745
Views
140
CrossRef citations to date
0
Altmetric
Review

The pharmacokinetics of Toll-like receptor agonists and the impact on the immune system

, &
Pages 275-289 | Published online: 10 Jan 2014

References

  • Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat. Immunol.11(5), 373–384 (2010).
  • Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell124(4), 783–801 (2006).
  • Hayashi F, Smith KD, Ozinsky A et al. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature410(6832), 1099–1103 (2001).
  • Diebold SS, Kaisho T, Hemmi H, Akira S, Reis E, Sousa C. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science303(5663), 1529–1531 (2004).
  • Heil F, Hemmi H, Hochrein H et al. Species-specific recognition of single-stranded RNA via Toll-like receptor 7 and 8. Science303(5663), 1526–1529 (2004).
  • Lund JM, Alexopoulou L, Sato A et al. Recognition of single-stranded RNA viruses by Toll-like receptor 7. Proc. Natl Acad. Sci. USA101(15), 5598–5603 (2004).
  • Hemmi H, Takeuchi O, Kawai T et al. A Toll-like receptor recognizes bacterial DNA. Nature408(6813), 740–745 (2000).
  • Krieg AM. Toll-like receptor 9 (TLR9) agonists in the treatment of cancer. Oncogene27(2), 161–167 (2008).
  • Smits EL, Ponsaerts P, Berneman ZN, Van Tendeloo VF. The use of TLR7 and TLR8 ligands for the enhancement of cancer immunotherapy. Oncologist13(8), 859–875 (2008).
  • Hemmi H, Kaisho T, Takeuchi O et al. Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat. Immunol.3(2), 196–200 (2002).
  • Schon MP, Schon M. TLR7 and TLR8 as targets in cancer therapy. Oncogene27(2), 190–199 (2008).
  • Dudek AZ, Yunis C, Harrison LI et al. First in human Phase I trial of 852A, a novel systemic Toll-like receptor 7 agonist, to activate innate immune responses in patients with advanced cancer. Clin. Cancer Res.13(23), 7119–7125 (2007).
  • Fletcher S, Steffy K, Averett D. Masked oral prodrugs of Toll-like receptor 7 agonists: a new approach for the treatment of infectious disease. Curr. Opin. Investig. Drugs7(8), 702–708 (2006).
  • Harrison LI, Astry C, Kumar S, Yunis C. Pharmacokinetics of 852A, an imidazoquinoline Toll-like receptor 7-specific agonist, following intravenous, subcutaneous, and oral administrations in humans. J. Clin. Pharmacol.47(8), 962–969 (2007).
  • Gupta AK, Cherman AM, Tyring SK. Viral and nonviral uses of imiquimod: a review. J. Cutan. Med. Surg.8(5), 338–352 (2004).
  • Mchutchison JG, Bacon BR, Gordon SC et al. Phase 1B, randomized, double-blind, dose-escalation trial of CPG 10101 in patients with chronic hepatitis C virus. Hepatology46(5), 1341–1349 (2007).
  • Butts C, Murray N, Maksymiuk A et al. Randomized Phase IIB trial of BLP25 liposome vaccine in stage IIIB and IV non-small-cell lung cancer. J. Clin. Oncol.23(27), 6674–6681 (2005).
  • Manegold C, Gravenor D, Woytowitz D et al. Randomized Phase II trial of a Toll-like receptor 9 agonist oligodeoxynucleotide, PF-3512676, in combination with first-line taxane plus platinum chemotherapy for advanced-stage non-small-cell lung cancer. J. Clin. Oncol.26(24), 3979–3986 (2008).
  • Speiser DE, Lienard D, Rufer N et al. Rapid and strong human CD8+ T cell responses to vaccination with peptide, IFA, and CpG oligodeoxynucleotide 7909. J. Clin. Invest.115(3), 739–746 (2005).
  • Karbach J, Gnjatic S, Bender A et al. Tumor-reactive CD8+ T-cell responses after vaccination with NY-ESO-1 peptide, CpG 7909 and Montanide ISA-51: association with survival. Int. J. Cancer126(4), 909–918 (2010).
  • Thompson BS, Chilton PM, Ward JR, Evans JT, Mitchell TC. The low-toxicity versions of LPS, MPL adjuvant and RC529, are efficient adjuvants for CD4+ T cells. J. Leukoc. Biol.78(6), 1273–1280 (2005).
  • Fourcade J, Kudela P, Andrade Filho PA et al. Immunization with analog peptide in combination with CpG and montanide expands tumor antigen-specific CD8+ T cells in melanoma patients. J. Immunother.31(8), 781–791 (2008).
  • Sogaard OS, Lohse N, Harboe ZB et al. Improving the immunogenicity of pneumococcal conjugate vaccine in HIV-infected adults with a Toll-like receptor 9 agonist adjuvant: a randomized, controlled trial. Clin. Infect. Dis.51(1), 42–50 (2010).
  • Friedberg JW, Kim H, McCauley M et al. Combination immunotherapy with a CpG oligonucleotide (1018 ISS) and rituximab in patients with non-Hodgkin lymphoma: increased interferon-α/β-inducible gene expression, without significant toxicity. Blood105(2), 489–495 (2005).
  • Dubensky TW Jr, Reed SG. Adjuvants for cancer vaccines. Semin. Immunol.22(3), 155–161 (2010).
  • Currie AJ, Van Der Most RG, Broomfield SA, Prosser AC, Tovey MG, Robinson BW. Targeting the effector site with IFN-αβ-inducing TLR ligands reactivates tumor-resident CD8 T cell responses to eradicate established solid tumors. J. Immunol.180(3), 1535–1544 (2008).
  • Schmidt C. Immune system’s Toll-like receptors have good opportunity for cancer treatment. J. Natl Cancer Inst.98(9), 574–575 (2006).
  • Carpentier A, Metellus P, Ursu R et al. Intracerebral administration of CpG oligonucleotide for patients with recurrent glioblastoma: a Phase II study. Neuro. Oncol.12(4), 401–408 (2010).
  • Mariani CL, Rajon D, Bova FJ, Streit WJ. Nonspecific immunotherapy with intratumoral lipopolysaccharide and zymosan A but not GM-CSF leads to an effective anti-tumor response in subcutaneous RG-2 gliomas. J. Neurooncol.85(3), 231–240 (2007).
  • Sands H, Gorey-Feret LJ, Cocuzza AJ, Hobbs FW, Chidester D, Trainor GL. Biodistribution and metabolism of internally 3H-labeled oligonucleotides. I. Comparison of a phosphodiester and a phosphorothioate. Mol. Pharmacol.45(5), 932–943 (1994).
  • Agrawal S, Temsamani J, Galbraith W, Tang J. Pharmacokinetics of antisense oligonucleotides. Clin. Pharmacokinet.28(1), 7–16 (1995).
  • Hartmann G, Weiner GJ, Krieg AM. CpG DNA: a potent signal for growth, activation, and maturation of human dendritic cells. Proc. Natl Acad. Sci. USA96(16), 9305–9310 (1999).
  • Boggs RT, Mcgraw K, Condon T et al. Characterization and modulation of immune stimulation by modified oligonucleotides. Antisense Nucleic Acid Drug Dev.7(5), 461–471 (1997).
  • Krieg AM, Matson S, Fisher E. Oligodeoxynucleotide modifications determine the magnitude of B cell stimulation by CpG motifs. Antisense Nucleic Acid Drug Dev.6(2), 133–139 (1996).
  • Pisetsky DS, Reich CF 3rd. Influence of backbone chemistry on immune activation by synthetic oligonucleotides. Biochem. Pharmacol.58(12), 1981–1988 (1999).
  • Sester DP, Naik S, Beasley SJ, Hume DA, Stacey KJ. Phosphorothioate backbone modification modulates macrophage activation by CpG DNA. J. Immunol.165(8), 4165–4173 (2000).
  • Link BK, Ballas ZK, Weisdorf D et al. Oligodeoxynucleotide CpG 7909 delivered as intravenous infusion demonstrates immunologic modulation in patients with previously treated non-Hodgkin lymphoma. J. Immunother.29(5), 558–568 (2006).
  • Readett D, Denis L, Krieg A, Benner R, Hanson D. PF-3512676 (CPG 7909) a Toll-like receptor 9 agonist – status of development for non-small cell lung cancer (NSCLC). Presented at: 12th World Congress on Lung Cancer. Seoul, Korea, 2–6 September 2007.
  • Allen TM, Cullis PR. Drug delivery systems: entering the mainstream. Science303(5665), 1818–1822 (2004).
  • Wilson KD, Raney SG, Sekirov L et al. Effects of intravenous and subcutaneous administration on the pharmacokinetics, biodistribution, cellular uptake and immunostimulatory activity of CpG ODN encapsulated in liposomal nanoparticles. Int. Immunopharmacol.7(8), 1064–1075 (2007).
  • Fang J, Nakamura H, Maeda H. The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv. Drug Deliv. Rev. DOI: 10.1016/j.addr.2010.04.009 (2010) (Epub ahead of print).
  • Kumagai Y, Takeuchi O, Akira S. TLR9 as a key receptor for the recognition of DNA. Adv. Drug Deliv. Rev.60(7), 795–804 (2008).
  • Yoshida H, Nishikawa M, Yasuda S et al. TLR9-dependent systemic interferon-β production by intravenous injection of plasmid DNA/cationic liposome complex in mice. J. Gene Med.11(8), 708–717 (2009).
  • Mui B, Raney SG, Semple SC, Hope MJ. Immune stimulation by a CpG-containing oligodeoxynucleotide is enhanced when encapsulated and delivered in lipid particles. J. Pharmacol. Exp. Ther.298(3), 1185–1192 (2001).
  • Isogawa M, Robek MD, Furuichi Y, Chisari FV. Toll-like receptor signaling inhibits hepatitis B virus replication in vivo. J. Virol.79(11), 7269–7272 (2005).
  • Joyce JA, Laakkonen P, Bernasconi M, Bergers G, Ruoslahti E, Hanahan D. Stage-specific vascular markers revealed by phage display in a mouse model of pancreatic islet tumorigenesis. Cancer Cell4(5), 393–403 (2003).
  • Hamzah J, Nelson D, Moldenhauer G, Arnold B, Hammerling GJ, Ganss R. Vascular targeting of anti-CD40 antibodies and IL-2 into autochthonous tumors enhances immunotherapy in mice. J. Clin. Invest.118(5), 1691–1699 (2008).
  • Hamzah J, Altin JG, Herringson T et al. Targeted liposomal delivery of TLR9 ligands activates spontaneous anti-tumor immunity in an autochthonous cancer model. J. Immunol.183(2), 1091–1098 (2009).
  • Lan T, Kandimalla ER, Yu D et al. Stabilized immune modulatory RNA compounds as agonists of Toll-like receptors 7 and 8. Proc. Natl Acad. Sci. USA104(34), 13750–13755 (2007).
  • Scheel B, Braedel S, Probst J et al. Immunostimulating capacities of stabilized RNA molecules. Eur. J. Immunol.34(2), 537–547 (2004).
  • Bourquin C, Schmidt L, Lanz AL et al. Immunostimulatory RNA oligonucleotides induce an effective anti-tumoral NK cell response through the TLR7. J. Immunol.183(10), 6078–6086 (2009).
  • Hornung V, Guenthner-Biller M, Bourquin C et al. Sequence-specific potent induction of IFN-α by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nat. Med.11(3), 263–270 (2005).
  • Miller D, Brinkworth M, Iles D. Paternal DNA packaging in spermatozoa: more than the sum of its parts? DNA, histones, protamines and epigenetics. Reproduction139(2), 287–301 (2010).
  • Hoerr I, Obst R, Rammensee HG, Jung G. In vivo application of RNA leads to induction of specific cytotoxic T lymphocytes and antibodies. Eur. J. Immunol.30(1), 1–7 (2000).
  • Dummer R, Hauschild A, Becker JC et al. An exploratory study of systemic administration of the Toll-like receptor-7 agonist 852A in patients with refractory metastatic melanoma. Clin. Cancer Res.14(3), 856–864 (2008).
  • Spaner DE, Miller RL, Mena J, Grossman L, Sorrenti V, Shi Y. Regression of lymphomatous skin deposits in a chronic lymphocytic leukemia patient treated with the Toll-like receptor-7/8 agonist, imiquimod. Leuk. Lymphoma46(6), 935–939 (2005).
  • Spaner DE, Shi Y, White D et al. A Phase I/II trial of TLR7 agonist immunotherapy in chronic lymphocytic leukemia. Leukemia24(1), 222–226 (2010).
  • Spaner DE, Shi Y, White D et al. Immunomodulatory effects of Toll-like receptor-7 activation on chronic lymphocytic leukemia cells. Leukemia20(2), 286–295 (2006).
  • Robinson RA, Devita VT, Levy HB, Baron S, Hubbard SP, Levine AS. A Phase I–II trial of multiple-dose polyriboinosic-polyribocytidylic acid in patients with leukemia or solid tumors. J. Natl Cancer Inst.57(3), 599–602 (1976).
  • Strayer DR, Carter WA, Brodsky I et al. A controlled clinical trial with a specifically configured RNA drug, poly(I).poly(C12U), in chronic fatigue syndrome. Clin. Infect. Dis.18(Suppl. 1), S88–S95 (1994).
  • Gowen BB, Wong MH, Jung KH et al. TLR3 is essential for the induction of protective immunity against Punta Toro virus infection by the double-stranded RNA (dsRNA), poly(I:C12U), but not poly(I:C): differential recognition of synthetic dsRNA molecules. J. Immunol.178(8), 5200–5208 (2007).
  • Navabi H, Jasani B, Reece A et al. A clinical grade poly I:C-analogue (Ampligen) promotes optimal DC maturation and Th1-type T cell responses of healthy donors and cancer patients in vitro. Vaccine27(1), 107–115 (2009).
  • Thompson KA, Strayer DR, Salvato PD et al. Results of a double-blind placebo-controlled study of the double-stranded RNA drug polyI:polyC12U in the treatment of HIV infection. Eur. J. Clin. Microbiol. Infect. Dis.15(7), 580–587 (1996).
  • Sakurai F, Terada T, Maruyama M et al. Therapeutic effect of intravenous delivery of lipoplexes containing the interferon-β gene and poly I:poly C in a murine lung metastasis model. Cancer Gene Ther.10(9), 661–668 (2003).
  • Jasani B, Navabi H, Adams M. Ampligen: a potential Toll-like 3 receptor adjuvant for immunotherapy of cancer. Vaccine27(25–26), 3401–3404 (2009).
  • Sun S, Rao NL, Venable J, Thurmond R, Karlsson L. TLR7/9 antagonists as therapeutics for immune-mediated inflammatory disorders. Inflamm. Allergy Drug Targets6(4), 223–235 (2007).
  • Witt PL, Ritch PS, Reding D et al. Phase I trial of an oral immunomodulator and interferon inducer in cancer patients. Cancer Res.53(21), 5176–5180 (1993).
  • Dockrell DH, Kinghorn GR. Imiquimod and resiquimod as novel immunomodulators. J. Antimicrob. Chemother.48(6), 751–755 (2001).
  • Averett DR, Fletcher SP, Li W, Webber SE, Appleman JR. The pharmacology of endosomal TLR agonists in viral disease. Biochem. Soc. Trans.35(Pt 6), 1468–1472 (2007).
  • Moore RA, Edwards JE, Hopwood J, Hicks D. Imiquimod for the treatment of genital warts: a quantitative systematic review. BMC Infect. Dis.1, 3 (2001).
  • Stockfleth E, Meyer T, Benninghoff B et al. A randomized, double-blind, vehicle-controlled study to assess 5% imiquimod cream for the treatment of multiple actinic keratoses. Arch. Dermatol.138(11), 1498–1502 (2002).
  • Geisse J, Caro I, Lindholm J, Golitz L, Stampone P, Owens M. Imiquimod 5% cream for the treatment of superficial basal cell carcinoma: results from two Phase III, randomized, vehicle-controlled studies. J. Am. Acad. Dermatol.50(5), 722–733 (2004).
  • Schulze HJ, Cribier B, Requena L et al. Imiquimod 5% cream for the treatment of superficial basal cell carcinoma: results from a randomized vehicle-controlled Phase III study in Europe. Br. J. Dermatol.152(5), 939–947 (2005).
  • Ondo AL, Mings SM, Pestak RM, Shanler SD. Topical combination therapy for cutaneous squamous cell carcinoma in situ with 5-fluorouracil cream and imiquimod cream in patients who have failed topical monotherapy. J. Am. Acad. Dermatol.55(6), 1092–1094 (2006).
  • Soria I, Myhre P, Horton V et al. Effect of food on the pharmacokinetics and bioavailability of oral imiquimod relative to a subcutaneous dose. Int. J. Clin. Pharmacol. Ther.38(10), 476–481 (2000).
  • Benson N, De Jongh J, Duckworth JD et al. Pharmacokinetic–pharmacodynamic modeling of α interferon response induced by a Toll-like 7 receptor agonist in mice. Antimicrob. Agents Chemother.54(3), 1179–1185 (2010).
  • Savage P, Horton V, Moore J, Owens M, Witt P, Gore ME. A Phase I clinical trial of imiquimod, an oral interferon inducer, administered daily. Br. J. Cancer74(9), 1482–1486 (1996).
  • Thomsen LL, Topley P, Daly MG, Brett SJ, Tite JP. Imiquimod and resiquimod in a mouse model: adjuvants for DNA vaccination by particle-mediated immunotherapeutic delivery. Vaccine22(13–14), 1799–1809 (2004).
  • Kanzler H, Barrat FJ, Hessel EM, Coffman RL. Therapeutic targeting of innate immunity with Toll-like receptor agonists and antagonists. Nat. Med.13(5), 552–559 (2007).
  • Chang BA, Cross JL, Najar HM, Dutz JP. Topical resiquimod promotes priming of CTL to parenteral antigens. Vaccine27(42), 5791–5799 (2009).
  • Pockros PJ, Guyader D, Patton H et al. Oral resiquimod in chronic HCV infection: safety and efficacy in 2 placebo-controlled, double-blind Phase IIa studies. J. Hepatol.47(2), 174–182 (2007).
  • 3M Pharmaceuticals Press Release. 3M provides update on IRM pharmaceutical platform: Lilly and 3M suspend resiquimod trials. 24 February 2003.
  • Zuany-Amorim C, Hastewell J, Walker C. Toll-like receptors as potential therapeutic targets for multiple diseases. Nat. Rev. Drug Discov.1(10), 797–807 (2002).
  • Valins W, Amini S, Berman B. The expression of Toll-like receptors in dermatological diseases and the therapeutic effect of current and newer topical Toll-like receptor modulators. J. Clin. Aesthet. Dermatol.3(9), 20–29 (2010).
  • Harrison LI, Skinner SL, Marbury TC et al. Pharmacokinetics and safety of imiquimod 5% cream in the treatment of actinic keratoses of the face, scalp, or hands and arms. Arch Dermatol. Res.296(1), 6–11 (2004).
  • Quirk C, Gebauer K, Owens M, Stampone P. Two-year interim results from a 5-year study evaluating clinical recurrence of superficial basal cell carcinoma after treatment with imiquimod 5% cream daily for 6 weeks. Australas. J. Dermatol.47(4), 258–265 (2006).
  • Geisse JK, Rich P, Pandya A et al. Imiquimod 5% cream for the treatment of superficial basal cell carcinoma: a double-blind, randomized, vehicle-controlled study. J. Am. Acad. Dermatol.47(3), 390–398 (2002).
  • Turza K, Dengel LT, Harris RC et al. Effectiveness of imiquimod limited to dermal melanoma metastases, with simultaneous resistance of subcutaneous metastasis. J. Cutan. Pathol. DOI: 10.1111/j.1600-0560.2009.01290.x (2009) (Epub ahead of print).
  • Abramovits W, Gupta AK. New therapy update: ALDARA (imiquimod cream, 5%). Skinmed.3(4), 215 (2004).
  • Adams S, O’Neill DW, Nonaka D et al. Immunization of malignant melanoma patients with full-length NY-ESO-1 protein using TLR7 agonist imiquimod as vaccine adjuvant. J. Immunol.181(1), 776–784 (2008).
  • Valmori D, Souleimanian NE, Tosello V et al. Vaccination with NY-ESO-1 protein and CpG in Montanide induces integrated antibody/Th1 responses and CD8 T cells through cross-priming. Proc. Natl Acad. Sci. USA104(21), 8947–8952 (2007).
  • Daayana S, Elkord E, Winters U et al. Phase II trial of imiquimod and HPV therapeutic vaccination in patients with vulval intraepithelial neoplasia. Br. J. Cancer102(7), 1129–1136 (2010).
  • Van Seters M, Van Beurden M, Ten Kate FJ et al. Treatment of vulvar intraepithelial neoplasia with topical imiquimod. N. Engl. J. Med.358(14), 1465–1473 (2008).
  • Green DS, Bodman-Smith MD, Dalgleish AG, Fischer MD. Phase I/II study of topical imiquimod and intralesional interleukin-2 in the treatment of accessible metastases in malignant melanoma. Br. J. Dermatol.156(2), 337–345 (2007).
  • Green DS, Dalgleish AG, Belonwu N, Fischer MD, Bodman-Smith MD. Topical imiquimod and intralesional interleukin-2 increase activated lymphocytes and restore the Th1/Th2 balance in patients with metastatic melanoma. Br. J. Dermatol.159(3), 606–614 (2008).
  • Redondo P, Del Olmo J, Lòpez-Dìaz de Cerio A et al. Imiquimod enhances the systemic immunity attained by local cryosurgery destruction of melanoma lesions. J. Invest. Dermatol.127(7), 1673–1680 (2007).
  • Balducci M, De Bari B, Manfrida S, D’agostino GR, Valentini V. Treatment of Merkel cell carcinoma with radiotherapy and imiquimod (Aldara): a case report. Tumori96(3), 508–511 (2010).
  • Wu JJ, Huang DB, Tyring SK. Resiquimod: a new immune response modifier with potential as a vaccine adjuvant for Th1 immune responses. Antiviral Res.64(2), 79–83 (2004).
  • Tomai M, Miller RL, Lipson KE, Vasilakos JP, Woulfe SL. Immune response modifiers: imiquimod and future drugs for modulating the immune response. Drug Discov. Today: Ther. Strateg.3(3), 343–352 (2006).
  • Mark KE, Corey L, Meng TC et al. Topical resiquimod 0.01% gel decreases herpes simplex virus type 2 genital shedding: a randomized, controlled trial. J. Infect. Dis.195(9), 1342–1331 (2007).
  • Sauder DN, Smith MH, Senta-Mcmillian T, Soria I, Meng TC. Randomized, single-blind, placebo-controlled study of topical application of the immune response modulator resiquimod in healthy adults. Antimicrob. Agents Chemother.47(12), 3846–3852 (2003).
  • Krieg AM, Efler SM, Wittpoth M, Al Adhami MJ, Davis HL. Induction of systemic Th1-like innate immunity in normal volunteers following subcutaneous but not intravenous administration of CPG 7909, a synthetic B-class CpG oligodeoxynucleotide TLR9 agonist. J. Immunother.27(6), 460–471 (2004).
  • Tulic MK, Fiset PO, Christodoulopoulos P et al. Amb a 1-immunostimulatory oligodeoxynucleotide conjugate immunotherapy decreases the nasal inflammatory response. J. Allergy Clin. Immunol.113(2), 235–241 (2004).
  • Harper DM, Franco EL, Wheeler CM et al. Sustained efficacy up to 4.5 years of a bivalent L1 virus-like particle vaccine against human papillomavirus types 16 and 18: follow-up from a randomised control trial. Lancet367(9518), 1247–1255 (2006).
  • Yamada K, Nakao M, Fukuyama C et al. Phase I study of TLR9 agonist PF-3512676 in combination with carboplatin and paclitaxel in patients with advanced non-small-cell lung cancer. Cancer Sci.101(1), 188–195 (2010).
  • Senti G, Johansen P, Haug S et al. Use of A-type CpG oligodeoxynucleotides as an adjuvant in allergen-specific immunotherapy in humans: a Phase I/IIa clinical trial. Clin. Exp. Allergy39(4), 562–570 (2009).
  • Tse K, Horner AA. Update on Toll-like receptor-directed therapies for human disease. Ann. Rheum. Dis.66(Suppl. 3), iii77–iii80 (2007).
  • Van Duin D, Medzhitov R, Shaw AC. Triggering TLR signaling in vaccination. Trends Immunol.27(1), 49–55 (2006).
  • Friedberg JW, Kelly JL, Neuberg D et al. Phase II study of a TLR-9 agonist (1018 ISS) with rituximab in patients with relapsed or refractory follicular lymphoma. Br. J. Haematol.146(3), 282–291 (2009).
  • Simons MP, O’Donnell MA, Griffith TS. Role of neutrophils in BCG immunotherapy for bladder cancer. Urol. Oncol.26(4), 341–345 (2008).
  • Herr HW, Schwalb DM, Zhang ZF et al. Intravesical bacillus Calmette–Guerin therapy prevents tumor progression and death from superficial bladder cancer: ten-year follow-up of a prospective randomized trial. J. Clin. Oncol.13(6), 1404–1408 (1995).
  • O’Donnell MA, Krohn J, Dewolf WC. Salvage intravesical therapy with interferon-α 2b plus low dose bacillus Calmette–Guerin is effective in patients with superficial bladder cancer in whom bacillus Calmette–Guerin alone previously failed. J. Urol.166(4), 1300–1304, discussion 1304–1305 (2001).
  • Singh GP, Singh U, Diwedi US, Singh PB. BCG plus recombinant interferon α2b in superficial bladder cancer. Indian J. Urol.17(2), 124–126 (2001).
  • Brody JD, Ai WZ, Czerwinski DK et al.In situ vaccination with a TLR9 agonist induces systemic lymphoma regression: a Phase I/II study. J. Clin. Oncol.28(28), 4324–4332 (2010).
  • Carpentier A, Laigle-Donadey F, Zohar S et al. Phase 1 trial of a CpG oligodeoxynucleotide for patients with recurrent glioblastoma. Neuro. Oncol.8(1), 60–66 (2006).
  • Gorski KS, Waller EL, Bjornton-Severson J et al. Distinct indirect pathways govern human NK-cell activation by TLR7 and TLR-8 agonists. Int. Immunol.18(7), 1115–1126 (2006).
  • Stavrakoglou A, Brown VL, Coutts I. Successful treatment of primary cutaneous follicle centre lymphoma with topical 5% imiquimod. Br. J. Dermatol.157(3), 620–622 (2007).
  • Pashenkov M, Goess G, Wagner C et al. Phase II trial of a Toll-like receptor 9-activating oligonucleotide in patients with metastatic melanoma. J. Clin. Oncol.24(36), 5716–5724 (2006).
  • Appay V, Jandus C, Voelter V et al. New generation vaccine induces effective melanoma-specific CD8+ T cells in the circulation but not in the tumor site. J. Immunol.177(3), 1670–1678 (2006).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.