500
Views
54
CrossRef citations to date
0
Altmetric
Review

Induction of cytochrome P450 enzymes: a view on human in vivo findings

Pages 569-585 | Published online: 10 Jan 2014

References

  • Pelkonen O, Turpeinen M, Hakkola J, Honkakoski P, Hukkanen J, Raunio H. Inhibition and induction of human cytochrome P450 enzymes: current status. Arch. Toxicol. 82(10), 667–715 (2008).
  • Kola I. The state of innovation in drug development. Clin. Pharmacol. Ther. 83(2), 227–230 (2008).
  • Tran JQ, Kovacs SJ, McIntosh TS, Davis HM, Martin DE. Morning spot and 24-hour urinary 6 beta-hydroxycortisol to cortisol ratios: intraindividual variability and correlation under basal conditions and conditions of CYP 3A4 induction. J. Clin. Pharmacol. 39(5), 487–494 (1999).
  • Lin JH. CYP induction-mediated drug interactions: in vitro assessment and clinical implications. Pharm. Res. 23(6), 1089–1116 (2006).
  • Fahmi OA, Kish M, Boldt S, Obach RS. Cytochrome P450 3A4 mRNA is a more reliable marker than CYP3A4 activity for detecting pregnane X receptor-activated induction of drug-metabolizing enzymes. Drug Metab. Dispos. 38(9), 1605–1611 (2010).
  • Polasek TM, Lin FP, Miners JO, Doogue MP. Perpetrators of pharmacokinetic drug–drug interactions arising from altered cytochrome P450 activity: a criteria-based assessment. Br. J. Clin. Pharmacol. 71(5), 727–736 (2011).
  • Nebert DW, Dalton TP, Okey AB, Gonzalez FJ. Role of aryl hydrocarbon receptor-mediated induction of the CYP1 enzymes in environmental toxicity and cancer. J. Biol. Chem. 279(23), 23847–23850 (2004).
  • Saarikoski ST, Rivera SP, Hankinson O, Husgafvel-Pursiainen K. CYP2S1: a short review. Toxicol. Appl. Pharmacol. 207(Suppl. 2), 62–69 (2005).
  • Fritsche E, Schäfer C, Calles C et al. Lightening up the UV response by identification of the arylhydrocarbon receptor as a cytoplasmatic target for ultraviolet B radiation. Proc. Natl Acad. Sci. USA 104(21), 8851–8856 (2007).
  • Opitz CA, Litzenburger UM, Sahm F et al. An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature 478(7368), 197–203 (2011).
  • Adachi J, Mori Y, Matsui S et al. Indirubin and indigo are potent aryl hydrocarbon receptor ligands present in human urine. J. Biol. Chem. 276(34), 31475–31478 (2001).
  • Denison MS, Nagy SR. Activation of the aryl hydrocarbon receptor by structurally diverse exogenous and endogenous chemicals. Annu. Rev. Pharmacol. Toxicol. 43, 309–334 (2003).
  • Song X, Xie M, Zhang H, Li Y, Sachdeva K, Yan B. The pregnane X receptor binds to response elements in a genomic context-dependent manner, and PXR activator rifampicin selectively alters the binding among target genes. Drug Metab. Dispos. 32(1), 35–42 (2004).
  • Kojima K, Nagata K, Matsubara T, Yamazoe Y. Broad but distinct role of pregnane x receptor on the expression of individual cytochrome P450s in human hepatocytes. Drug Metab. Pharmacokinet. 22(4), 276–286 (2007).
  • Miki Y, Suzuki T, Tazawa C, Blumberg B, Sasano H. Steroid and xenobiotic receptor (SXR), cytochrome P450 3A4 and multidrug resistance gene 1 in human adult and fetal tissues. Mol. Cell. Endocrinol. 231(1–2), 75–85 (2005).
  • Ihunnah CA, Jiang M, Xie W. Nuclear receptor PXR, transcriptional circuits and metabolic relevance. Biochim. Biophys. Acta 1812(8), 956–963 (2011).
  • Chang TK, Waxman DJ. Synthetic drugs and natural products as modulators of constitutive androstane receptor (CAR) and pregnane X receptor (PXR). Drug Metab. Rev. 38(1–2), 51–73 (2006).
  • Kojima H, Sata F, Takeuchi S, Sueyoshi T, Nagai T. Comparative study of human and mouse pregnane X receptor agonistic activity in 200 pesticides using in vitro reporter gene assays. Toxicology 280(3), 77–87 (2011).
  • Burk O, Koch I, Raucy J et al. The induction of cytochrome P450 3A5 (CYP3A5) in the human liver and intestine is mediated by the xenobiotic sensors pregnane X receptor (PXR) and constitutively activated receptor (CAR). J. Biol. Chem. 279(37), 38379–38385 (2004).
  • Ferguson SS, Chen Y, LeCluyse EL, Negishi M, Goldstein JA. Human CYP2C8 is transcriptionally regulated by the nuclear receptors constitutive androstane receptor, pregnane X receptor, glucocorticoid receptor, and hepatic nuclear factor 4 alpha. Mol. Pharmacol. 68(3), 747–757 (2005).
  • Wortham M, Czerwinski M, He L, Parkinson A, Wan YJ. Expression of constitutive androstane receptor, hepatic nuclear factor 4 alpha, and P450 oxidoreductase genes determines interindividual variability in basal expression and activity of a broad scope of xenobiotic metabolism genes in the human liver. Drug Metab. Dispos. 35(9), 1700–1710 (2007).
  • Nishimura M, Naito S, Yokoi T. Tissue-specific mRNA expression profiles of human nuclear receptor subfamilies. Drug Metab. Pharmacokinet. 19(2), 135–149 (2004).
  • Tolson AH, Wang H. Regulation of drug-metabolizing enzymes by xenobiotic receptors: PXR and CAR. Adv. Drug Deliv. Rev. 62(13), 1238–1249 (2010).
  • Chen S, Wang K, Wan YJ. Retinoids activate RXR/CAR-mediated pathway and induce CYP3A. Biochem. Pharmacol. 79(2), 270–276 (2010).
  • Wang K, Mendy AJ, Dai G, Luo HR, He L, Wan YJ. Retinoids activate the RXR/SXR-mediated pathway and induce the endogenous CYP3A4 activity in Huh7 human hepatoma cells. Toxicol. Sci. 92(1), 51–60 (2006).
  • Schmitt-Hoffmann AH, Roos B, Sauer J et al. Pharmacokinetic interactions between alitretinoin and ketoconazole or simvastatin or ciclosporin A. Clin. Exp. Dermatol. 36(Suppl. 2), 24–28 (2011).
  • Wakelee HA, Takimoto CH, Lopez-Anaya A et al. The effect of bexarotene on atorvastatin pharmacokinetics: results from a Phase I trial of bexarotene plus chemotherapy in patients with advanced non-small cell lung cancer. Cancer Chemother. Pharmacol. 69(2), 563–571 (2012).
  • Adedoyin A, Stiff DD, Smith DC et al. All-trans-retinoic acid modulation of drug-metabolizing enzyme activities: investigation with selective metabolic drug probes. Cancer Chemother. Pharmacol. 41(2), 133–139 (1998).
  • Higashi E, Fukami T, Itoh M et al. Human CYP2A6 is induced by estrogen via estrogen receptor. Drug Metab. Dispos. 35(10), 1935–1941 (2007).
  • Benowitz NL, Lessov-Schlaggar CN, Swan GE, Jacob P 3rd. Female sex and oral contraceptive use accelerate nicotine metabolism. Clin. Pharmacol. Ther. 79(5), 480–488 (2006).
  • Berlin I, Gasior MJ, Moolchan ET. Sex-based and hormonal contraception effects on the metabolism of nicotine among adolescent tobacco-dependent smokers. Nicotine Tob. Res. 9(4), 493–498 (2007).
  • Sinues B, Fanlo A, Mayayo E et al. CYP2A6 activity in a healthy Spanish population: effect of age, sex, smoking, and oral contraceptives. Hum. Exp. Toxicol. 27(5), 367–372 (2008).
  • Paulmurugan R, Tamrazi A, Massoud TF, Katzenellenbogen JA, Gambhir SS. In vitro and in vivo molecular imaging of estrogen receptor a and ß homo- and heterodimerization: exploration of new modes of receptor regulation. Mol. Endocrinol. 25(12), 2029–2040 (2011).
  • Burns KA, Li Y, Arao Y, Petrovich RM, Korach KS. Selective mutations in estrogen receptor alpha D-domain alters nuclear translocation and non-estrogen response element gene regulatory mechanisms. J. Biol. Chem. 286(14), 12640–12649 (2011).
  • Nicolaides NC, Galata Z, Kino T, Chrousos GP, Charmandari E. The human glucocorticoid receptor: molecular basis of biologic function. Steroids 75(1), 1–12 (2010).
  • Pascussi JM, Drocourt L, Gerbal-Chaloin S, Fabre JM, Maurel P, Vilarem MJ. Dual effect of dexamethasone on CYP3A4 gene expression in human hepatocytes. Sequential role of glucocorticoid receptor and pregnane X receptor. Eur. J. Biochem. 268(24), 6346–6358 (2001).
  • Pascussi JM, Gerbal-Chaloin S, Duret C, Daujat-Chavanieu M, Vilarem MJ, Maurel P. The tangle of nuclear receptors that controls xenobiotic metabolism and transport: crosstalk and consequences. Annu. Rev. Pharmacol. Toxicol. 48, 1–32 (2008).
  • Gerbal-Chaloin S, Daujat M, Pascussi JM, Pichard-Garcia L, Vilarem MJ, Maurel P. Transcriptional regulation of CYP2C9 gene. Role of glucocorticoid receptor and constitutive androstane receptor. J. Biol. Chem. 277(1), 209–217 (2002).
  • Chen Y, Ferguson SS, Negishi M, Goldstein JA. Identification of constitutive androstane receptor and glucocorticoid receptor binding sites in the CYP2C19 promoter. Mol. Pharmacol. 64(2), 316–324 (2003).
  • Hukkanen J, Väisänen T, Lassila A et al. Regulation of CYP3A5 by glucocorticoids and cigarette smoke in human lung-derived cells. J. Pharmacol. Exp. Ther. 304(2), 745–752 (2003).
  • Matsunaga T, Maruyama M, Harada E et al. Expression and induction of CYP3As in human fetal hepatocytes. Biochem. Biophys. Res. Commun. 318(2), 428–434 (2004).
  • Pantuck EJ, Pantuck CB, Garland WA et al. Stimulatory effect of brussels sprouts and cabbage on human drug metabolism. Clin. Pharmacol. Ther. 25(1), 88–95 (1979).
  • Reed GA, Peterson KS, Smith HJ et al. A phase I study of indole-3-carbinol in women: tolerability and effects. Cancer Epidemiol. Biomarkers Prev. 14(8), 1953–1960 (2005).
  • Pantuck EJ, Kuntzman R, Conney AH. Decreased concentration of phenacetin in plasma of cigarette smokers. Science 175(4027), 1248–1250 (1972).
  • Hunt SN, Jusko WJ, Yurchak AM. Effect of smoking on theophylline disposition. Clin. Pharmacol. Ther. 19(5 Pt 1), 546–551 (1976).
  • Pantuck EJ, Hsiao KC, Conney AH et al. Effect of charcoal-broiled beef on phenacetin metabolism in man. Science 194(4269), 1055–1057 (1976).
  • Kappas A, Alvares AP, Anderson KE et al. Effect of charcoal-broiled beef on antipyrine and theophylline metabolism. Clin. Pharmacol. Ther. 23(4), 445–450 (1978).
  • Fontana RJ, Lown KS, Paine MF et al. Effects of a chargrilled meat diet on expression of CYP3A, CYP1A, and P-glycoprotein levels in healthy volunteers. Gastroenterology 117(1), 89–98 (1999).
  • Horn EP, Tucker MA, Lambert G et al. A study of gender-based cytochrome P4501A2 variability: a possible mechanism for the male excess of bladder cancer. Cancer Epidemiol. Biomarkers Prev. 4(5), 529–533 (1995).
  • Djordjevic N, Ghotbi R, Bertilsson L, Jankovic S, Aklillu E. Induction of CYP1A2 by heavy coffee consumption in Serbs and Swedes. Eur. J. Clin. Pharmacol. 64(4), 381–385 (2008).
  • Abraham K, Geusau A, Tosun Y, Helge H, Bauer S, Brockmöller J. Severe 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) intoxication: insights into the measurement of hepatic cytochrome P450 1A2 induction. Clin. Pharmacol. Ther. 72(2), 163–174 (2002).
  • Sinha R, Rothman N, Brown ED et al. Pan-fried meat containing high levels of heterocyclic aromatic amines but low levels of polycyclic aromatic hydrocarbons induces cytochrome P4501A2 activity in humans. Cancer Res. 54(23), 6154–6159 (1994).
  • Lambert GH, Schoeller DA, Humphrey HE et al. The caffeine breath test and caffeine urinary metabolite ratios in the Michigan cohort exposed to polybrominated biphenyls: a preliminary study. Environ. Health Perspect. 89, 175–181 (1990).
  • Fitzgerald EF, Hwang SA, Lambert G, Gomez M, Tarbell A. PCB exposure and in vivo CYP1A2 activity among Native Americans. Environ. Health Perspect. 113(3), 272–277 (2005).
  • Diaz D, Fabre I, Daujat M et al. Omeprazole is an aryl hydrocarbon-like inducer of human hepatic cytochrome P450. Gastroenterology 99(3), 737–747 (1990).
  • Rost KL, Brösicke H, Heinemeyer G, Roots I. Specific and dose-dependent enzyme induction by omeprazole in human beings. Hepatology 20(5), 1204–1212 (1994).
  • Smith G, Ibbotson SH, Comrie MM et al. Regulation of cutaneous drug-metabolizing enzymes and cytoprotective gene expression by topical drugs in human skin in vivo. Br. J. Dermatol. 155(2), 275–281 (2006).
  • Lønning E, Kvinnsland S, Bakke OM. Effect of aminoglutethimide on antipyrine, theophylline, and digitoxin disposition in breast cancer. Clin. Pharmacol. Ther. 36(6), 796–802 (1984).
  • Pieniaszek HJ Jr, Davidson AF, Benedek IH. Effect of moricizine on the pharmacokinetics of single-dose theophylline in healthy subjects. Ther. Drug Monit. 15(3), 199–203 (1993).
  • Kirby BJ, Collier AC, Kharasch ED et al. Complex drug interactions of HIV protease inhibitors 2: in vivo induction and in vitro to in vivo correlation of induction of cytochrome P450 1A2, 2B6, and 2C9 by ritonavir or nelfinavir. Drug Metab. Dispos. 39(12), 2329–2337 (2011).
  • Robson RA, Miners JO, Wing LM, Birkett DJ. Theophylline-rifampicin interaction: non-selective induction of theophylline metabolic pathways. Br. J. Clin. Pharmacol. 18(3), 445–448 (1984).
  • Wietholtz H, Zysset T, Marschall HU, Generet K, Matern S. The influence of rifampin treatment on caffeine clearance in healthy man. J. Hepatol. 22(1), 78–81 (1995).
  • Backman JT, Granfors MT, Neuvonen PJ. Rifampicin is only a weak inducer of CYP1A2-mediated presystemic and systemic metabolism: studies with tizanidine and caffeine. Eur. J. Clin. Pharmacol. 62(6), 451–461 (2006).
  • Hsu A, Granneman GR, Bertz RJ. Ritonavir. Clinical pharmacokinetics and interactions with other anti-HIV agents. Clin. Pharmacokinet. 35(4), 275–291 (1998).
  • Penzak SR, Hon YY, Lawhorn WD, Shirley KL, Spratlin V, Jann MW. Influence of ritonavir on olanzapine pharmacokinetics in healthy volunteers. J. Clin. Psychopharmacol. 22(4), 366–370 (2002).
  • Birkett DJ, Miners JO, Attwood J. Evidence for a dual action of sulphinpyrazone on drug metabolism in man: theophylline-sulphinpyrazone interaction. Br. J. Clin. Pharmacol. 15(5), 567–569 (1983).
  • Landay RA, Gonzalez MA, Taylor JC. Effect of phenobarbital on theophylline disposition. J. Allergy Clin. Immunol. 62(1), 27–29 (1978).
  • Dahlqvist R, Steiner E, Koike Y, von Bahr C, Lind M, Billing B. Induction of theophylline metabolism by pentobarbital. Ther. Drug Monit. 11(4), 408–410 (1989).
  • Lucas RA, Gilfillan DJ, Bergstrom RF. A pharmacokinetic interaction between carbamazepine and olanzapine: observations on possible mechanism. Eur. J. Clin. Pharmacol. 54(8), 639–643 (1998).
  • Parker AC, Pritchard P, Preston T, Choonara I. Induction of CYP1A2 activity by carbamazepine in children using the caffeine breath test. Br. J. Clin. Pharmacol. 45(2), 176–178 (1998).
  • Wietholtz H, Zysset T, Kreiten K, Kohl D, Büchsel R, Matern S. Effect of phenytoin, carbamazepine, and valproic acid on caffeine metabolism. Eur. J. Clin. Pharmacol. 36(4), 401–406 (1989).
  • Miller M, Cosgriff J, Kwong T, Morken DA. Influence of phenytoin on theophylline clearance. Clin. Pharmacol. Ther. 35(5), 666–669 (1984).
  • Oscarson M, Zanger UM, Rifki OF, Klein K, Eichelbaum M, Meyer UA. Transcriptional profiling of genes induced in the livers of patients treated with carbamazepine. Clin. Pharmacol. Ther. 80(5), 440–456 (2006).
  • Maglich JM, Stoltz CM, Goodwin B, Hawkins-Brown D, Moore JT, Kliewer SA. Nuclear pregnane x receptor and constitutive androstane receptor regulate overlapping but distinct sets of genes involved in xenobiotic detoxification. Mol. Pharmacol. 62(3), 638–646 (2002).
  • Soto J, Alsar MJ. A pilot study of the effect of antipyrine on caffeine kinetics in six healthy volunteer subjects. J. Clin. Pharm. Ther. 22(3), 191–195 (1997).
  • Chang TK, Chen J, Pillay V, Ho JY, Bandiera SM. Real-time polymerase chain reaction analysis of CYP1B1 gene expression in human liver. Toxicol. Sci. 71(1), 11–19 (2003).
  • Hakkola J, Pelkonen O, Pasanen M, Raunio H. Xenobiotic-metabolizing cytochrome P450 enzymes in the human feto-placental unit: role in intrauterine toxicity. Crit. Rev. Toxicol. 28(1), 35–72 (1998).
  • Hukkanen J, Pelkonen O, Hakkola J, Raunio H. Expression and regulation of xenobiotic-metabolizing cytochrome P450 (CYP) enzymes in human lung. Crit. Rev. Toxicol. 32(5), 391–411 (2002).
  • Huuskonen P, Storvik M, Reinisalo M et al. Microarray analysis of the global alterations in the gene expression in the placentas from cigarette-smoking mothers. Clin. Pharmacol. Ther. 83(4), 542–550 (2008).
  • Chi AC, Appleton K, Henriod JB et al. Differential induction of CYP1A1 and CYP1B1 by benzo[a]pyrene in oral squamous cell carcinoma cell lines and by tobacco smoking in oral mucosa. Oral Oncol. 45(11), 980–985 (2009).
  • Lucier GW, Nelson KG, Everson RB et al. Placental markers of human exposure to polychlorinated biphenyls and polychlorinated dibenzofurans. Environ. Health Perspect. 76, 79–87 (1987).
  • Katiyar SK, Matsui MS, Mukhtar H. Ultraviolet-B exposure of human skin induces cytochromes P450 1A1 and 1B1. J Invest. Dermatol. 114(2), 328–333 (2000).
  • Hanaoka T, Yamano Y, Pan G et al. Cytochrome P450 1B1 mRNA levels in peripheral blood cells and exposure to polycyclic aromatic hydrocarbons in Chinese coke oven workers. Sci. Total Environ. 296(1–3), 27–33 (2002).
  • Hu SW, Chen CC, Kuo CY, Lin WH, Lin P. Increased cytochrome P4501B1 gene expression in peripheral leukocytes of municipal waste incinerator workers. Toxicol. Lett. 160(2), 112–120 (2006).
  • McDonnell WM, Scheiman JM, Traber PG. Induction of cytochrome P450IA genes (CYP1A) by omeprazole in the human alimentary tract. Gastroenterology 103(5), 1509–1516 (1992).
  • Chen Y, Xiao P, Ou-Yang DS et al. Simultaneous action of the flavonoid quercetin on cytochrome P450 (CYP) 1A2, CYP2A6, N-acetyltransferase and xanthine oxidase activity in healthy volunteers. Clin. Exp. Pharmacol. Physiol. 36(8), 828–833 (2009).
  • Chen Y, Xiao CQ, He YJ et al. Genistein alters caffeine exposure in healthy female volunteers. Eur. J. Clin. Pharmacol. 67(4), 347–353 (2011).
  • Asimus S, Hai TN, Van Huong N, Ashton M. Artemisinin and CYP2A6 activity in healthy subjects. Eur. J. Clin. Pharmacol. 64(3), 283–292 (2008).
  • Williams JM, Gandhi KK, Benowitz NL. Carbamazepine but not valproate induces CYP2A6 activity in smokers with mental illness. Cancer Epidemiol. Biomarkers Prev. 19(10), 2582–2589 (2010).
  • Kyerematen GA, Morgan M, Warner G, Martin LF, Vesell ES. Metabolism of nicotine by hepatocytes. Biochem. Pharmacol. 40(8), 1747–1756 (1990).
  • Yamano S, Tatsuno J, Gonzalez FJ. The CYP2A3 gene product catalyzes coumarin 7-hydroxylation in human liver microsomes. Biochemistry 29(5), 1322–1329 (1990).
  • Cashman JR, Park SB, Yang ZC, Wrighton SA, Jacob P 3rd, Benowitz NL. Metabolism of nicotine by human liver microsomes: stereoselective formation of trans-nicotine N’-oxide. Chem. Res. Toxicol. 5(5), 639–646 (1992).
  • Itoh M, Nakajima M, Higashi E et al. Induction of human CYP2A6 is mediated by the pregnane X receptor with peroxisome proliferator-activated receptor-gamma coactivator 1alpha. J. Pharmacol. Exp. Ther. 319(2), 693–702 (2006).
  • López-Cortés LF, Ruiz-Valderas R, Viciana P et al. Pharmacokinetic interactions between efavirenz and rifampicin in HIV-infected patients with tuberculosis. Clin. Pharmacokinet. 41(9), 681–690 (2002).
  • Loboz KK, Gross AS, Williams KM et al. Cytochrome P450 2B6 activity as measured by bupropion hydroxylation: effect of induction by rifampin and ethnicity. Clin. Pharmacol. Ther. 80(1), 75–84 (2006).
  • Kharasch ED, Mitchell D, Coles R, Blanco R. Rapid clinical induction of hepatic cytochrome P4502B6 activity by ritonavir. Antimicrob. Agents Chemother. 52(5), 1663–1669 (2008).
  • Lei HP, Yu XY, Xie HT et al. Effect of St. John’s wort supplementation on the pharmacokinetics of bupropion in healthy male Chinese volunteers. Xenobiotica. 40(4), 275–281 (2010).
  • Moore LB, Goodwin B, Jones SA et al. St. John’s wort induces hepatic drug metabolism through activation of the pregnane X receptor. Proc. Natl Acad. Sci. USA 97(13), 7500–7502 (2000).
  • Simonsson US, Jansson B, Hai TN, Huong DX, Tybring G, Ashton M. Artemisinin autoinduction is caused by involvement of cytochrome P450 2B6 but not 2C9. Clin. Pharmacol. Ther. 74(1), 32–43 (2003).
  • Elsherbiny DA, Asimus SA, Karlsson MO, Ashton M, Simonsson US. A model based assessment of the CYP2B6 and CYP2C19 inductive properties by artemisinin antimalarials: implications for combination regimens. J. Pharmacokinet. Pharmacodyn. 35(2), 203–217 (2008).
  • Ketter TA, Jenkins JB, Schroeder DH et al. Carbamazepine but not valproate induces bupropion metabolism. J. Clin. Psychopharmacol. 15(5), 327–333 (1995).
  • Ji P, Damle B, Xie J, Unger SE, Grasela DM, Kaul S. Pharmacokinetic interaction between efavirenz and carbamazepine after multiple-dose administration in healthy subjects. J. Clin. Pharmacol. 48(8), 948–956 (2008).
  • Robertson SM, Maldarelli F, Natarajan V, Formentini E, Alfaro RM, Penzak SR. Efavirenz induces CYP2B6-mediated hydroxylation of bupropion in healthy subjects. J. Acquir. Immune Defic. Syndr. 49(5), 513–519 (2008).
  • Ngaimisi E, Mugusi S, Minzi OM et al. Long-term efavirenz autoinduction and its effect on plasma exposure in HIV patients. Clin. Pharmacol. Ther. 88(5), 676–684 (2010).
  • Jao JY, Jusko WJ, Cohen JL. Phenobarbital effects on cyclophosphamide pharmacokinetics in man. Cancer Res. 32(12), 2761–2764 (1972).
  • Slattery JT, Kalhorn TF, McDonald GB et al. Conditioning regimen-dependent disposition of cyclophosphamide and hydroxycyclophosphamide in human marrow transplantation patients. J. Clin. Oncol. 14(5), 1484–1494 (1996).
  • Williams ML, Wainer IW, Embree L, Barnett M, Granvil CL, Ducharme MP. Enantioselective induction of cyclophosphamide metabolism by phenytoin. Chirality 11(7), 569–574 (1999).
  • Saussele T, Burk O, Blievernicht JK et al. Selective induction of human hepatic cytochromes P450 2B6 and 3A4 by metamizole. Clin. Pharmacol. Ther. 82(3), 265–274 (2007).
  • Fan L, Wang JC, Jiang F et al. Induction of cytochrome P450 2B6 activity by the herbal medicine baicalin as measured by bupropion hydroxylation. Eur. J. Clin. Pharmacol. 65(4), 403–409 (2009).
  • Li C, Lin G, Zuo Z. Pharmacological effects and pharmacokinetics properties of Radix Scutellariae and its bioactive flavones. Biopharm. Drug Dispos. 32(8), 427–445 (2011).
  • Akao T, Kawabata K, Yanagisawa E et al. Baicalin, the predominant flavone glucuronide of scutellariae radix, is absorbed from the rat gastrointestinal tract as the aglycone and restored to its original form. J. Pharm. Pharmacol. 52(12), 1563–1568 (2000).
  • Li Y, Wang Q, Yao X. Induction of CYP3A4 and MDR1 gene expression by baicalin, baicalein, chlorogenic acid, and ginsenoside Rf through constitutive androstane receptor- and pregnane X receptor-mediated pathways. Eur. J. Pharmacol. 640(1–3), 46–54 (2010).
  • Niemi M, Backman JT, Neuvonen M, Neuvonen PJ, Kivistö KT. Rifampin decreases the plasma concentrations and effects of repaglinide. Clin. Pharmacol. Ther. 68(5), 495–500 (2000).
  • Park JY, Kim KA, Kang MH, Kim SL, Shin JG. Effect of rifampin on the pharmacokinetics of rosiglitazone in healthy subjects. Clin. Pharmacol. Ther. 75(3), 157–162 (2004).
  • Niemi M, Backman JT, Neuvonen PJ. Effects of trimethoprim and rifampin on the pharmacokinetics of the cytochrome P450 2C8 substrate rosiglitazone. Clin. Pharmacol. Ther. 76(3), 239–249 (2004).
  • Jaakkola T, Backman JT, Neuvonen M, Laitila J, Neuvonen PJ. Effect of rifampicin on the pharmacokinetics of pioglitazone. Br. J. Clin. Pharmacol. 61(1), 70–78 (2006).
  • Glaeser H, Drescher S, Eichelbaum M, Fromm MF. Influence of rifampicin on the expression and function of human intestinal cytochrome P450 enzymes. Br. J. Clin. Pharmacol. 59(2), 199–206 (2005).
  • Lønning PE, Kvinnsland S, Jahren G. Aminoglutethimide and warfarin. A new important drug interaction. Cancer Chemother. Pharmacol. 12(1), 10–12 (1984).
  • Lønning PE, Ueland PM, Kvinnsland S. The influence of a graded dose schedule of aminoglutethimide on the disposition of the optical enantiomers of warfarin in patients with breast cancer. Cancer Chemother. Pharmacol. 17(2), 177–181 (1986).
  • Shadle CR, Lee Y, Majumdar AK et al. Evaluation of potential inductive effects of aprepitant on cytochrome P450 3A4 and 2C9 activity. J. Clin. Pharmacol. 44(3), 215–223 (2004).
  • Depré M, Van Hecken A, Oeyen M et al. Effect of aprepitant on the pharmacokinetics and pharmacodynamics of warfarin. Eur. J. Clin. Pharmacol. 61(5–6), 341–346 (2005).
  • Sahi J, Stern RH, Milad MA et al. Effects of avasimibe on cytochrome P450 2C9 expression in vitro and in vivo. Drug Metab. Dispos. 32(12), 1370–1376 (2004).
  • Weber C, Banken L, Birnboeck H, Schulz R. Effect of the endothelin-receptor antagonist bosentan on the pharmacokinetics and pharmacodynamics of warfarin. J. Clin. Pharmacol. 39(8), 847–854 (1999).
  • van Giersbergen PL, Treiber A, Clozel M, Bodin F, Dingemanse J. In vivo and in vitro studies exploring the pharmacokinetic interaction between bosentan, a dual endothelin receptor antagonist, and glyburide. Clin. Pharmacol. Ther. 71(4), 253–262 (2002).
  • Corn M. Effect of phenobarbital and glutethimide on biological half-life of warfarin. Thromb. Diath. Haemorrh. 16(3), 606–612 (1966).
  • Udall JA. Clinical implications of warfarin interactions with five sedatives. Am. J. Cardiol. 35(1), 67–71 (1975).
  • O’Reilly RA. Interaction of sodium warfarin and rifampin. Studies in man. Ann. Intern. Med. 81(3), 337–340 (1974).
  • Zilly W, Breimer DD, Richter E. Induction of drug metabolism in man after rifampicin treatment measured by increased hexobarbital and tolbutamide clearance. Eur. J. Clin. Pharmacol. 9(2–3), 219–227 (1975).
  • Williamson KM, Patterson JH, McQueen RH, Adams KF Jr, Pieper JA. Effects of erythromycin or rifampin on losartan pharmacokinetics in healthy volunteers. Clin. Pharmacol. Ther. 63(3), 316–323 (1998).
  • Lim ML, Min SS, Eron JJ et al. Coadministration of lopinavir/ritonavir and phenytoin results in two-way drug interaction through cytochrome P-450 induction. J. Acquir. Immune Defic. Syndr. 36(5), 1034–1040 (2004).
  • Yeh RF, Gaver VE, Patterson KB et al. Lopinavir/ritonavir induces the hepatic activity of cytochrome P450 enzymes CYP2C9, CYP2C19, and CYP1A2 but inhibits the hepatic and intestinal activity of CYP3A as measured by a phenotyping drug cocktail in healthy volunteers. J. Acquir. Immune Defic. Syndr. 42(1), 52–60 (2006).
  • Jiang X, Williams KM, Liauw WS et al. Effect of St John’s wort and ginseng on the pharmacokinetics and pharmacodynamics of warfarin in healthy subjects. Br. J. Clin. Pharmacol. 57(5), 592–599 (2004).
  • Jiang X, Blair EY, McLachlan AJ. Investigation of the effects of herbal medicines on warfarin response in healthy subjects: a population pharmacokinetic-pharmacodynamic modeling approach. J. Clin. Pharmacol. 46(11), 1370–1378 (2006).
  • Breckenridge A, Orme M. Clinical implications of enzyme induction. Ann. N. Y. Acad. Sci. 179, 421–431 (1971).
  • Orme M, Breckenridge A. Enantiomers of warfarin and phenobarbital. N. Engl. J. Med. 295(26), 1482–1483 (1976).
  • Yoshida N, Oda Y, Nishi S et al. Effect of barbiturate therapy on phenytoin pharmacokinetics. Crit. Care Med. 21(10), 1514–1522 (1993).
  • Lai ML, Lin TS, Huang JD. Effect of single- and multiple-dose carbamazepine on the pharmacokinetics of diphenylhydantoin. Eur. J. Clin. Pharmacol. 43(2), 201–203 (1992).
  • Herman D, Locatelli I, Grabnar I et al. The influence of co-treatment with carbamazepine, amiodarone and statins on warfarin metabolism and maintenance dose. Eur. J. Clin. Pharmacol. 62(4), 291–296 (2006).
  • Dickinson RG, Hooper WD, Patterson M, Eadie MJ, Maguire B. Extent of urinary excretion of p-hydroxyphenytoin in healthy subjects given phenytoin. Ther. Drug Monit. 7(3), 283–289 (1985).
  • Chetty M, Miller R, Seymour MA. Phenytoin auto-induction. Ther. Drug Monit. 20(1), 60–62 (1998).
  • Zhou HH, Anthony LB, Wood AJ, Wilkinson GR. Induction of polymorphic 4’-hydroxylation of S-mephenytoin by rifampicin. Br. J. Clin. Pharmacol. 30(3), 471–475 (1990).
  • Dumond JB, Vourvahis M, Rezk NL et al. A phenotype-genotype approach to predicting CYP450 and p-glycoprotein drug interactions with the mixed inhibitor/inducer tipranavir/ritonavir. Clin. Pharmacol. Ther. 87(6), 735–742 (2010).
  • Wang LS, Zhou G, Zhu B et al. St John’s wort induces both cytochrome P450 3A4-catalyzed sulfoxidation and 2C19-dependent hydroxylation of omeprazole. Clin. Pharmacol. Ther. 75(3), 191–197 (2004).
  • Wang LS, Zhu B, Abd El-Aty AM et al. The influence of St John’s wort on CYP2C19 activity with respect to genotype. J. Clin. Pharmacol. 44(6), 577–581 (2004).
  • Svensson US, Ashton M, Trinh NH et al. Artemisinin induces omeprazole metabolism in human beings. Clin. Pharmacol. Ther. 64(2), 160–167 (1998).
  • Mihara K, Svensson US, Tybring G, Hai TN, Bertilsson L, Ashton M. Stereospecific analysis of omeprazole supports artemisinin as a potent inducer of CYP2C19. Fundam. Clin. Pharmacol. 13(6), 671–675 (1999).
  • Asimus S, Elsherbiny D, Hai TN et al. Artemisinin antimalarials moderately affect cytochrome P450 enzyme activity in healthy subjects. Fundam. Clin. Pharmacol. 21(3), 307–316 (2007).
  • Fan L, Wang G, Wang LS et al. Herbal medicine yin zhi huang induces CYP3A4-mediated sulfoxidation and CYP2C19-dependent hydroxylation of omeprazole. Acta Pharmacol. Sin. 28(10), 1685–1692 (2007).
  • Richter E, Breimer DD, Zilly W. Disposition of hexobarbital in intra- and extrahepatic cholestasis in man and the influence of drug metabolism-inducing agents. Eur. J. Clin. Pharmacol. 17(3), 197–202 (1980).
  • Heinemeyer G, Gramm HJ, Simgen W, Dennhardt R, Roots I. Kinetics of hexobarbital and dipyrone in critical care patients receiving high-dose pentobarbital. Eur. J. Clin. Pharmacol. 32(3), 273–277 (1987).
  • Michaud V, Ogburn E, Thong N et al. Induction of CYP2C19 and CYP3A activity following repeated administration of efavirenz in healthy volunteers. Clin. Pharmacol. Ther. 91(3), 475–482 (2012).
  • Lecamwasam DS, Franklin C, Turner P. Effect of phenobarbitone on hepatic drug-metabolizing enzymes and urinary d-glucaric acid excretion in man. Br. J. Clin. Pharmacol. 2(3), 257–262 (1975).
  • Ohnhaus EE, Park BK, Colombo JP, Heizmann P. The effect of enzyme induction on diazepam metabolism in man. Br. J. Clin. Pharmacol. 8(6), 557–563 (1979).
  • Ohnhaus EE, Brockmeyer N, Dylewicz P, Habicht H. The effect of antipyrine and rifampin on the metabolism of diazepam. Clin. Pharmacol. Ther. 42(2), 148–156 (1987).
  • Schellens JH, van der Wart JH, Brugman M, Breimer DD. Influence of enzyme induction and inhibition on the oxidation of nifedipine, sparteine, mephenytoin and antipyrine in humans as assessed by a “cocktail” study design. J. Pharmacol. Exp. Ther. 249(2), 638–645 (1989).
  • Hadama A, Ieiri I, Morita T et al. P-hydroxylation of phenobarbital: relationship to (S)-mephenytoin hydroxylation (CYP2C19) polymorphism. Ther. Drug Monit. 23(2), 115–118 (2001).
  • Cederbaum AI. CYP2E1 – biochemical and toxicological aspects and role in alcohol-induced liver injury. Mt. Sinai J. Med. 73(4), 657–672 (2006).
  • Badger TM, Huang J, Ronis M, Lumpkin CK. Induction of cytochrome P450 2E1 during chronic ethanol exposure occurs via transcription of the CYP 2E1 gene when blood alcohol concentrations are high. Biochem. Biophys. Res. Commun. 190(3), 780–785 (1993).
  • Perrot N, Nalpas B, Yang CS, Beaune PH. Modulation of cytochrome P450 isozymes in human liver, by ethanol and drug intake. Eur. J. Clin. Invest. 19(6), 549–555 (1989).
  • Tsutsumi M, Lasker JM, Shimizu M, Rosman AS, Lieber CS. The intralobular distribution of ethanol-inducible P450IIE1 in rat and human liver. Hepatology 10(4), 437–446 (1989).
  • Takahashi T, Lasker JM, Rosman AS, Lieber CS. Induction of cytochrome P-4502E1 in the human liver by ethanol is caused by a corresponding increase in encoding messenger RNA. Hepatology 17(2), 236–245 (1993).
  • Girre C, Lucas D, Hispard E, Menez C, Dally S, Menez JF. Assessment of cytochrome P4502E1 induction in alcoholic patients by chlorzoxazone pharmacokinetics. Biochem. Pharmacol. 47(9), 1503–1508 (1994).
  • Oneta CM, Lieber CS, Li J et al. Dynamics of cytochrome P4502E1 activity in man: induction by ethanol and disappearance during withdrawal phase. J. Hepatol. 36(1), 47–52 (2002).
  • Raucy JL, Schultz ED, Wester MR et al. Human lymphocyte cytochrome P450 2E1, a putative marker for alcohol-mediated changes in hepatic chlorzoxazone activity. Drug Metab. Dispos. 25(12), 1429–1435 (1997).
  • Raucy JL, Schultz ED, Kearins MC et al. CYP2E1 expression in human lymphocytes from various ethnic populations. Alcohol. Clin. Exp. Res. 23(12), 1868–1874 (1999).
  • Rasheed A, Hines RN, McCarver-May DG. Variation in induction of human placental CYP2E1: possible role in susceptibility to fetal alcohol syndrome? Toxicol. Appl. Pharmacol. 144(2), 396–400 (1997).
  • Millonig G, Wang Y, Homann N et al. Ethanol-mediated carcinogenesis in the human esophagus implicates CYP2E1 induction and the generation of carcinogenic DNA-lesions. Int. J. Cancer 128(3), 533–540 (2011).
  • Mazze RI, Woodruff RE, Heerdt ME. Isoniazid-induced enflurane defluorination in humans. Anesthesiology 57(1), 5–8 (1982).
  • Zand R, Nelson SD, Slattery JT et al. Inhibition and induction of cytochrome P4502E1-catalyzed oxidation by isoniazid in humans. Clin. Pharmacol. Ther. 54(2), 142–149 (1993).
  • O’Shea D, Kim RB, Wilkinson GR. Modulation of CYP2E1 activity by isoniazid in rapid and slow N-acetylators. Br. J. Clin. Pharmacol. 43(1), 99–103 (1997).
  • Chien JY, Peter RM, Nolan CM et al. Influence of polymorphic N-acetyltransferase phenotype on the inhibition and induction of acetaminophen bioactivation with long-term isoniazid. Clin. Pharmacol. Ther. 61(1), 24–34 (1997).
  • Prieto-Castelló MJ, Cardona A, Marhuenda D, Roel JM, Corno A. Use of the CYP2E1 genotype and phenotype for the biological monitoring of occupational exposure to styrene. Toxicol. Lett. 192(1), 34–39 (2010).
  • Wongvijitsuk S, Navasumrit P, Vattanasit U, Parnlob V, Ruchirawat M. Low level occupational exposure to styrene: its effects on DNA damage and DNA repair. Int. J. Hyg. Environ. Health 214(2), 127–137 (2011).
  • Mendoza-Cantú A, Castorena-Torres F, Bermúdez de León M et al. Occupational toluene exposure induces cytochrome P450 2E1 mRNA expression in peripheral lymphocytes. Environ. Health Perspect. 114(4), 494–499 (2006).
  • Benowitz NL, Peng M, Jacob P 3rd. Effects of cigarette smoking and carbon monoxide on chlorzoxazone and caffeine metabolism. Clin. Pharmacol. Ther. 74(5), 468–474 (2003).
  • Oyama T, Sugio K, Uramoto H et al. Increased cytochrome P450 and aryl hydrocarbon receptor in bronchial epithelium of heavy smokers with non-small cell lung carcinoma carries a poor prognosis. Front. Biosci. 12, 4497–4503 (2007).
  • Howard LA, Miksys S, Hoffmann E, Mash D, Tyndale RF. Brain CYP2E1 is induced by nicotine and ethanol in rat and is higher in smokers and alcoholics. Br. J. Pharmacol. 138(7), 1376–1386 (2003).
  • Gyamfi MA, Kocsis MG, He L, Dai G, Mendy AJ, Wan YJ. The role of retinoid X receptor alpha in regulating alcohol metabolism. J. Pharmacol. Exp. Ther. 319(1), 360–368 (2006).
  • Cai Y, Dai T, Ao Y et al. Cytochrome P450 genes are differentially expressed in female and male hepatocyte retinoid X receptor alpha-deficient mice. Endocrinology 144(6), 2311–2318 (2003).
  • Gurley BJ, Gardner SF, Hubbard MA et al. Cytochrome P450 phenotypic ratios for predicting herb-drug interactions in humans. Clin. Pharmacol. Ther. 72(3), 276–287 (2002).
  • Gurley BJ, Gardner SF, Hubbard MA et al. Clinical assessment of effects of botanical supplementation on cytochrome P450 phenotypes in the elderly: St John’s wort, garlic oil, Panax ginseng and Ginkgo biloba. Drugs Aging 22(6), 525–539 (2005).
  • Smith G, Wolf CR, Deeni YY et al. Cutaneous expression of cytochrome P450 CYP2S1: individuality in regulation by therapeutic agents for psoriasis and other skin diseases. Lancet 361(9366), 1336–1343 (2003).
  • Zhou SF. Drugs behave as substrates, inhibitors and inducers of human cytochrome P450 3A4. Curr. Drug Metab. 9(4), 310–322 (2008).
  • Lamba JK, Lin YS, Schuetz EG, Thummel KE. Genetic contribution to variable human CYP3A-mediated metabolism. Adv. Drug Deliv. Rev. 54(10), 1271–1294 (2002).
  • Klosterskov Jensen P, Saano V, Haring P, Svenstrup B, Menge GP. Possible interaction between oxcarbazepine and an oral contraceptive. Epilepsia 33(6), 1149–1152 (1992).
  • Zaccara G, Gangemi PF, Bendoni L, Menge GP, Schwabe S, Monza GC. Influence of single and repeated doses of oxcarbazepine on the pharmacokinetic profile of felodipine. Ther. Drug Monit. 15(1), 39–42 (1993).
  • Andreasen AH, Brøsen K, Damkier P. A comparative pharmacokinetic study in healthy volunteers of the effect of carbamazepine and oxcarbazepine on cyp3a4. Epilepsia 48(3), 490–496 (2007).
  • Rosenfeld WE, Doose DR, Walker SA, Nayak RK. Effect of topiramate on the pharmacokinetics of an oral contraceptive containing norethindrone and ethinyl estradiol in patients with epilepsy. Epilepsia 38(3), 317–323 (1997).
  • Schöller-Gyüre M, Kakuda TN, Raoof A, De Smedt G, Hoetelmans RM. Clinical pharmacokinetics and pharmacodynamics of etravirine. Clin. Pharmacokinet. 48(9), 561–574 (2009).
  • Hsu A, Granneman GR, Witt G et al. Multiple-dose pharmacokinetics of ritonavir in human immunodeficiency virus-infected subjects. Antimicrob. Agents Chemother. 41(5), 898–905 (1997).
  • Ouellet D, Hsu A, Qian J et al. Effect of ritonavir on the pharmacokinetics of ethinyl oestradiol in healthy female volunteers. Br. J. Clin. Pharmacol. 46(2), 111–116 (1998).
  • Sahi J, Milad MA, Zheng X et al. Avasimibe induces CYP3A4 and multiple drug resistance protein 1 gene expression through activation of the pregnane X receptor. J. Pharmacol. Exp. Ther. 306(3), 1027–1034 (2003).
  • Weber C, Schmitt R, Birnboeck H et al. Multiple-dose pharmacokinetics, safety, and tolerability of bosentan, an endothelin receptor antagonist, in healthy male volunteers. J. Clin. Pharmacol. 39(7), 703–714 (1999).
  • Dingemanse J, Schaarschmidt D, van Giersbergen PL. Investigation of the mutual pharmacokinetic interactions between bosentan, a dual endothelin receptor antagonist, and simvastatin. Clin. Pharmacokinet. 42(3), 293–301 (2003).
  • Heinemeyer G, Roots I, Lestau P, Klaiber HR, Dennhardt R. d-Glucaric acid excretion in critical care patients – comparison with 6 beta-hydroxycortisol excretion and serum gamma-glutamyltranspeptidase activity and relation to multiple drug therapy. Br. J. Clin. Pharmacol. 21(1), 9–18 (1986).
  • Bledsoe T, Island DP, Ney RL, Liddle GW. An effect of O,P’-ddd on the extra-adrenal metabolism of cortisol in man. J. Clin. Endocrinol. Metab. 24, 1303–1311 (1964).
  • van Erp NP, Guchelaar HJ, Ploeger BA, Romijn JA, Hartigh J, Gelderblom H. Mitotane has a strong and a durable inducing effect on CYP3A4 activity. Eur. J. Endocrinol. 164(4), 621–626 (2011).
  • Shimizu T, Akimoto K, Yoshimura T et al. Autoinduction of MKC-963 [®-1-(1-cyclohexylethylamino)-4-phenylphthalazine] metabolism in healthy volunteers and its retrospective evaluation using primary human hepatocytes and cDNA-expressed enzymes. Drug Metab. Dispos. 34(6), 950–954 (2006).
  • Shum L, Pieniaszek HJ Jr, Robinson CA et al. Pharmacokinetic interactions of moricizine and diltiazem in healthy volunteers. J. Clin. Pharmacol. 36(12), 1161–1168 (1996).
  • Lang CC, Jamal SK, Mohamed Z, Mustafa MR, Mustafa AM, Lee TC. Evidence of an interaction between nifedipine and nafcillin in humans. Br. J. Clin. Pharmacol. 55(6), 588–590 (2003).
  • Kuntzman R, Jacobson M, Conney AH. Effect of phenylbutazone on cortisol metabolism in man. Pharmacologist 8, 195 (1966).
  • Walter E, Staiger C, de Vries J et al. Enhanced drug metabolism after sulfinpyrazone treatment in patients aged 50 to 60 years. Klin. Wochenschr. 60(22), 1409–1413 (1982).
  • Staiger C, Schlicht F, Walter E et al. Effect of single and multiple doses of sulphinpyrazone on antipyrine metabolism and urinary excretion of 6-beta-hydroxycortisol. Eur. J. Clin. Pharmacol. 25(6), 797–801 (1983).
  • Wing LM, Miners JO, Lillywhite KJ. Verapamil disposition – effects of sulphinpyrazone and cimetidine. Br. J. Clin. Pharmacol. 19(3), 385–391 (1985).
  • Perucca E, Grimaldi R, Frigo GM, Sardi A, Mönig H, Ohnhaus EE. Comparative effects of rifabutin and rifampicin on hepatic microsomal enzyme activity in normal subjects. Eur. J. Clin. Pharmacol. 34(6), 595–599 (1988).
  • Barditch-Crovo P, Trapnell CB, Ette E et al. The effects of rifampin and rifabutin on the pharmacokinetics and pharmacodynamics of a combination oral contraceptive. Clin. Pharmacol. Ther. 65(4), 428–438 (1999).
  • Ohnhaus EE, Park BK. Measurement of urinary 6-beta-hydroxycortisol excretion as an in vivo parameter in the clinical assessment of the microsomal enzyme-inducing capacity of antipyrine, phenobarbitone and rifampicin. Eur. J. Clin. Pharmacol. 15(2), 139–145 (1979).
  • McAllister WA, Thompson PJ, Al-Habet SM, Rogers HJ. Rifampicin reduces effectiveness and bioavailability of prednisolone. Br. Med. J. (Clin. Res. Ed). 286(6369), 923–925 (1983).
  • Birmingham AT, Coleman AJ, Orme ML et al. Antibacterial activity in serum and urine following oral administration in man of DL473 (a cyclopentyl derivative of rifampicin) [proceedings]. Br. J. Clin. Pharmacol. 6(5), 455P–456P (1978).
  • Vital Durand D, Hampden C, Boobis AR, Park BK, Davies DS. Induction of mixed function oxidase activity in man by rifapentine (MDL 473), a long-acting rifamycin derivative. Br. J. Clin. Pharmacol. 21(1), 1–7 (1986).
  • Koup JR, Anderson GD, Loi CM. Effect of troglitazone on urinary excretion of 6 beta-hydroxycortisol. J. Clin. Pharmacol. 38(9), 815–818 (1998).
  • Loi CM, Stern R, Koup JR, Vassos AB, Knowlton P, Sedman AJ. Effect of troglitazone on the pharmacokinetics of an oral contraceptive agent. J. Clin. Pharmacol. 39(4), 410–417 (1999).
  • Roby CA, Anderson GD, Kantor E, Dryer DA, Burstein AH. St John’s Wort: effect on CYP3A4 activity. Clin. Pharmacol. Ther. 67(5), 451–457 (2000).
  • Piscitelli SC, Burstein AH, Chaitt D, Alfaro RM, Falloon J. Indinavir concentrations and St John’s wort. Lancet 355(9203), 547–548 (2000).
  • Markowitz JS, Donovan JL, Lindsay DeVane C, Sipkes L, Chavin KD. Multiple-dose administration of Ginkgo biloba did not affect cytochrome P-450 2D6 or 3A4 activity in normal volunteers. J. Clin. Psychopharmacol. 23(6), 576–581 (2003).
  • Robertson SM, Davey RT, Voell J, Formentini E, Alfaro RM, Penzak SR. Effect of Ginkgo biloba extract on lopinavir, midazolam and fexofenadine pharmacokinetics in healthy subjects. Curr. Med. Res. Opin. 24(2), 591–599 (2008).
  • Li L, Stanton JD, Tolson AH, Luo Y, Wang H. Bioactive terpenoids and flavonoids from Ginkgo biloba extract induce the expression of hepatic drug-metabolizing enzymes through pregnane X receptor, constitutive androstane receptor, and aryl hydrocarbon receptor-mediated pathways. Pharm. Res. 26(4), 872–882 (2009).
  • Poland A, Smith D, Kuntzman R, Jacobson M, Conney AH. Effect of intensive occupational exposure to DDT on phenylbutazone and cortisol metabolism in human subjects. Clin. Pharmacol. Ther. 11(5), 724–732 (1970).
  • Jager KW. Aldrin, Dieldrin, Endrin and Telodrin: An Epidemiological and Toxicological Study of Long Term Occupational Exposure. Elsevier, Amsterdam, The Netherlands (1970).
  • Tran JQ, Petersen C, Garrett M, Hee B, Kerr BM. Pharmacokinetic interaction between amprenavir and delavirdine: evidence of induced clearance by amprenavir. Clin. Pharmacol. Ther. 72(6), 615–626 (2002).
  • Justesen US, Klitgaard NA, Brosen K, Pedersen C. Pharmacokinetic interaction between amprenavir and delavirdine after multiple-dose administration in healthy volunteers. Br. J. Clin. Pharmacol. 55(1), 100–106 (2003).
  • Kashuba AD, Tierney C, Downey GF et al. Combining fosamprenavir with lopinavir/ritonavir substantially reduces amprenavir and lopinavir exposure: ACTG protocol A5143 results. AIDS 19(2), 145–152 (2005).
  • Moreland TA, Park BK, Rylance GW. Microsomal enzyme induction in children: the influence of carbamazepine treatment on antipyrine kinetics, 6 beta-hydroxycortisol excretion and plasma gamma-glutamyltranspeptidase activity. Br. J. Clin. Pharmacol. 14(6), 861–865 (1982).
  • Crawford P, Chadwick DJ, Martin C, Tjia J, Back DJ, Orme M. The interaction of phenytoin and carbamazepine with combined oral contraceptive steroids. Br. J. Clin. Pharmacol. 30(6), 892–896 (1990).
  • Werk EE Jr, Macgee J, Sholiton LJ. Effect of diphenylhydantoin on cortisol metabolism in man. J. Clin. Invest. 43, 1824–1835 (1964).
  • Mouly S, Lown KS, Kornhauser D et al. Hepatic but not intestinal CYP3A4 displays dose-dependent induction by efavirenz in humans. Clin. Pharmacol. Ther. 72(1), 1–9 (2002).
  • Fellay J, Marzolini C, Decosterd L et al. Variations of CYP3A activity induced by antiretroviral treatment in HIV-1 infected patients. Eur. J. Clin. Pharmacol. 60(12), 865–873 (2005).
  • Mildvan D, Yarrish R, Marshak A et al. Pharmacokinetic interaction between nevirapine and ethinyl estradiol/norethindrone when administered concurrently to HIV-infected women. J. Acquir. Immune Defic. Syndr. 29(5), 471–477 (2002).
  • Solas C, Poizot-Martin I, Drogoul MP et al. Therapeutic drug monitoring of lopinavir/ritonavir given alone or with a non-nucleoside reverse transcriptase inhibitor. Br. J. Clin. Pharmacol. 57(4), 436–440 (2004).
  • Dailly E, Tribut O, Tattevin P et al. Influence of tenofovir, nevirapine and efavirenz on ritonavir-boosted atazanavir pharmacokinetics in HIV-infected patients. Eur. J. Clin. Pharmacol. 62(7), 523–526 (2006).
  • Boehringer-Ingelheim. Tipranavir: Antiviral Drugs Advisory Committee (AVDAC) Briefing Document. NDA 21–814 (2005).
  • Burstein S, Klaiber EL. Phenobarbital-induced increase in 6-beta-hydroxycortisol excretion: clue to its significance in human urine. J. Clin. Endocrinol. Metab. 25, 293–296 (1965).
  • Kuntzman R, Jacobson M, Levin W, Conney AH. Stimulatory effect of N-phenylbarbital (phetharbital) on cortisol hydroxylation in man. Biochem. Pharmacol. 17(4), 565–571 (1968).
  • Berman ML, Green OC. Acute stimulation of cortisol metabolism by pentobarbital in man. Anesthesiology 34(4), 365–369 (1971).
  • Stevenson IH, Browning M, Crooks J, O’Malley K. Changes in human drug metabolism after long-term exposure to hypnotics. Br. Med. J. 4(5836), 322–324 (1972).
  • Smith NF, Mani S, Schuetz EG et al. Induction of CYP3A4 by vinblastine: role of the nuclear receptor NR1I2. Ann. Pharmacother. 44(11), 1709–1717 (2010).
  • Villikka K, Varis T, Backman JT, Neuvonen PJ, Kivistö KT. Effect of methylprednisolone on CYP3A4-mediated drug metabolism in vivo. Eur. J. Clin. Pharmacol. 57(6–7), 457–460 (2001).
  • Kuypers DR, Claes K, Evenepoel P et al. Time-related clinical determinants of long-term tacrolimus pharmacokinetics in combination therapy with mycophenolic acid and corticosteroids: a prospective study in one hundred de novo renal transplant recipients. Clin. Pharmacokinet. 43(11), 741–762 (2004).
  • van Duijnhoven EM, Boots JM, Christiaans MH, Stolk LM, Undre NA, van Hooff JP. Increase in tacrolimus trough levels after steroid withdrawal. Transpl. Int. 16(10), 721–725 (2003).
  • Anglicheau D, Flamant M, Schlageter MH et al. Pharmacokinetic interaction between corticosteroids and tacrolimus after renal transplantation. Nephrol. Dial. Transplant. 18(11), 2409–2414 (2003).
  • Press RR, Ploeger BA, den Hartigh J et al. Explaining variability in ciclosporin exposure in adult kidney transplant recipients. Eur. J. Clin. Pharmacol. 66(6), 579–590 (2010).
  • Watkins PB, Murray SA, Winkelman LG, Heuman DM, Wrighton SA, Guzelian PS. Erythromycin breath test as an assay of glucocorticoid-inducible liver cytochromes P-450. Studies in rats and patients. J. Clin. Invest. 83(2), 688–697 (1989).
  • McCune JS, Hawke RL, LeCluyse EL et al. In vivo and in vitro induction of human cytochrome P4503A4 by dexamethasone. Clin. Pharmacol. Ther. 68(4), 356–366 (2000).
  • Roberts PJ, Rollins KD, Kashuba AD et al. The influence of CYP3A5 genotype on dexamethasone induction of CYP3A activity in African–Americans. Drug Metab. Dispos. 36(8), 1465–1469 (2008).
  • Villikka K, Kivistö KT, Neuvonen PJ. The effect of dexamethasone on the pharmacokinetics of triazolam. Pharmacol. Toxicol. 83(3), 135–138 (1998).
  • Luceri F, Fattori S, Luceri C, Zorn M, Mannaioni P, Messeri G. Gas chromatography–mass spectrometry measurement of 6beta-OH-cortisol/cortisol ratio in human urine: a specific marker of enzymatic induction. Clin. Chem. Lab. Med. 39(12), 1234–1239 (2001).
  • Liangpunsakul S, Kolwankar D, Pinto A, Gorski JC, Hall SD, Chalasani N. Activity of CYP2E1 and CYP3A enzymes in adults with moderate alcohol consumption: a comparison with nonalcoholics. Hepatology 41(5), 1144–1150 (2005).
  • Rahmioglu N, Heaton J, Clement G et al. Genetic epidemiology of induced CYP3A4 activity. Pharmacogenet. Genomics 21(10), 642–651 (2011).
  • Feierman DE, Melinkov Z, Nanji AA. Induction of CYP3A by ethanol in multiple in vitro and in vivo models. Alcohol. Clin. Exp. Res. 27(6), 981–988 (2003).
  • Robertson P Jr, Hellriegel ET, Arora S, Nelson M. Effect of modafinil on the pharmacokinetics of ethinyl estradiol and triazolam in healthy volunteers. Clin. Pharmacol. Ther. 71(1), 46–56 (2002).
  • Darwish M, Kirby M, Robertson P Jr, Hellriegel ET. Interaction profile of armodafinil with medications metabolized by cytochrome P450 enzymes 1A2, 3A4 and 2C19 in healthy subjects. Clin. Pharmacokinet. 47(1), 61–74 (2008).
  • Caraco Y, Zylber-Katz E, Fridlander M, Admon D, Levy M. The effect of short-term dipyrone administration on cyclosporin pharmacokinetics. Eur. J. Clin. Pharmacol. 55(6), 475–478 (1999).
  • Oscarson M, Burk O, Winter S et al. Effects of rifampicin on global gene expression in human small intestine. Pharmacogenet. Genomics 17(11), 907–918 (2007).
  • Raucy JL, Lasker JM. Current in vitro high throughput screening approaches to assess nuclear receptor activation. Curr. Drug Metab. 11(9), 806–814 (2010).
  • de Jonge ME, Huitema AD, Rodenhuis S, Beijnen JH. Clinical pharmacokinetics of cyclophosphamide. Clin. Pharmacokinet. 44(11), 1135–1164 (2005).
  • Cacheux W, Gourmel B, Alexandre J et al. An original administration of ifosfamide given once every other week: a clinical and pharmacological study. Anticancer. Drugs 19(3), 295–302 (2008).
  • Drocourt L, Pascussi JM, Assenat E, Fabre JM, Maurel P, Vilarem MJ. Calcium channel modulators of the dihydropyridine family are human pregnane X receptor activators and inducers of CYP3A, CYP2B, and CYP2C in human hepatocytes. Drug Metab. Dispos. 29(10), 1325–1331 (2001).
  • Ripp SL, Mills JB, Fahmi OA et al. Use of immortalized human hepatocytes to predict the magnitude of clinical drug–drug interactions caused by CYP3A4 induction. Drug Metab. Dispos. 34(10), 1742–1748 (2006).
  • Shou M, Hayashi M, Pan Y et al. Modeling, prediction, and in vitro in vivo correlation of CYP3A4 induction. Drug Metab. Dispos. 36(11), 2355–2370 (2008).
  • Frye RF, Matzke GR, Adedoyin A, Porter JA, Branch RA. Validation of the five-drug “Pittsburgh cocktail” approach for assessment of selective regulation of drug-metabolizing enzymes. Clin. Pharmacol. Ther. 62(4), 365–376 (1997).
  • Zhu B, Ou-Yang DS, Chen XP et al. Assessment of cytochrome P450 activity by a five-drug cocktail approach. Clin. Pharmacol. Ther. 70(5), 455–461 (2001).
  • Blakey GE, Lockton JA, Perrett J et al. Pharmacokinetic and pharmacodynamic assessment of a five-probe metabolic cocktail for CYPs 1A2, 3A4, 2C9, 2D6 and 2E1. Br. J. Clin. Pharmacol. 57(2), 162–169 (2004).
  • Kanebratt KP, Diczfalusy U, Bäckström T et al. Cytochrome P450 induction by rifampicin in healthy subjects: determination using the Karolinska cocktail and the endogenous CYP3A4 marker 4 beta-hydroxycholesterol. Clin. Pharmacol. Ther. 84(5), 589–594 (2008).
  • Lappin G. Microdosing: current and the future. Bioanalysis 2(3), 509–517 (2010).
  • Maeda K, Sugiyama Y. Novel strategies for microdose studies using non-radiolabeled compounds. Adv. Drug Deliv. Rev. 63(7), 532–538 (2011).
  • Croft M, Keely B, Morris I, Tann L, Lappin G. Predicting drug candidate victims of drug–drug interactions, using microdosing. Clin. Pharmacokinet. 51(4), 237–246 (2012).
  • McLemore TL, Adelberg S, Liu MC et al. Expression of CYP1A1 gene in patients with lung cancer: evidence for cigarette smoke-induced gene expression in normal lung tissue and for altered gene regulation in primary pulmonary carcinomas. J. Natl Cancer Inst. 82(16), 1333–1339 (1990).
  • Pasanen M, Haaparanta T, Sundin M et al. Immunochemical and molecular biological studies on human placental cigarette smoke-inducible cytochrome P-450-dependent monooxygenase activities. Toxicology 62(2), 175–187 (1990).
  • Saccar CL, Danish M, Ragni MC et al. The effect of phenobarbital on theophylline disposition in children with asthma. J. Allergy Clin. Immunol. 75(6), 716–719 (1985).
  • Paladino JA, Blumer NA, Maddox RR. Effect of secobarbital on theophylline clearance. Ther. Drug Monit. 5(1), 135–139 (1983).
  • Willey JC, Coy EL, Frampton MW et al. Quantitative RT-PCR measurement of cytochromes p450 1A1, 1B1, and 2B7, microsomal epoxide hydrolase, and NADPH oxidoreductase expression in lung cells of smokers and nonsmokers. Am. J. Respir. Cell Mol. Biol. 17(1), 114–124 (1997).
  • Lampe JW, Stepaniants SB, Mao M et al. Signatures of environmental exposures using peripheral leukocyte gene expression: tobacco smoke. Cancer Epidemiol. Biomarkers Prev. 13(3), 445–453 (2004).
  • van Leeuwen DM, van Agen E, Gottschalk RW et al. Cigarette smoke-induced differential gene expression in blood cells from monozygotic twin pairs. Carcinogenesis 28(3), 691–697 (2007).
  • Goldberg MR, Lo MW, Deutsch PJ, Wilson SE, McWilliams EJ, McCrea JB. Phenobarbital minimally alters plasma concentrations of losartan and its active metabolite E-3174. Clin. Pharmacol. Ther. 59(3), 268–274 (1996).
  • O’Reilly RA, Trager WF, Motley CH, Howald W. Interaction of secobarbital with warfarin pseudoracemates. Clin. Pharmacol. Ther. 28(2), 187–195 (1980).
  • Feng HJ, Huang SL, Wang W, Zhou HH. The induction effect of rifampicin on activity of mephenytoin 4´-hydroxylase related to M1 mutation of CYP2C19 and gene dose. Br. J. Clin. Pharmacol. 45(1), 27–29 (1998).
  • Back DJ, Bates M, Bowden A et al. The interaction of phenobarbital and other anticonvulsants with oral contraceptive steroid therapy. Contraception 22(5), 495–503 (1980).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.