically silent multiple sclerosis lesions. Mult. Scler. 4(2), 55–62 (1998).
  • Kornek B, Storch MK, Weissert R et al. Multiple sclerosis and chronic autoimmune encephalomyelitis: a comparative quantitative study of axonal injury in active, inactive, and remyelinated lesions. Am. J. Pathol. 157(1), 267–276 (2000).
  • Peterson JW, Bö L, Mörk S, Chang A, Trapp BD. Transected neurites, apoptotic neurons, and reduced inflammation in cortical multiple sclerosis lesions. Ann. Neurol. 50(3), 389–400 (2001).
  • Cifelli A, Arridge M, Jezzard P, Esiri MM, Palace J, Matthews PM. Thalamic neurodegeneration in multiple sclerosis. Ann. Neurol. 52(5), 650–653 (2002).
  • Gilmore CP, DeLuca GC, Bö L et al. Spinal cord neuronal pathology in multiple sclerosis. Brain Pathol. 19(4), 642–649 (2009).
  • Seewann A, Vrenken H, van der Valk P et al. Diffusely abnormal white matter in chronic multiple sclerosis: imaging and histopathologic analysis. Arch. Neurol. 66(5), 601–609 (2009).
  • Bø L, Vedeler CA, Nyland HI, Trap BD, Mørk SJ. Subpial demyelination in the cerebral cortex of multiple sclerosis patients. J. Neuropathol. Exp. Neurol. 62(7), 723–732 (2003).
  • Diestel A, Aktas O, Hackel D et al. Activation of microglial poly(ADP-ribose)-polymerase-1 by cholesterol breakdown products during neuroinflammation: a link between demyelination and neuronal damage. J. Exp. Med. 198(11), 1729–1740 (2003).
  • Rodriguez M. A function of myelin is to protect axons from subsequent injury: implications for deficits in multiple sclerosis. Brain: J Neurol. 126(Pt 4), 751–752 (2003).
  • Pitt D, Gonzales E, Cross AH, Goldberg MP. Dysmyelinated axons in shiverer mice are highly vulnerable to α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor-mediated toxicity. Brain Res. 1309, 146–154 (2010).
  • Schneider A, Montague P, Griffiths I et al. Uncoupling of hypomyelination and glial cell death by a mutation in the proteolipid protein gene. Nature 358(6389), 758–761 (1992).
  • Sahenk Z, Chen L, Mendell JR. Effects of PMP22 duplication and deletions on the axonal cytoskeleton. Ann. Neurol. 45(1), 16–24 (1999).
  • Petzold A, Tozer DJ, Schmierer K. Axonal damage in the making: neurofilament phosphorylation, proton mobility and magnetisation transfer in multiple sclerosis normal appearing white matter. Exp. Neurol. 232(2), 234–239 (2011).
  • Shintaku M, Hirano A, Llena JF. Increased diameter of demyelinated axons in chronic multiple sclerosis of the spinal cord. Neuropathol. Appl. Neurobiol. 14(6), 505–510 (1988).
  • Lee Y, Morrison BM, Li Y et al. Oligodendroglia metabolically support axons and contribute to neurodegeneration. Nature 487(7408), 443–448 (2012).
  • Fünfschilling U, Supplie LM, Mahad D et al. Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity. Nature 485(7399), 517–521 (2012).
  • Allen IV, Glover G, Anderson R. Abnormalities in the macroscopically normal white matter in cases of mild or spinal multiple sclerosis (MS). Acta Neuropathol. Suppl. 7, 176–178 (1981).
  • Patani R, Balaratnam M, Vora A, Reynolds R. Remyelination can be extensive in multiple sclerosis despite a long disease course. Neuropathol. Appl. Neurobiol. 33(3), 277–287 (2007).
  • Patrikios P, Stadelmann C, Kutzelnigg A et al. Remyelination is extensive in a subset of multiple sclerosis patients. Brain 129(Pt 12), 3165–3172 (2006).
  • Bjartmar C, Trapp BD. Axonal degeneration and progressive neurologic disability in multiple sclerosis. Neurotox. Res. 5(1–2), 157–164 (2003).
  • Smith CM, Cooksey E, Duncan ID. Myelin loss does not lead to axonal degeneration in a long-lived model of chronic demyelination. J. Neurosci. 33(6), 2718–2727 (2013).
  • Dutta R, Trapp BD. Pathogenesis of axonal and neuronal damage in multiple sclerosis. Neurology 68(22 Suppl. 3), S22–S31; discussion S43 (2007).
  • Tutuncu M, Tang J, Zeid NA et al. Onset of progressive phase is an age-dependent clinical milestone in multiple sclerosis. Mult. Scler. 19(2), 188–198 (2013).
  • Lassmann H, Brück W, Lucchinetti C, Rodriguez M. Remyelination in multiple sclerosis. Mult. Scler. 3(2), 133–136 (1997).
  • Prineas JW, Kwon EE, Goldenberg PZ et al. Multiple sclerosis. Oligodendrocyte proliferation and differentiation in fresh lesions. Lab. Invest. 61(5), 489–503 (1989).
  • Raine CS, Traugott U. Chronic relapsing experimental autoimmune encephalomyelitis. Ultrastructure of the central nervous system of animals treated with combinations of myelin components. Lab. Invest. 48(3), 275–284 (1983).
  • Ghatak NR, Leshner RT, Price AC, Felton WL 3rd. Remyelination in the human central nervous system. J. Neuropathol. Exp. Neurol. 48(5), 507–518 (1989).
  • Lucchinetti C, Brück W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H. A quantitative analysis of oligodendrocytes in multiple sclerosis lesions. A study of 113 cases. Brain 122(Pt 12), 2279–2295 (1999).
  • Weiner LP, Waxman SG, Stohlman SA, Kwan A. Remyelination following viral-induced demyelination: ferric ion-ferrocyanide staining of nodes of Ranvier within the CNS. Ann. Neurol. 8(6), 580–583 (1980).
  • Talbott JF, Loy DN, Liu Y et al. Endogenous Nkx2.2+/Olig2+ oligodendrocyte precursor cells fail to remyelinate the demyelinated adult rat spinal cord in the absence of astrocytes. Exp. Neurol. 192(1), 11–24 (2005).
  • Duncan ID, Brower A, Kondo Y, Curlee JF Jr, Schultz RD. Extensive remyelination of the CNS leads to functional recovery. Proc. Natl Acad. Sci. USA 106(16), 6832–6836 (2009).
  • Irvine KA, Blakemore WF. Remyelination protects axons from demyelination-associated axon degeneration. Brain 131(Pt 6), 1464–1477 (2008).
  • Trapp BD, Nave KA. Multiple sclerosis: an immune or neurodegenerative disorder? Annu. Rev. Neurosci. 31, 247–269 (2008).
  • Manrique-Hoyos N, Jürgens T, Grønborg M et al. Late motor decline after accomplished remyelination: impact for progressive multiple sclerosis. Ann. Neurol. 71(2), 227–244 (2012).
  • Murray PD, McGavern DB, Sathornsumetee S, Rodriguez M. Spontaneous remyelination following extensive demyelination is associated with improved neurological function in a viral model of multiple sclerosis. Brain 124(Pt 7), 1403–1416 (2001).
  • Marburg O. [Die sogenannt ‘akute multiple sklerose’ (Encephalomyelitis periaxialis scleroticans)]. Jhrd. Psychiatr. Neurol. 27, 211–312 (1906).
  • Gledhill RF, McDonald WI. Morphological characteristics of central demyelination and remyelination: a single-fiber study. Ann. Neurol. 1(6), 552–560 (1977).
  • Blakemore WF. Pattern of remyelination in the CNS. Nature 249(457), 577–578 (1974).
  • Prineas JW, Connell F. Remyelination in multiple sclerosis. Ann. Neurol. 5(1), 22–31 (1979).
  • Jordan CA, Friedrich VL Jr, de Ferra F, Weismiller DG, Holmes KV, Dubois-Dalcq M. Differential exon expression in myelin basic protein transcripts during central nervous system (CNS) remyelination. Cell. Mol. Neurobiol. 10(1), 3–18 (1990).
  • Capello E, Voskuhl RR, McFarland HF, Raine CS. Multiple sclerosis: re-expression of a developmental gene in chronic lesions correlates with remyelination. Ann. Neurol. 41(6), 797–805 (1997).
  • Ffrench-Constant C, Raff MC. Proliferating bipotential glial progenitor cells in adult rat optic nerve. Nature 319(6053), 499–502 (1986).
  • Prayoonwiwat N, Rodriguez M. The potential for oligodendrocyte proliferation during demyelinating disease. J. Neuropathol. Exp. Neurol. 52(1), 55–63 (1993).
  • Sim FJ, Zhao C, Penderis J, Franklin RJ. The age-related decrease in CNS remyelination efficiency is attributable to an impairment of both oligodendrocyte progenitor recruitment and differentiation. J. Neurosci. 22(7), 2451–2459 (2002).
  • Levine JM, Reynolds R, Fawcett JW. The oligodendrocyte precursor cell in health and disease. Trends Neurosci. 24(1), 39–47 (2001).
  • Wolswijk G, Noble M. Cooperation between PDGF and FGF converts slowly dividing O-2A adult progenitor cells to rapidly dividing cells with characteristics of O-2A perinatal progenitor cells. J. Cell Biol. 118(4), 889–900 (1992).
  • Hinks GL, Franklin RJ. Distinctive patterns of PDGF-A, FGF-2, IGF-I, and TGF-β1 gene expression during remyelination of experimentally-induced spinal cord demyelination. Mol. Cell. Neurosci. 14(2), 153–168 (1999).
  • Zawadzka M, Rivers LE, Fancy SP et al. CNS-resident glial progenitor/stem cells produce Schwann cells as well as oligodendrocytes during repair of CNS demyelination. Cell Stem Cell 6(6), 578–590 (2010).
  • Tripathi RB, Rivers LE, Young KM, Jamen F, Richardson WD. NG2 glia generate new oligodendrocytes but few astrocytes in a murine experimental autoimmune encephalomyelitis model of demyelinating disease. J. Neurosci. 30(48), 16383–16390 (2010).
  • Nait-Oumesmar B, Decker L, Lachapelle F, Avellana-Adalid V, Bachelin C, Baron-Van Evercooren A. Progenitor cells of the adult mouse subventricular zone proliferate, migrate and differentiate into oligodendrocytes after demyelination. Eur. J. Neurosci. 11(12), 4357–4366 (1999).
  • Menn B, Garcia-Verdugo JM, Yaschine C, Gonzalez-Perez O, Rowitch D, Alvarez-Buylla A. Origin of oligodendrocytes in the subventricular zone of the adult brain. J. Neurosci. 26(30), 7907–7918 (2006).
  • Itoyama Y, Webster HD, Richardson EP Jr, Trapp BD. Schwann cell remyelination of demyelinated axons in spinal cord multiple sclerosis lesions. Ann. Neurol. 14(3), 339–346 (1983).
  • Pettinelli CB, McFarlin DE. Adoptive transfer of experimental allergic encephalomyelitis in SJL/J mice after in vitro activation of lymph node cells by myelin basic protein: requirement for Lyt 1+ 2- T lymphocytes. J. Immunol. 127(4), 1420–1423 (1981).
  • Langrish CL, Chen Y, Blumenschein WM et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J. Exp. Med. 201(2), 233–240 (2005).
  • Bettelli E, Korn T, Oukka M, Kuchroo VK. Induction and effector functions of T(H)17 cells. Nature 453(7198), 1051–1057 (2008).
  • Huseby ES, Liggitt D, Brabb T, Schnabel B, Ohlén C, Goverman J. A pathogenic role for myelin-specific CD8+ T cells in a model for multiple sclerosis. J. Exp. Med. 194(5), 669–676 (2001).
  • Steinman L, Zamvil SS. How to successfully apply animal studies in experimental allergic encephalomyelitis to research on multiple sclerosis. Ann. Neurol. 60(1), 12–21 (2006).
  • Baker D, O’Neill JK, Gschmeissner SE, Wilcox CE, Butter C, Turk JL. Induction of chronic relapsing experimental allergic encephalomyelitis in Biozzi mice. J. Neuroimmunol. 28(3), 261–270 (1990).
  • La Mantia L, Munari LM, Lovati R. Glatiramer acetate for multiple sclerosis. Cochrane Database Syst. Rev. 5, CD004678 (2010).
  • Sriram S, Steiner I. Experimental allergic encephalomyelitis: a misleading model of multiple sclerosis. Ann. Neurol. 58(6), 939–945 (2005).
  • Armstrong R, Friedrich VL Jr, Holmes KV, Dubois-Dalcq M. In vitro analysis of the oligodendrocyte lineage in mice during demyelination and remyelination. J. Cell Biol. 111(3), 1183–1195 (1990).
  • Godfraind C, Friedrich VL, Holmes KV, Dubois-Dalcq M. In vivo analysis of glial cell phenotypes during a viral demyelinating disease in mice. J. Cell Biol. 109(5), 2405–2416 (1989).
  • Theiler M. Spontaneous encephalomyelitis of mice – a new virus disease. Science 80(2066), 122 (1934).
  • Lindsley MD, Rodriguez M. Characterization of the inflammatory response in the central nervous system of mice susceptible or resistant to demyelination by Theiler’s virus. J. Immunol. 142(8), 2677–2682 (1989).
  • Njenga MK, Asakura K, Hunter SF, Wettstein P, Pease LR, Rodriguez M. The immune system preferentially clears Theiler’s virus from the gray matter of the central nervous system. J. Virol. 71(11), 8592–8601 (1997).
  • Rodriguez M. Virus-induced demyelination in mice: ‘dying back’ of oligodendrocytes. Mayo Clin. Proc. 60(7), 433–438 (1985).
  • Rodriguez M, Leibowitz JL, Lampert PW. Persistent infection of oligodendrocytes in Theiler’s virus-induced encephalomyelitis. Ann. Neurol. 13(4), 426–433 (1983).
  • Blakemore WF, Franklin RJ. Remyelination in experimental models of toxin-induced demyelination. Curr. Top. Microbiol. Immunol. 318, 193–212 (2008).
  • Dousset V, Brochet B, Vital A et al. Lysolecithin-induced demyelination in primates: preliminary in vivo study with MR and magnetization transfer. AJNR. Am. J. Neuroradiol. 16(2), 225–231 (1995).
  • Jeffery ND, Blakemore WF. Remyelination of mouse spinal cord axons demyelinated by local injection of lysolecithin. J. Neurocytol. 24(10), 775–781 (1995).
  • Tarnowski GS, Mountain IM, Stock CC, Munder PG, Weltzien HU, Westphal O. Effect of lysolecithin and analogs on mouse ascites tumors. Cancer Res. 38(2), 339–344 (1978).
  • Park CH, Kim MR, Han JM, Jeong TS, Sok DE. Lysophosphatidylcholine exhibits selective cytotoxicity, accompanied by ROS formation, in RAW 264.7 macrophages. Lipids 44(5), 425–435 (2009).
  • Kakisaka K, Cazanave SC, Fingas CD et al. Mechanisms of lysophosphatidylcholine-induced hepatocyte lipoapoptosis. Am. J. Physiol. Gastrointest. Liver Physiol. 302(1), G77–G84 (2012).
  • Song J, Liu K, Yi J, Zhu D, Liu G, Liu B. Luteolin inhibits lysophosphatidylcholine-induced apoptosis in endothelial cells by a calcium/mitocondrion/caspases-dependent pathway. Planta Med. 76(5), 433–438 (2010).
  • Perrin-Cocon L, Agaugué S, Coutant F et al. Lysophosphatidylcholine is a natural adjuvant that initiates cellular immune responses. Vaccine 24(9), 1254–1263 (2006).
  • Schilling T, Lehmann F, Rückert B, Eder C. Physiological mechanisms of lysophosphatidylcholine-induced de-ramification of murine microglia. J. Physiol. (Lond.) 557(Pt 1), 105–120 (2004).
  • Schilling T, Stock C, Schwab A, Eder C. Functional importance of Ca2+-activated K+ channels for lysophosphatidic acid-induced microglial migration. Eur. J. Neurosci. 19(6), 1469–1474 (2004).
  • Carlton WW. Spongiform encephalopathy induced in rats and guinea pigs by cuprizone. Exp. Mol. Pathol. 10(3), 274–287 (1969).
  • Sun SW, Liang HF, Trinkaus K, Cross AH, Armstrong RC, Song SK. Noninvasive detection of cuprizone induced axonal damage and demyelination in the mouse corpus callosum. Magn. Reson. Med. 55(2), 302–308 (2006).
  • Lindner M, Fokuhl J, Linsmeier F, Trebst C, Stangel M. Chronic toxic demyelination in the central nervous system leads to axonal damage despite remyelination. Neurosci. Lett. 453(2), 120–125 (2009).
  • Sato M, Sano H, Iwaki D et al. Direct binding of Toll-like receptor 2 to zymosan, and zymosan-induced NF-κB activation and TNF-α secretion are down-regulated by lung collectin surfactant protein A. J. Immunol. 171(1), 417–425 (2003).
  • Setzu A, Lathia JD, Zhao C et al. Inflammation stimulates myelination by transplanted oligodendrocyte precursor cells. Glia 54(4), 297–303 (2006).
  • Foote AK, Blakemore WF. Repopulation of oligodendrocyte progenitor cell-depleted tissue in a model of chronic demyelination. Neuropathol. Appl. Neurobiol. 31(4), 374–383 (2005).
  • Bieber AJ, Kerr S, Rodriguez M. Efficient central nervous system remyelination requires T cells. Ann. Neurol. 53(5), 680–684 (2003).
  • Kotter MR, Setzu A, Sim FJ, Van Rooijen N, Franklin RJ. Macrophage depletion impairs oligodendrocyte remyelination following lysolecithin-induced demyelination. Glia 35(3), 204–212 (2001).
  • Yamamura T, Sun D, Aloisi F, Klinkert WE, Wekerle H. Interaction between oligodendroglia and immune cells: mitogenic effect of an oligodendrocyte precursor cell line on syngeneic T lymphocytes. J. Neurosci. Res. 32(2), 178–189 (1992).
  • Franklin RJ. Why does remyelination fail in multiple sclerosis? Nat. Rev. Neurosci. 3(9), 705–714 (2002).
  • Liu X, Yao DL, Webster H. Insulin-like growth factor I treatment reduces clinical deficits and lesion severity in acute demyelinating experimental autoimmune encephalomyelitis. Mult. Scler. 1(1), 2–9 (1995).
  • McMorris FA, Smith TM, DeSalvo S, Furlanetto RW. Insulin-like growth factor I/somatomedin C: a potent inducer of oligodendrocyte development. Proc. Natl Acad. Sci. USA 83(3), 822–826 (1986).
  • Hanisch UK. Microglia as a source and target of cytokines. Glia 40(2), 140–155 (2002).
  • Duncan ID. Glial cell transplantation and remyelination of the central nervous system. Neuropathol. Appl. Neurobiol. 22(2), 87–100 (1996).
  • Tontsch U, Archer DR, Dubois-Dalcq M, Duncan ID. Transplantation of an oligodendrocyte cell line leading to extensive myelination. Proc. Natl Acad. Sci. USA 91(24), 11616–11620 (1994).
  • Gumpel M, Gout O, Lubetzki C, Gansmuller A, Baumann N. Myelination and remyelination in the central nervous system by transplanted oligodendrocytes using the shiverer model. Discussion on the remyelinating cell population in adult mammals. Dev. Neurosci. 11(2), 132–139 (1989).
  • Honmou O, Felts PA, Waxman SG, Kocsis JD. Restoration of normal conduction properties in demyelinated spinal cord axons in the adult rat by transplantation of exogenous Schwann cells. J. Neurosci. 16(10), 3199–3208 (1996).
  • Blakemore WF, Crang AJ. The use of cultured autologous Schwann cells to remyelinate areas of persistent demyelination in the central nervous system. J. Neurol. Sci. 70(2), 207–223 (1985).
  • Blakemore WF. Limited remyelination of CNS axons by Schwann cells transplanted into the sub-arachnoid space. J. Neurol. Sci. 64(3), 265–276 (1984).
  • Hammang JP, Archer DR, Duncan ID. Myelination following transplantation of EGF-responsive neural stem cells into a myelin-deficient environment. Exp. Neurol. 147(1), 84–95 (1997).
  • Brüstle O, Jones KN, Learish RD et al. Embryonic stem cell-derived glial precursors: a source of myelinating transplants. Science 285(5428), 754–756 (1999).
  • Gladwin K, Choi D. Olfactory ensheathing cells, part I: current concepts and experimental laboratory models. World Neurosurg. doi:10.1016/j.wneu.2013.03.010 (2013) (Epub ahead of print).
  • Windus LC, Chehrehasa F, Lineburg KE et al. Stimulation of olfactory ensheathing cell motility enhances olfactory axon growth. Cell. Mol. Life Sci. 68(19), 3233–3247 (2011).
  • Kondo Y, Duncan ID. Transplantation of oligodendrocyte progenitor cells in animal models of leukodystrophies. Methods Mol. Biol. 549, 175–185 (2009).
  • Blakemore WF, Chari DM, Gilson JM, Crang AJ. Modelling large areas of demyelination in the rat reveals the potential and possible limitations of transplanted glial cells for remyelination in the CNS. Glia 38(2), 155–168 (2002).
  • Chari DM, Crang AJ, Blakemore WF. Decline in rate of colonization of oligodendrocyte progenitor cell (OPC)-depleted tissue by adult OPCs with age. J. Neuropathol. Exp. Neurol. 62(9), 908–916 (2003).
  • Shields SA, Gilson JM, Blakemore WF, Franklin RJ. Remyelination occurs as extensively but more slowly in old rats compared to young rats following gliotoxin-induced CNS demyelination. Glia 28(1), 77–83 (1999).
  • Wood PM, Bunge RP. Evidence that axons are mitogenic for oligodendrocytes isolated from adult animals. Nature 320(6064), 756–758 (1986).
  • Franklin RJ, Ffrench-Constant C. Remyelination in the CNS: from biology to therapy. Nat. Rev. Neurosci. 9(11), 839–855 (2008).
  • Mi S, Lee X, Shao Z et al. LINGO-1 is a component of the Nogo-66 receptor/p75 signaling complex. Nat. Neurosci. 7(3), 221–228 (2004).
  • Mi S, Miller RH, Lee X et al. LINGO-1 negatively regulates myelination by oligodendrocytes. Nat. Neurosci. 8(6), 745–751 (2005).
  • Mi S, Miller RH, Tang W et al. Promotion of central nervous system remyelination by induced differentiation of oligodendrocyte precursor cells. Ann. Neurol. 65(3), 304–315 (2009).
  • Mi S, Hu B, Hahm K et al. LINGO-1 antagonist promotes spinal cord remyelination and axonal integrity in MOG-induced experimental autoimmune encephalomyelitis. Nat. Med. 13(10), 1228–1233 (2007).
  • Ozawa K, Suchanek G, Breitschopf H et al. Patterns of oligodendroglia pathology in multiple sclerosis. Brain 117(Pt 6), 1311–1322 (1994).
  • Chang A, Nishiyama A, Peterson J, Prineas J, Trapp BD. NG2-positive oligodendrocyte progenitor cells in adult human brain and multiple sclerosis lesions. J. Neurosci. 20(17), 6404–6412 (2000).
  • Peterson JW, Bö L, Mörk S, Chang A, Ransohoff RM, Trapp BD. VCAM-1-positive microglia target oligodendrocytes at the border of multiple sclerosis lesions. J. Neuropathol. Exp. Neurol. 61(6), 539–546 (2002).
  • Chang A, Tourtellotte WW, Rudick R, Trapp BD. Premyelinating oligodendrocytes in chronic lesions of multiple sclerosis. N. Engl. J. Med. 346(3), 165–173 (2002).
  • Rosen CL, Bunge RP, Ard MD, Wood PM. Type 1 astrocytes inhibit myelination by adult rat oligodendrocytes in vitro. J. Neurosci. 9(10), 3371–3379 (1989).
  • Gallo V, Bertolotto A, Levi G. The proteoglycan chondroitin sulfate is present in a subpopulation of cultured astrocytes and in their precursors. Dev. Biol. 123(1), 282–285 (1987).
  • Jones LL, Sajed D, Tuszynski MH. Axonal regeneration through regions of chondroitin sulfate proteoglycan deposition after spinal cord injury: a balance of permissiveness and inhibition. J. Neurosci. 23(28), 9276–9288 (2003).
  • Katoh-Semba R, Matsuda M, Kato K, Oohira A. Chondroitin sulphate proteoglycans in the rat brain: candidates for axon barriers of sensory neurons and the possible modification by laminin of their actions. Eur. J. Neurosci. 7(4), 613–621 (1995).
  • Holley JE, Gveric D, Newcombe J, Cuzner ML, Gutowski NJ. Astrocyte characterization in the multiple sclerosis glial scar. Neuropathol. Appl. Neurobiol. 29(5), 434–444 (2003).
  • Sloane JA, Batt C, Ma Y, Harris ZM, Trapp B, Vartanian T. Hyaluronan blocks oligodendrocyte progenitor maturation and remyelination through TLR2. Proc. Natl Acad. Sci. USA 107(25), 11555–11560 (2010).
  • Rodriguez M, Lennon VA, Benveniste EN, Merrill JE. Remyelination by oligodendrocytes stimulated by antiserum to spinal cord. J. Neuropathol. Exp. Neurol. 46(1), 84–95 (1987).
  • Rodriguez M. Immunoglobulins stimulate central nervous system remyelination: electron microscopic and morphometric analysis of proliferating cells. Lab. Invest. 64(3), 358–370 (1991).
  • Rodriguez M, Lennon VA. Immunoglobulins promote remyelination in the central nervous system. Ann. Neurol. 27(1), 12–17 (1990).
  • Miller DJ, Rodriguez M. A monoclonal autoantibody that promotes central nervous system remyelination in a model of multiple sclerosis is a natural autoantibody encoded by germline immunoglobulin genes. J. Immunol. 154(5), 2460–2469 (1995).
  • Miller DJ, Sanborn KS, Katzmann JA, Rodriguez M. Monoclonal autoantibodies promote central nervous system repair in an animal model of multiple sclerosis. J. Neurosci. 14(10), 6230–6238 (1994).
  • Asakura K, Miller DJ, Murray K, Bansal R, Pfeiffer SE, Rodriguez M. Monoclonal autoantibody SCH94.03, which promotes central nervous system remyelination, recognizes an antigen on the surface of oligodendrocytes. J. Neurosci. Res. 43(3), 273–281 (1996).
  • Asakura K, Miller DJ, Pease LR, Rodriguez M. Targeting of IgMκ antibodies to oligodendrocytes promotes CNS remyelination. J. Neurosci. 18(19), 7700–7708 (1998).
  • Miller DJ, Bright JJ, Sriram S, Rodriguez M. Successful treatment of established relapsing experimental autoimmune encephalomyelitis in mice with a monoclonal natural autoantibody. J. Neuroimmunol. 75(1–2), 204–209 (1997).
  • Ciric B, VanKeulen V, Rodriguez M, Kyle RA, Gertz MA, Pease LR. Clonal evolution in Waldenstrom macroglobulinemia highlights functional role of B-cell receptor. Blood 97(1), 321–323 (2001).
  • Warrington AE, Asakura K, Bieber AJ et al. Human monoclonal antibodies reactive to oligodendrocytes promote remyelination in a model of multiple sclerosis. Proc. Natl Acad. Sci. USA 97(12), 6820–6825 (2000).
  • Mitsunaga Y, Ciric B, Van Keulen V et al. Direct evidence that a human antibody derived from patient serum can promote myelin repair in a mouse model of chronic-progressive demyelinating disease. FASEB J. 16(10), 1325–1327 (2002).
  • Warrington AE, Bieber AJ, Ciric B, Pease LR, Van Keulen V, Rodriguez M. A recombinant human IgM promotes myelin repair after a single, very low dose. J. Neurosci. Res. 85(5), 967–976 (2007).
  • Paz Soldán MM, Warrington AE, Bieber AJ et al. Remyelination-promoting antibodies activate distinct Ca2+ influx pathways in astrocytes and oligodendrocytes: relationship to the mechanism of myelin repair. Mol. Cell. Neurosci. 22(1), 14–24 (2003).
  • Pirko I, Ciric B, Gamez J et al. A human antibody that promotes remyelination enters the CNS and decreases lesion load as detected by T2-weighted spinal cord MRI in a virus-induced murine model of MS. FASEB J. 18(13), 1577–1579 (2004).
  • Watzlawik J, Holicky E, Edberg DD et al. Human remyelination promoting antibody inhibits apoptotic signaling and differentiation through Lyn kinase in primary rat oligodendrocytes. Glia 58(15), 1782–1793 (2010).
  • Warrington AE, Bieber AJ, Van Keulen V, Ciric B, Pease LR, Rodriguez M. Neuron-binding human monoclonal antibodies support central nervous system neurite extension. J. Neuropathol. Exp. Neurol. 63(5), 461–473 (2004).
  • Giacomini PS, Levesque IR, Ribeiro L et al. Measuring demyelination and remyelination in acute multiple sclerosis lesion voxels. Arch. Neurol. 66(3), 375–381 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.