226
Views
7
CrossRef citations to date
0
Altmetric
Review

1,25-dihydroxyvitamin D in the pathogenesis of Barrett’s esophagus and esophageal adenocarcinoma

, , &
Pages 517-533 | Published online: 10 Jan 2014

References

  • Vizcaino AP, Moreno V, Lambert R, Parkin DM. Time trends incidence of both major histologic types of esophageal carcinomas in selected countries, 1973–1995. Int. J. Cancer 99(6), 860–868 (2002).
  • Brown LM, Devesa SS, Chow WH. Incidence of adenocarcinoma of the esophagus among white Americans by sex, stage, and age. J. Natl Cancer Inst. 100(16), 1184–1187 (2008).
  • Wang KK, Sampliner RE; Practice Parameters Committee of the American College of Gastroenterology. Updated guidelines 2008 for the diagnosis, surveillance and therapy of Barrett’s esophagus. Am. J. Gastroenterol. 103(3), 788–797 (2008).
  • Spechler SJ, Sharma P, Souza RF, Inadomi JM, Shaheen NJ; American Gastroenterological Association. American Gastroenterological Association technical review on the management of Barrett’s esophagus. Gastroenterology 140(3), e18–e52; quiz e13 (2011).
  • Mosekilde L. Vitamin D requirement and setting recommendation levels: long-term perspectives. Nutr. Rev. 66(10 Suppl. 2), S170–S177 (2008).
  • Zehnder D, Bland R, Williams MC et al. Extrarenal expression of 25-hydroxyvitamin D3-1 α-hydroxylase. J. Clin. Endocrinol. Metab. 86(2), 888–894 (2001).
  • Liu PT, Stenger S, Li H et al. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science 311(5768), 1770–1773 (2006).
  • Hewison M, Freeman L, Hughes SV et al. Differential regulation of vitamin D receptor and its ligand in human monocyte-derived dendritic cells. J. Immunol. 170(11), 5382–5390 (2003).
  • Cadranel J, Garabedian M, Milleron B, Guillozo H, Akoun G, Hance AJ. 1,25(OH)2D2 production by T lymphocytes and alveolar macrophages recovered by lavage from normocalcemic patients with tuberculosis. J. Clin. Invest. 85(5), 1588–1593 (1990).
  • Adams JS, Hewison M. Update in vitamin D. J. Clin. Endocrinol. Metab. 95(2), 471–478 (2010).
  • Fleet JC. Molecular actions of vitamin D contributing to cancer prevention. Mol. Aspects Med. 29(6), 388–396 (2008).
  • Sølvsten H, Svendsen ML, Fogh K, Kragballe K. Upregulation of vitamin D receptor levels by 1,25(OH)2 vitamin D3 in cultured human keratinocytes. Arch. Dermatol. Res. 289(6), 367–372 (1997).
  • Krishnan AV, Feldman D. Mechanisms of the anti-cancer and anti-inflammatory actions of vitamin D. Annu. Rev. Pharmacol. Toxicol. 51, 311–336 (2011).
  • Mocellin S. Vitamin D and cancer: deciphering the truth. Biochim. Biophys. Acta 1816(2), 172–178 (2011).
  • Garland CF, Gorham ED, Mohr SB, Garland FC. Vitamin D for cancer prevention: global perspective. Ann. Epidemiol. 19(7), 468–483 (2009).
  • Mercier T, Chaumontet C, Gaillard-Sanchez I, Martel P, Heberden C. Calcitriol and lexicalcitol (KH1060) inhibit the growth of human breast adenocarcinoma cells by enhancing transforming growth factor-β production. Biochem. Pharmacol. 52(3), 505–510 (1996).
  • García-Becerra R, Díaz L, Camacho J et al. Calcitriol inhibits Ether-à go-go potassium channel expression and cell proliferation in human breast cancer cells. Exp. Cell Res. 316(3), 433–442 (2010).
  • Lointier P, Wargovich MJ, Saez S, Levin B, Wildrick DM, Boman BM. The role of vitamin D3 in the proliferation of a human colon cancer cell line in vitro. Anticancer Res. 7(4B), 817–821 (1987).
  • Kane KF, Langman MJ, Williams GR. Antiproliferative responses to two human colon cancer cell lines to vitamin D3 are differently modified by 9-cis-retinoic acid. Cancer Res. 56(3), 623–632 (1996).
  • Thomas MG, Tebbutt S, Williamson RC. Vitamin D and its metabolites inhibit cell proliferation in human rectal mucosa and a colon cancer cell line. Gut 33(12), 1660–1663 (1992).
  • Pálmer HG, González-Sancho JM, Espada J et al. Vitamin D3 promotes the differentiation of colon carcinoma cells by the induction of E-cadherin and the inhibition of β-catenin signaling. J. Cell Biol. 154(2), 369–387 (2001).
  • Pendás-Franco N, García JM, Peña C et al. DICKKOPF-4 is induced by TCF/β-catenin and upregulated in human colon cancer, promotes tumour cell invasion and angiogenesis and is repressed by 1α,25-dihydroxyvitamin D3. Oncogene 27(32), 4467–4477 (2008).
  • Aguilera O, Peña C, García JM et al. The Wnt antagonist DICKKOPF-1 gene is induced by 1α,25-dihydroxyvitamin D3 associated to the differentiation of human colon cancer cells. Carcinogenesis 28(9), 1877–1884 (2007).
  • Krishnan AV, Moreno J, Nonn L, Swami S, Peehl DM, Feldman D. Calcitriol as a chemopreventive and therapeutic agent in prostate cancer: role of anti-inflammatory activity. J. Bone Miner. Res. 22(Suppl. 2), V74–V80 (2007).
  • Trowbridge R, Mittal SK, Agrawal DK. Vitamin D and the epidemiology of upper gastrointestinal cancers: a critical analysis of the current evidence. Cancer Epidemiol. Biomarkers Prev. doi:10.1158/1055-9965.EPI-13-0085(2013) (Epub ahead of print).
  • Chen W, Clements M, Rahman B, Zhang S, Qiao Y, Armstrong BK. Relationship between cancer mortality/incidence and ambient ultraviolet B irradiance in China. Cancer Causes Control 21(10), 1701–1709 (2010).
  • Tran B, Lucas R, Kimlin M, Whiteman D, Neale R; Australian Cancer Study. Association between ambient ultraviolet radiation and risk of esophageal cancer. Am. J. Gastroenterol. 107(12), 1803–1813 (2012).
  • Giovannucci E, Liu Y, Rimm EB et al. Prospective study of predictors of vitamin D status and cancer incidence and mortality in men. J. Natl Cancer Inst. 98(7), 451–459 (2006).
  • Boscoe FP, Schymura MJ. Solar ultraviolet-B exposure and cancer incidence and mortality in the United States, 1993-2002. BMC Cancer 6, 264 (2006).
  • Mulholland HG, Murray LJ, Anderson LA, Cantwell MM; FINBAR study group. Vitamin D, calcium and dairy intake, and risk of oesophageal adenocarcinoma and its precursor conditions. Br. J. Nutr. 106(5), 732–741 (2011).
  • Chen W, Dawsey SM, Qiao YL et al. Prospective study of serum 25(OH)-vitamin D concentration and risk of oesophageal and gastric cancers. Br. J. Cancer 97(1), 123–128 (2007).
  • Abnet CC, Chen W, Dawsey SM et al. Serum 25(OH)-vitamin D concentration and risk of esophageal squamous dysplasia. Cancer Epidemiol. Biomarkers Prev. 16(9), 1889–1893 (2007).
  • Slack JM. Metaplasia and transdifferentiation: from pure biology to the clinic. Nat. Rev. Mol. Cell Biol. 8(5), 369–378 (2007).
  • Harnett KM, Rieder F, Behar J, Biancani P. Viewpoints on Acid-induced inflammatory mediators in esophageal mucosa. J. Neurogastroenterol. Motil. 16(4), 374–388 (2010).
  • Kundu JK, Surh YJ. Inflammation: gearing the journey to cancer. Mutat. Res. 659(1–2), 15–30 (2008).
  • Clemons NJ, McColl KE, Fitzgerald RC. Nitric oxide and acid induce double-strand DNA breaks in Barrett’s esophagus carcinogenesis via distinct mechanisms. Gastroenterology 133(4), 1198–1209 (2007).
  • Jenkins GJ, Cronin J, Alhamdani A et al. The bile acid deoxycholic acid has a non-linear dose response for DNA damage and possibly NF-κB activation in oesophageal cells, with a mechanism of action involving ROS. Mutagenesis 23(5), 399–405 (2008).
  • Jenkins GJ, D’Souza FR, Suzen SH et al. Deoxycholic acid at neutral and acid pH, is genotoxic to oesophageal cells through the induction of ROS: the potential role of anti-oxidants in Barrett’s oesophagus. Carcinogenesis 28(1), 136–142 (2007).
  • Huo X, Juergens S, Zhang X et al. Deoxycholic acid causes DNA damage while inducing apoptotic resistance through NF-κB activation in benign Barrett’s epithelial cells. Am. J. Physiol. Gastrointest. Liver Physiol. 301(2), G278–G286 (2011).
  • Suzuki H, Iijima K, Scobie G, Fyfe V, McColl KE. Nitrate and nitrosative chemistry within Barrett’s oesophagus during acid reflux. Gut 54(11), 1527–1535 (2005).
  • Valinluck V, Sowers LC. Inflammation-mediated cytosine damage: a mechanistic link between inflammation and the epigenetic alterations in human cancers. Cancer Res. 67(12), 5583–5586 (2007).
  • Schulmann K, Sterian A, Berki A et al. Inactivation of p16, RUNX3, and HPP1 occurs early in Barrett’s-associated neoplastic progression and predicts progression risk. Oncogene 24(25), 4138–4148 (2005).
  • Wong NA, Wilding J, Bartlett S et al. CDX1 is an important molecular mediator of Barrett’s metaplasia. Proc. Natl Acad. Sci. USA 102(21), 7565–7570 (2005).
  • Hu Y, Williams VA, Gellersen O, Jones C, Watson TJ, Peters JH. The pathogenesis of Barrett’s esophagus: secondary bile acids upregulate intestinal differentiation factor CDX2 expression in esophageal cells. J. Gastrointest. Surg. 11(7), 827–834 (2007).
  • Eda A, Osawa H, Satoh K et al. Aberrant expression of CDX2 in Barrett’s epithelium and inflammatory esophageal mucosa. J. Gastroenterol. 38(1), 14–22 (2003).
  • Gao N, White P, Kaestner KH. Establishment of intestinal identity and epithelial–mesenchymal signaling by Cdx2. Dev. Cell 16(4), 588–599 (2009).
  • Pera M, Pera M, de Bolós C et al. Duodenal-content reflux into the esophagus leads to expression of Cdx2 and Muc2 in areas of squamous epithelium in rats. J. Gastrointest. Surg. 11(7), 869–874 (2007).
  • Almeida R, Silva E, Santos-Silva F et al. Expression of intestine-specific transcription factors, CDX1 and CDX2, in intestinal metaplasia and gastric carcinomas. J. Pathol. 199(1), 36–40 (2003).
  • Silberg DG, Furth EE, Taylor JK, Schuck T, Chiou T, Traber PG. CDX1 protein expression in normal, metaplastic, and neoplastic human alimentary tract epithelium. Gastroenterology 113(2), 478–486 (1997).
  • Wang DH, Clemons NJ, Miyashita T et al. Aberrant epithelial–mesenchymal Hedgehog signaling characterizes Barrett’s metaplasia. Gastroenterology 138(5), 1810–1822 (2010).
  • Vaninetti N, Williams L, Geldenhuys L, Porter GA, Guernsey DL, Casson AG. Regulation of CDX2 expression in esophageal adenocarcinoma. Mol. Carcinog. 48(10), 965–974 (2009).
  • Que J, Okubo T, Goldenring JR et al. Multiple dose-dependent roles for Sox2 in the patterning and differentiation of anterior foregut endoderm. Development 134(13), 2521–2531 (2007).
  • Wang DH, Souza RF. Biology of Barrett’s esophagus and esophageal adenocarcinoma. Gastrointest. Endosc. Clin. N. Am. 21(1), 25–38 (2011).
  • Ma J, Altomare A, de la Monte S et al. HCl-induced inflammatory mediators in esophageal mucosa increase migration and production of H2O2 by peripheral blood leukocytes. Am. J. Physiol. Gastrointest. Liver Physiol. 299(3), G791–G798 (2010).
  • Souza RF, Huo X, Mittal V et al. Gastroesophageal reflux might cause esophagitis through a cytokine-mediated mechanism rather than caustic acid injury. Gastroenterology 137(5), 1776–1784 (2009).
  • Colleypriest BJ, Ward SG, Tosh D. How does inflammation cause Barrett’s metaplasia? Curr. Opin. Pharmacol. 9(6), 721–726 (2009).
  • McQuaid KR, Laine L, Fennerty MB, Souza R, Spechler SJ. Systematic review: the role of bile acids in the pathogenesis of gastro-oesophageal reflux disease and related neoplasia. Aliment. Pharmacol. Ther. 34(2), 146–165 (2011).
  • Flower RJ. The development of COX2 inhibitors. Nat. Rev. Drug Discov. 2(3), 179–191 (2003).
  • Jiménez P, Piazuelo E, Cebrian C et al. Prostaglandin EP2 receptor expression is increased in Barrett’s oesophagus and oesophageal adenocarcinoma. Aliment. Pharmacol. Ther. 31(3), 440–451 (2010).
  • Ferguson HR, Wild CP, Anderson LA et al. Cyclooxygenase-2 and inducible nitric oxide synthase gene polymorphisms and risk of reflux esophagitis, Barrett’s esophagus, and esophageal adenocarcinoma. Cancer Epidemiol. Biomarkers Prev. 17(3), 727–731 (2008).
  • Moreno J, Krishnan AV, Feldman D. Molecular mechanisms mediating the anti-proliferative effects of vitamin D in prostate cancer. J. Steroid Biochem. Mol. Biol. 97(1-2), 31–36 (2005).
  • Gupta R, Dixon KM, Deo SS et al. Photoprotection by 1,25 dihydroxyvitamin D3 is associated with an increase in p53 and a decrease in nitric oxide products. J. Invest. Dermatol. 127(3), 707–715 (2007).
  • Makishima M, Lu TT, Xie W et al. Vitamin D receptor as an intestinal bile acid sensor. Science 296(5571), 1313–1316 (2002).
  • Thummel KE, Brimer C, Yasuda K et al. Transcriptional control of intestinal cytochrome P-4503A by 1α,25-dihydroxy vitamin D3. Mol. Pharmacol. 60(6), 1399–1406 (2001).
  • Kauer WK, Peters JH, DeMeester TR et al. Composition and concentration of bile acid reflux into the esophagus of patients with gastroesophageal reflux disease. Surgery 122(5), 874–881 (1997).
  • Bodin K, Lindbom U, Diczfalusy U. Novel pathways of bile acid metabolism involving CYP3A4. Biochim. Biophys. Acta 1687(1–3), 84–93 (2005).
  • Schmidt DR, Holmstrom SR, Fon Tacer K, Bookout AL, Kliewer SA, Mangelsdorf DJ. Regulation of bile acid synthesis by fat-soluble vitamins A and D. J. Biol. Chem. 285(19), 14486–14494 (2010).
  • Han S, Li T, Ellis E, Strom S, Chiang JY. A novel bile acid-activated vitamin D receptor signaling in human hepatocytes. Mol. Endocrinol. 24(6), 1151–1164 (2010).
  • Nishida S, Ozeki J, Makishima M. Modulation of bile acid metabolism by 1α-hydroxyvitamin D3 administration in mice. Drug Metab. Dispos. 37(10), 2037–2044 (2009).
  • Luster AD, Alon R, von Andrian UH. Immune cell migration in inflammation: present and future therapeutic targets. Nat. Immunol. 6(12), 1182–1190 (2005).
  • Lin WW, Karin M. A cytokine-mediated link between innate immunity, inflammation, and cancer. J. Clin. Invest. 117(5), 1175–1183 (2007).
  • Zhu J, Paul WE. Peripheral CD4+ T-cell differentiation regulated by networks of cytokines and transcription factors. Immunol. Rev. 238(1), 247–262 (2010).
  • Zhu J, Yamane H, Paul WE. Differentiation of effector CD4 T cell populations. Annu. Rev. Immunol. 28, 445–489 (2010).
  • von Essen MR, Kongsbak M, Schjerling P, Olgaard K, Odum N, Geisler C. Vitamin D controls T cell antigen receptor signaling and activation of human T cells. Nat. Immunol. 11(4), 344–349 (2010).
  • Moons LM, Kusters JG, Bultman E et al. Barrett’s oesophagus is characterized by a predominantly humoral inflammatory response. J. Pathol. 207(3), 269–276 (2005).
  • Lemire JM, Archer DC, Beck L, Spiegelberg HL. Immunosuppressive actions of 1,25-dihydroxyvitamin D3: preferential inhibition of Th1 functions. J. Nutr. 125(Suppl. 6), 1704S–1708S (1995).
  • Daniel C, Sartory NA, Zahn N, Radeke HH, Stein JM. Immune modulatory treatment of trinitrobenzene sulfonic acid colitis with calcitriol is associated with a change of a T helper (Th) 1/Th17 to a Th2 and regulatory T cell profile. J. Pharmacol. Exp. Ther. 324(1), 23–33 (2008).
  • O’Kelly J, Hisatake J, Hisatake Y, Bishop J, Norman A, Koeffler HP. Normal myelopoiesis but abnormal T lymphocyte responses in vitamin D receptor knockout mice. J. Clin. Invest. 109(8), 1091–1099 (2002).
  • Gorman S, Kuritzky LA, Judge MA et al. Topically applied 1,25-dihydroxyvitamin D3 enhances the suppressive activity of CD4+CD25+ cells in the draining lymph nodes. J. Immunol. 179(9), 6273–6283 (2007).
  • Lind A, Siersema PD, Kusters JG, van der Linden JA, Knol EF, Koenderman L. The immune cell composition in Barrett’s metaplastic tissue resembles that in normal duodenal tissue. PLoS ONE 7(4), e33899 (2012).
  • Kohata Y, Fujiwara Y, Machida H et al. Role of Th-2 cytokines in the development of Barrett’s esophagus in rats. J. Gastroenterol. 46(7), 883–893 (2011).
  • Fitzgerald RC, Onwuegbusi BA, Bajaj-Elliott M, Saeed IT, Burnham WR, Farthing MJ. Diversity in the oesophageal phenotypic response to gastro-oesophageal reflux: immunological determinants. Gut 50(4), 451–459 (2002).
  • Staeva-Vieira TP, Freedman LP. 1,25-dihydroxyvitamin D3 inhibits IFN-γ and IL-4 levels during in vitro polarization of primary murine CD4+ T cells. J. Immunol. 168(3), 1181–1189 (2002).
  • Daniel C, Schlauch T, Zügel U et al. 22-ene-25-oxa-vitamin D: a new vitamin D analogue with profound immunosuppressive capacities. Eur. J. Clin. Invest. 35(5), 343–349 (2005).
  • Boonstra A, Barrat FJ, Crain C, Heath VL, Savelkoul HF, O’Garra A. 1α,25-dihydroxyvitamin D3 has a direct effect on naive CD4+ T cells to enhance the development of Th2 cells. J. Immunol. 167(9), 4974–4980 (2001).
  • Fujino S, Andoh A, Bamba S et al. Increased expression of interleukin 17 in inflammatory bowel disease. Gut 52(1), 65–70 (2003).
  • Tosolini M, Kirilovsky A, Mlecnik B et al. Clinical impact of different classes of infiltrating T cytotoxic and helper cells (Th1, Th2, Treg, Th17) in patients with colorectal cancer. Cancer Res. 71(4), 1263–1271 (2011).
  • Wang L, Yi T, Kortylewski M, Pardoll DM, Zeng D, Yu H. IL-17 can promote tumor growth through an IL-6-Stat3 signaling pathway. J. Exp. Med. 206(7), 1457–1464 (2009).
  • Ferrone C, Dranoff G. Dual roles for immunity in gastrointestinal cancers. J. Clin. Oncol. 28(26), 4045–4051 (2010).
  • Wan YY, Flavell RA. How diverse–CD4 effector T cells and their functions. J. Mol. Cell Biol. 1(1), 20–36 (2009).
  • Yoshioka T, Miyamoto M, Cho Y et al. Infiltrating regulatory T cell numbers is not a factor to predict patient’s survival in oesophageal squamous cell carcinoma. Br. J. Cancer 98(7), 1258–1263 (2008).
  • Al-Qahtani D, Anil S, Rajendran R. Tumour infiltrating CD25+ FoxP3+ regulatory T cells (Tregs) relate to tumour grade and stromal inflammation in oral squamous cell carcinoma. J. Oral Pathol. Med. 40(8), 636–642 (2011).
  • Gao Q, Qiu SJ, Fan J et al. Intratumoral balance of regulatory and cytotoxic T cells is associated with prognosis of hepatocellular carcinoma after resection. J. Clin. Oncol. 25(18), 2586–2593 (2007).
  • Berndt U, Philipsen L, Bartsch S et al. Comparative multi-epitope-ligand-cartography reveals essential immunological alterations in Barrett’s metaplasia and esophageal adenocarcinoma. Mol. Cancer 9, 177 (2010).
  • Zingg U, Montani M, Frey DM et al. Tumour-infiltrating lymphocytes and survival in patients with adenocarcinoma of the oesophagus. Eur. J. Surg. Oncol. 36(7), 670–677 (2010).
  • Gordon S, Taylor PR. Monocyte and macrophage heterogeneity. Nat. Rev. Immunol. 5(12), 953–964 (2005).
  • Balkwill F, Charles KA, Mantovani A. Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell 7(3), 211–217 (2005).
  • Cohen ML, Douvdevani A, Chaimovitz C, Shany S. Regulation of TNF-α by 1α,25-dihydroxyvitamin D3 in human macrophages from CAPD patients. Kidney Int. 59(1), 69–75 (2001).
  • D’Ambrosio D, Cippitelli M, Cocciolo MG et al. Inhibition of IL-12 production by 1,25-dihydroxyvitamin D3. Involvement of NF-κB downregulation in transcriptional repression of the p40 gene. J. Clin. Invest. 101(1), 252–262 (1998).
  • Bobryshev YV, Tran D, Killingsworth MC, Buckland M, Lord RV. Dendritic cells in Barrett’s esophagus and esophageal adenocarcinoma. J. Gastrointest. Surg. 13(1), 44–53 (2009).
  • Furihata M, Ohtsuki Y, Ido E et al. HLA-DR antigen- and S-100 protein-positive dendritic cells in esophageal squamous cell carcinoma–their distribution in relation to prognosis. Virchows Arch., B, Cell Pathol. 61(6), 409–414 (1992).
  • Yang W, Yu J. Immunologic function of dendritic cells in esophageal cancer. Dig. Dis. Sci. 53(7), 1739–1746 (2008).
  • Ishigami S, Ueno S, Matsumoto M et al. Prognostic value of CD208-positive cell infiltration in gastric cancer. Cancer Immunol. Immunother. 59(3), 389–395 (2010).
  • Lutz MB, Schuler G. Immature, semi-mature and fully mature dendritic cells: which signals induce tolerance or immunity? Trends Immunol. 23(9), 445–449 (2002).
  • Bobryshev YV, Tran D, Killingsworth MC, Buckland M, Lord RV. Dendritic cell-associated immune inflammation of cardiac mucosa: a possible factor in the formation of Barrett’s esophagus. J. Gastrointest. Surg. 13(3), 442–450 (2009).
  • Adams JS, Liu PT, Chun R, Modlin RL, Hewison M. Vitamin D in defense of the human immune response. Ann. N. Y. Acad. Sci. 1117, 94–105 (2007).
  • Penna G, Adorini L. 1 α,25-dihydroxyvitamin D3 inhibits differentiation, maturation, activation, and survival of dendritic cells leading to impaired alloreactive T cell activation. J. Immunol. 164(5), 2405–2411 (2000).
  • Adorini L, Penna G. Dendritic cell tolerogenicity: a key mechanism in immunomodulation by vitamin D receptor agonists. Hum. Immunol. 70(5), 345–352 (2009).
  • Yen EH, Hornick JL, Dehlink E et al. Comparative analysis of FceRI expression patterns in patients with eosinophilic and reflux esophagitis. J. Pediatr. Gastroenterol. Nutr. 51(5), 584–592 (2010).
  • Melief CJ. Cancer immunotherapy by dendritic cells. Immunity 29(3), 372–383 (2008).
  • Zheng R, Shu S. Immune response to cancer and its regulation in regional lymph nodes. J. Surg. Oncol. 103(6), 550–554 (2011).
  • Holick MF. Vitamin D deficiency. N. Engl. J. Med. 357(3), 266–281 (2007).
  • Chambers ES, Hawrylowicz CM. The impact of vitamin D on regulatory T cells. Curr. Allergy Asthma Rep. 11(1), 29–36 (2011).
  • Blache P, van de Wetering M, Duluc I et al. SOX9 is an intestine crypt transcription factor, is regulated by the Wnt pathway, and represses the CDX2 and MUC2 genes. J. Cell Biol. 166(1), 37–47 (2004).
  • van Amerongen R, Nusse R. Towards an integrated view of Wnt signaling in development. Development 136(19), 3205–3214 (2009).
  • Gordon MD, Nusse R. Wnt signaling: multiple pathways, multiple receptors, and multiple transcription factors. J. Biol. Chem. 281(32), 22429–22433 (2006).
  • Ali I, Rafiee P, Hogan WJ et al. Dickkopf homologs in squamous mucosa of esophagitis patients are overexpressed compared with Barrett’s patients and healthy controls. Am. J. Gastroenterol. 101(7), 1437–1448 (2006).
  • Clément G, Braunschweig R, Pasquier N, Bosman FT, Benhattar J. Alterations of the Wnt signaling pathway during the neoplastic progression of Barrett’s esophagus. Oncogene 25(21), 3084–3092 (2006).
  • Bian YS, Osterheld MC, Bosman FT, Fontolliet C, Benhattar J. Nuclear accumulation of β-catenin is a common and early event during neoplastic progression of Barrett esophagus. Am. J. Clin. Pathol. 114(4), 583–590 (2000).
  • Pilon N, Oh K, Sylvestre JR, Savory JG, Lohnes D. Wnt signaling is a key mediator of Cdx1 expression in vivo. Development 134(12), 2315–2323 (2007).
  • Heretsch P, Tzagkaroulaki L, Giannis A. Modulators of the hedgehog signaling pathway. Bioorg. Med. Chem. 18(18), 6613–6624 (2010).
  • van den Brink GR, Hardwick JC, Nielsen C et al. Sonic hedgehog expression correlates with fundic gland differentiation in the adult gastrointestinal tract. Gut 51(5), 628–633 (2002).
  • Hirano I, Richter JE; Practice Parameters Committee of the American College of Gastroenterology. ACG practice guidelines: esophageal reflux testing. Am. J. Gastroenterol. 102(3), 668–685 (2007).
  • Yamanaka Y, Shiotani A, Fujimura Y et al. Expression of Sonic hedgehog (SHH) and CDX2 in the columnar epithelium of the lower oesophagus. Dig. Liver Dis. 43(1), 54–59 (2011).
  • Endo T, Awakawa T, Takahashi H et al. Classification of Barrett’s epithelium by magnifying endoscopy. Gastrointest. Endosc. 55(6), 641–647 (2002).
  • Bijlsma MF, Spek CA, Zivkovic D, van de Water S, Rezaee F, Peppelenbosch MP. Repression of smoothened by patched-dependent (pro-)vitamin D3 secretion. PLoS Biol. 4(8), e232 (2006).
  • Tang JY, Xiao TZ, Oda Y et al. Vitamin D3 inhibits hedgehog signaling and proliferation in murine basal cell carcinomas. Cancer Prev. Res. (Phila.) 4(5), 744–751 (2011).
  • Berman DM, Karhadkar SS, Maitra A et al. Widespread requirement for Hedgehog ligand stimulation in growth of digestive tract tumours. Nature 425(6960), 846–851 (2003).
  • Baud V, Karin M. Is NF-κB a good target for cancer therapy? Hopes and pitfalls. Nat. Rev. Drug Discov. 8(1), 33–40 (2009).
  • O’Riordan JM, Abdel-latif MM, Ravi N et al. Proinflammatory cytokine and nuclear factor κ-B expression along the inflammation–metaplasia–dysplasia–adenocarcinoma sequence in the esophagus. Am. J. Gastroenterol. 100(6), 1257–1264 (2005).
  • Hormi-Carver K, Zhang X, Zhang HY et al. Unlike esophageal squamous cells, Barrett’s epithelial cells resist apoptosis by activating the nuclear factor-κB pathway. Cancer Res. 69(2), 672–677 (2009).
  • Wu J, Gong J, Geng J, Song Y. Deoxycholic acid induces the overexpression of intestinal mucin, MUC2, via NF-kB signaling pathway in human esophageal adenocarcinoma cells. BMC Cancer 8, 333 (2008).
  • Kazumori H, Ishihara S, Rumi MA, Kadowaki Y, Kinoshita Y. Bile acids directly augment caudal related homeobox gene Cdx2 expression in oesophageal keratinocytes in Barrett’s epithelium. Gut 55(1), 16–25 (2006).
  • Griffin MD, Dong X, Kumar R. Vitamin D receptor-mediated suppression of RelB in antigen presenting cells: a paradigm for ligand-augmented negative transcriptional regulation. Arch. Biochem. Biophys. 460(2), 218–226 (2007).
  • Dvorakova K, Payne CM, Ramsey L et al. Increased expression and secretion of interleukin-6 in patients with Barrett’s esophagus. Clin. Cancer Res. 10(6), 2020–2028 (2004).
  • Dvorak K, Chavarria M, Payne CM et al. Activation of the interleukin-6/STAT3 antiapoptotic pathway in esophageal cells by bile acids and low pH: relevance to Barrett’s esophagus. Clin. Cancer Res. 13(18 Pt 1), 5305–5313 (2007).
  • Haura EB, Turkson J, Jove R. Mechanisms of disease: insights into the emerging role of signal transducers and activators of transcription in cancer. Nat. Clin. Pract. Oncol. 2(6), 315–324 (2005).
  • Zhang HY, Zhang Q, Zhang X et al. Cancer-related inflammation and Barrett’s carcinogenesis: interleukin-6 and STAT3 mediate apoptotic resistance in transformed Barrett’s cells. Am. J. Physiol. Gastrointest. Liver Physiol. 300(3), G454–G460 (2011).
  • Muthian G, Raikwar HP, Rajasingh J, Bright JJ. 1,25 dihydroxyvitamin-D3 modulates JAK-STAT pathway in IL-12/IFNγ axis leading to Th1 response in experimental allergic encephalomyelitis. J. Neurosci. Res. 83(7), 1299–1309 (2006).
  • Trowbridge R, Sharma P, Hunter WJ, Agrawal DK. Vitamin D receptor expression and neoadjuvant therapy in esophageal adenocarcinoma. Exp. Mol. Pathol. 93(1), 147–153 (2012).
  • Trowbridge R, Mittal SK, Sharma P, Hunter WJ, Agrawal DK. Vitamin D receptor expression in the mucosal tissue at the gastroesophageal junction. Exp. Mol. Pathol. 93(2), 246–249 (2012).
  • De Gottardi A, Dumonceau JM, Bruttin F et al. Expression of the bile acid receptor FXR in Barrett’s esophagus and enhancement of apoptosis by guggulsterone in vitro. Mol. Cancer 5, 48 (2006).
  • Nagpal S, Na S, Rathnachalam R. Noncalcemic actions of vitamin D receptor ligands. Endocr. Rev. 26(5), 662–687 (2005).
  • Barbour AP, Jones M, Gonen M et al. Refining esophageal cancer staging after neoadjuvant therapy: importance of treatment response. Ann. Surg. Oncol. 15(10), 2894–2902 (2008).
  • Agrawal T, Gupta GK, Agrawal DK. Vitamin D deficiency decreases the expression of VDR and prohibitin in the lungs of mice with allergic airway inflammation. Exp. Mol. Pathol. 93(1), 74–81 (2012).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.