257
Views
9
CrossRef citations to date
0
Altmetric
Review

Improving patient tolerability in immunoglobulin treatment: focus on stabilizer effects

, &
Pages 577-587 | Published online: 10 Jan 2014

References

  • Orange JS, Hossny EM, Weiler CR et al.; Primary Immunodeficiency Committee of the American Academy of Allergy, Asthma and Immunology. Use of intravenous immunoglobulin in human disease: a review of evidence by members of the Primary Immunodeficiency Committee of the American Academy of Allergy, Asthma and Immunology. J. Allergy Clin. Immunol. 117(Suppl. 4), S525–S553 (2006).
  • Gelfand EW. Intravenous immune globulin in autoimmune and inflammatory diseases. N. Engl. J. Med. 367(21), 2015–2025 (2012).
  • Kivity S, Katz U, Daniel N, Nussinovitch U, Papageorgiou N, Shoenfeld Y. Evidence for the use of intravenous immunoglobulins – a review of the literature. Clin. Rev. Allergy Immunol. 38(2–3), 201–269 (2010).
  • Chérin P, Cabane J. Relevant criteria for selecting an intravenous immunoglobulin preparation for clinical use. BioDrugs 24(4), 211–223 (2010).
  • Berger M, Pinciaro PJ; Flebogamma 5% Investigators. Safety, efficacy, and pharmacokinetics of Flebogamma 5% (immune globulin intravenous [human]) for replacement therapy in primary immunodeficiency diseases. J. Clin. Immunol. 24(4), 389–396 (2004).
  • Church JA, Leibl H, Stein MR et al.; US-PID-IGIV 10% – Study Group 10. Efficacy, safety and tolerability of a new 10% liquid intravenous immune globulin (IGIV 10%) in patients with primary immunodeficiency. J. Clin. Immunol. 26(4), 388–395 (2006).
  • Ochs HD, Pinciaro PJ; Octagam Study Group. Octagam 5%, an intravenous IgG product, is efficacious and well tolerated in subjects with primary immunodeficiency diseases. J. Clin. Immunol. 24(3), 309–314 (2004).
  • Nezlin R. Interactions between immunoglobulin G molecules. Immunol. Lett. 132(1–2), 1–5 (2010).
  • Lemm G. Composition and properties of IVIg preparations that affect tolerability and therapeutic efficacy. Neurology 59(12 Suppl. 6), S28–S32 (2002).
  • Bolli R, Woodtli K, Bärtschi M, Höfferer L, Lerch P. l-Proline reduces IgG dimer content and enhances the stability of intravenous immunoglobulin (IVIG) solutions. Biologicals 38(1), 150–157 (2010).
  • Cramer M, Frei R, Sebald A, Mazzoletti P, Maeder W. Stability over 36 months of a new liquid 10% polyclonal immunoglobulin product (IgPro10, Privigen) stabilized with l-proline. Vox Sang. 96(3), 219–225 (2009).
  • Teeling JL, Jansen-Hendriks T, Kuijpers TW et al. Therapeutic efficacy of intravenous immunoglobulin preparations depends on the immunoglobulin G dimers: studies in experimental immune thrombocytopenia. Blood 98(4), 1095–1099 (2001).
  • Bleeker WK, Teeling JL, Verhoeven AJ et al. Vasoactive side effects of intravenous immunoglobulin preparations in a rat model and their treatment with recombinant platelet-activating factor acetylhydrolase. Blood 95(5), 1856–1861 (2000).
  • Jenei B, Lázár G, Bartha K, Medgyesi GA. Hypotensive action of IgG preparations containing aggregates is suppressed by PAF-receptor antagonist BN 52021 and by gadolinium chloride (an agent blocking Kupffer cell function). Agents Actions 32(3-4), 333–338 (1991).
  • Knezevic-Maramica I, Kruskall MS. Intravenous immune globulins: an update for clinicians. Transfusion 43(10), 1460–1480 (2003).
  • WHO. Appropriate use of human immunoglobulin in clinical practice: memorandum from an IUIS/WHO meeting. Bull. WHO 60, 43–47 (1982).
  • Apte SP, Ugwu SO. A review and classification of emerging excipients in parenteral medications. Pharmaceut. Technol. 46–60 (2003).
  • Jorgensen L, Hostrup S, Moeller EH, Grohganz H. Recent trends in stabilising peptides and proteins in pharmaceutical formulation - considerations in the choice of excipients. Expert Opin. Drug Deliv. 6(11), 1219–1230 (2009).
  • Wang W. Instability, stabilization, and formulation of liquid protein pharmaceuticals. Int. J. Pharm. 185(2), 129–188 (1999).
  • Szenczi A, Kardos J, Medgyesi GA, Závodszky P. The effect of solvent environment on the conformation and stability of human polyclonal IgG in solution. Biologicals 34(1), 5–14 (2006).
  • Graumann A, Zawada ET Jr. Case report: acute renal failure after administering intravenous immunoglobulin. Postgrad. Med. 122(2), 142–147 (2010).
  • Carbone J. Adverse reactions and pathogen safety of intravenous immunoglobulin. Curr. Drug Saf. 2(1), 9–18 (2007).
  • Lin RY, Rodriguez-Baez G, Bhargave GA, Lin H. Intravenous γ-globulin-associated renal impairment reported to the FDA: 2004–2009. Clin. Nephrol. 76(5), 365–372 (2011).
  • Itkin YM, Trujillo TC. Intravenous immunoglobulin-associated acute renal failure: case series and literature review. Pharmacotherapy 25(6), 886–892 (2005).
  • Gürcan HM, Keskin DB, Ahmed AR. Information for healthcare providers on general features of IGIV with emphasis on differences between commercially available products. Autoimmun. Rev. 9(8), 553–559 (2010).
  • Cayco AV, Perazella MA, Hayslett JP. Renal insufficiency after intravenous immune globulin therapy: a report of two cases and an analysis of the literature. J. Am. Soc. Nephrol. 8(11), 1788–1794 (1997).
  • Ochs HD, Siegel J. Intravenous immunoglobulin products. A comparative review. Pharm. Pract. News (2010).
  • Bauman LA. Fluid volume monitoring with glucose dilution. Anesthesia Analg. 105(4), 1117 (2007).
  • Scibilia J, Pastorello EA, Zisa G et al. Maize food allergy: a double-blind placebo-controlled study. Clin. Exp. Allergy 38(12), 1943–1949 (2008).
  • Centers for Disease Control and Prevention. Renal insufficiency and failure associated with immune globulin intravenous therapy – United States, 1985–1998. MMWR Morb. Mortal. Wkly Rep. 48(24), 518–521 (1999).
  • Chacko B, John GT, Balakrishnan N, Kirubakaran MG, Jacob CK. Osmotic nephropathy resulting from maltose-based intravenous immunoglobulin therapy. Ren. Fail. 28(2), 193–195 (2006).
  • Octagam®, prescribing information. Immune globulin intravenous (human) 5%, solvent/detergent treated. Octapharma USA, Inc., Hoboken, NJ, USA (2009).
  • Gaines A, Pierce LR, Bernhardt PA. Fatal iatrogenic hypoglycemia: falsely elevated blood glucose readings with a point-of-care meter due to a maltose-containing intravenous immune globulin product. FDA, Safety and Availability Bulletin (2009).
  • Burg MB, Kador PF. Sorbitol, osmoregulation, and the complications of diabetes. J. Clin. Invest. 81(3), 635–640 (1988).
  • Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature 414(6865), 813–820 (2001).
  • Chapman SA, Gilkerson KL, Davin TD, Pritzker MR. Acute renal failure and intravenous immune globulin: occurs with sucrose-stabilized, but not with d-sorbitol-stabilized, formulation. Ann. Pharmacother. 38(12), 2059–2067 (2004).
  • Vo AA, Cam V, Toyoda M et al. Safety and adverse events profiles of intravenous γ-globulin products used for immunomodulation: a single-center experience. Clin. J. Am. Soc. Nephrol. 1(4), 844–852 (2006).
  • Hashimoto K. Glycine transporter-1: a new potential therapeutic target for schizophrenia. Curr. Pharm. Des. 17(2), 112–120 (2011).
  • Onenli-Mungan N, Yüksel B, Elkay M, Topaloglu AK, Baykal T, Ozer G. Type II hyperprolinemia: a case report. Turk. J. Pediatr. 46(2), 167–169 (2004).
  • Sun A, Wu Y, Pot G et al. IgG stabilization in glycine or l-proline formulated immunoglobulin intravenous 10% (IGIV) solutions: 24-month data to support equally effective stabilization. Presented at: Clinical Immunology Society Annual Meeting: Primary Immune Deficiency North America Conference. Chicago, IL, USA, 18 May 2012.
  • Hagan JB, Wasserman RL, Baggish JS et al. Safety of l-proline as a stabilizer for immunoglobulin products. Expert Rev. Clin. Immunol. 8(2), 169–178 (2012).
  • Zhang R, Szerlip HM. Reemergence of sucrose nephropathy: acute renal failure caused by high-dose intravenous immune globulin therapy. South. Med. J. 93(9), 901–904 (2000).
  • Siegel J. IVIG medication safety: a stepwise guide to product selection and use. Pharm. Pract. News 77–84 (2011).
  • Carimune® NF, prescribing information. Nanofiltered Immune Globulin Intravenous (Human), Lyophilized Preparation. CSL Behring AG, Bern, Switzerland (2010).
  • Flebogamma® 5% DIF, prescribing information. Immune globulin intravenous (human), 5% liquid preparation. Instituto Grifols, Barcelona, Spain (2012).
  • Gammagard, prescribing information. Immune globulin intravenous (human), liquid 10%. Baxter Healthcare Corporation, CA, USA (2011).
  • Gammagard S/D, prescribing information. Immune globulin intravenous (human), solvent detergent treated IgA less than 2.2 µg/mL in a 5% solution. Baxter Healthcare Corporation, CA, USA (2011).
  • Gammaplex®, prescribing information. Immune globulin injection (human) 5%. Bio Products Laboratory, Hertfordshire, UK (2009).
  • Gamunex®-C, prescribing information. Immune globulin injection (human) 10%, caprylate/chromatography purified. Talecris Biotherapeutics, Inc., NC, USA (2010).
  • Hizentra™, prescribing information. Immune globulin subcutaneous (human), 20% liquid. CSL Behring AG, Bern, Switzerland (2011).
  • Privigen®, prescribing information. Immune globulin intravenous (human), 10% liquid. CSL Behring AG, Bern, Switzerland (2011).
  • Pierce LR, Jain N. Risks associated with the use of intravenous immunoglobulin. Transfus. Med. Rev. 17(4), 241–251 (2003).
  • Yel L. Selective IgA deficiency. J. Clin. Immunol. 30(1), 10–16 (2010).
  • Feldmeyer L, Benden C, Haile SR et al. Not all intravenous immunoglobulin preparations are equally well tolerated. Acta Derm. Venereol. 90(5), 494–497 (2010).
  • Jann S, Bramerio MA, Facchetti D, Sterzi R. Intravenous immunoglobulin is effective in patients with diabetes and with chronic inflammatory demyelinating polyneuropathy: long term follow-up. J. Neurol. Neurosurg. Psychiatr. 80(1), 70–73 (2009).
  • Sharma KR, Cross J, Ayyar DR, Martinez-Arizala A, Bradley WG. Diabetic demyelinating polyneuropathy responsive to intravenous immunoglobulin therapy. Arch. Neurol. 59(5), 751–757 (2002).
  • Cocito D, Ciaramitaro P, Isoardo G et al. Intravenous immunoglobulin as first treatment in diabetics with concomitant distal symmetric axonal polyneuropathy and CIDP. J. Neurol. 249(6), 719–722 (2002).
  • Hahn AF, Bolton CF, Zochodne D, Feasby TE. Intravenous immunoglobulin treatment in chronic inflammatory demyelinating polyneuropathy. A double-blind, placebo-controlled, cross-over study. Brain 119(Pt 4), 1067–1077 (1996).
  • Hu CA, Phang JM, Valle D. Proline metabolism in health and disease. Preface. Amino Acids 35(4), 651–652 (2008).
  • Mitsubuchi H, Nakamura K, Matsumoto S, Endo F. Inborn errors of proline metabolism. J. Nutr. 138(10), 2016S–2020S (2008).
  • Botto LD, May K, Fernhoff PM et al. A population-based study of the 22q11.2 deletion: phenotype, incidence, and contribution to major birth defects in the population. Pediatrics 112(1 Pt 1), 101–107 (2003).
  • Sullivan KE. Chromosome 22q11.2 deletion syndrome: DiGeorge syndrome/velocardiofacial syndrome. Immunol. Allergy Clin. North Am. 28(2), 353–366 (2008).
  • Gothelf D, Feinstein C, Thompson T et al. Risk factors for the emergence of psychotic disorders in adolescents with 22q11.2 deletion syndrome. Am. J. Psychiatry 164(4), 663–669 (2007).
  • Goodman BK, Rutberg J, Lin WW, Pulver AE, Thomas GH. Hyperprolinaemia in patients with deletion (22)(q11.2) syndrome. J. Inherit. Metab. Dis. 23(8), 847–848 (2000).
  • Vorstman JA, Turetsky BI, Sijmens-Morcus ME et al. Proline affects brain function in 22q11DS children with the low activity COMT 158 allele. Neuropsychopharmacology 34(3), 739–746 (2009).
  • Ferreira AG, Stefanello FM, Cunha AA et al. Role of antioxidants on Na+, K+-ATPase activity and gene expression in cerebral cortex of hyperprolinemic rats. Metab. Brain Dis. 26(2), 141–147 (2011).
  • Bavaresco CS, Streck EL, Netto CA, Wyse AT. Chronic hyperprolinemia provokes a memory deficit in the Morris water maze task. Metab. Brain Dis. 20(1), 73–80 (2005).
  • Delwing D, Bavaresco CS, Wannmacher CM, Wajner M, Dutra-Filho CS, Wyse AT. Proline induces oxidative stress in cerebral cortex of rats. Int. J. Dev. Neurosci. 21(2), 105–110 (2003).
  • Moreira JC, Wannmacher CM, Costa SM, Wajner M. Effect of proline administration on rat behavior in aversive and nonaversive tasks. Pharmacol. Biochem. Behav. 32(4), 885–890 (1989).
  • Raux G, Bumsel E, Hecketsweiler B et al. Involvement of hyperprolinemia in cognitive and psychiatric features of the 22q11 deletion syndrome. Hum. Mol. Genet. 16(1), 83–91 (2007).
  • Jacquet H, Raux G, Thibaut F et al. PRODH mutations and hyperprolinemia in a subset of schizophrenic patients. Hum. Mol. Genet. 11(19), 2243–2249 (2002).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.