105
Views
23
CrossRef citations to date
0
Altmetric
Review

Emerging artemisinin resistance in the border areas of Thailand

&
Pages 307-322 | Published online: 10 Jan 2014

References

  • WHO. World malaria report. WHO, Geneva, Switzerland (2011).
  • Na-Bangchang K, Karbwang J. Current status of malaria chemotherapy and the role of pharmacology in antimalarial drug research and development. Fundam. Clin. Pharmacol. 23(4), 387–409 (2009).
  • WHO. Global report on antimalarial efficacy and drug resistance: 2000-2010. WHO, Geneva, Switzerland (2010).
  • Na-Bangchang K, Congpuong K. Current malaria status and distribution of drug resistance in East and southeast Asia with special focus to Thailand. Tohoku J. Exp. Med. 211(2), 99–113 (2007).
  • Thimasarn K, Sirichaisinthop J, Chanyakhun P, Palananth C, Rooney W. A comparative study of artesunate and artemether in combination with mefloquine on multidrug resistant falciparum malaria in eastern Thailand. Southeast Asian J. Trop. Med. Public Health 28(3), 465–471 (1997).
  • Wongsrichanalai C, Sirichaisinthop J, Karwacki JJ et al. Drug resistant malaria on the Thai–Myanmar and Thai–Cambodian borders. Southeast Asian J. Trop. Med. Public Health 32(1), 41–49 (2001).
  • Klayman DL. Qinghaosu (artemisinin): an antimalarial drug from China. Science 228(4703), 1049–1055 (1985).
  • White NJ. Assessment of the pharmacodynamic properties of antimalarial drugs in vivo. Antimicrob. Agents Chemother. 41(7), 1413–1422 (1997).
  • Newton PN, Green MD, Mildenhall DC et al. Poor quality vital anti-malarials in Africa – an urgent neglected public health priority. Malar. J. 10, 352 (2011).
  • Medhi B, Patyar S, Rao RS, Byrav DSP, Prakash A. Pharmacokinetic and toxicological profile of artemisinin compounds: an update. Pharmacology 84(6), 323–332 (2009).
  • WHO. Guidelines for the treatment of malaria (2nd Edition). WHO, Geneva, Switzerland (2010).
  • Bosman A, Mendis KN. A major transition in malaria treatment: the adoption and deployment of artemisinin-based combination therapies. Am. J. Trop. Med. Hyg. 77(Suppl. 6), 193–197 (2007).
  • O’Brien C, Henrich PP, Passi N, Fidock DA. Recent clinical and molecular insights into emerging artemisinin resistance in Plasmodium falciparum. Curr. Opin. Infect. Dis. 24(6), 570–577 (2011).
  • Barnes KI, Durrheim DN, Little F et al. Effect of artemether–lumefantrine policy and improved vector control on malaria burden in KwaZulu-Natal, South Africa. PLoS Med. 2(11), e330 (2005).
  • Carrara VI, Sirilak S, Thonglairuam J et al. Deployment of early diagnosis and mefloquine–artesunate treatment of falciparum malaria in Thailand: the Tak Malaria Initiative. PLoS Med. 3(6), e183 (2006).
  • Price RN, Nosten F, Luxemburger C et al. Effects of artemisinin derivatives on malaria transmissibility. Lancet 347(9016), 1654–1658 (1996).
  • Falade CO, Ogunkunle OO, Dada-Adegbola HO et al. Evaluation of the efficacy and safety of artemether–lumefantrine in the treatment of acute uncomplicated Plasmodium falciparum malaria in Nigerian infants and children. Malar. J. 7, 246 (2008).
  • Carrara VI, Zwang J, Ashley EA et al. Changes in the treatment responses to artesunate–mefloquine on the northwestern border of Thailand during 13 years of continuous deployment. PLoS One 4(2), e4551 (2009).
  • Song J, Socheat D, Tan B et al. Randomized trials of artemisinin–piperaquine, dihydroartemisinin–piperaquine phosphate and artemether–lumefantrine for the treatment of multi-drug resistant falciparum malaria in Cambodia–Thailand border area. Malar. J. 10, 231 (2011).
  • Dorkenoo MA, Barrette A, Agbo YM et al. Surveillance of the efficacy of artemether–lumefantrine and artesunate–amodiaquine for the treatment of uncomplicated Plasmodium falciparum among children under five in Togo, 2005–2009. Malar. J. 11, 338 (2012).
  • ter Kuile FO, Luxemburger C, Nosten F, Thwai KL, Chongsuphajaisiddhi T, White NJ. Predictors of mefloquine treatment failure: a prospective study of 1590 patients with uncomplicated falciparum malaria. Trans. R. Soc. Trop. Med. Hyg. 89(6), 660–664 (1995).
  • Hamed K, Grueninger H. Coartem®: a decade of patient-centric malaria management. Expert Rev. Anti Infect. Ther. 10(6), 645–659 (2012).
  • Ratcliff A, Siswantoro H, Kenangalem E et al. Two fixed-dose artemisinin combinations for drug-resistant falciparum and vivax malaria in Papua, Indonesia: an open-label randomised comparison. Lancet 369(9563), 757–765 (2007).
  • Tjitra E, Anstey NM, Sugiarto P et al. Multidrug-resistant Plasmodium vivax associated with severe and fatal malaria: a prospective study in Papua, Indonesia. PLoS Med. 5(6), e128 (2008).
  • Harinasuta T, Suntharasamai P, Viravan C. Chloroquine-resistant falciparum malaria in Thailand. Lancet 2(7414), 657–660 (1965).
  • Congpuong K, Bualombai P, Banmairuroi V, Na-Bangchang K. Compliance with a three-day course of artesunate–mefloquine combination and baseline anti-malarial treatment in an area of Thailand with highly multidrug resistant falciparum malaria. Malar. J. 9, 43 (2010).
  • Na-Bangchang K. Pharmacodynamics of antimalarial chemotherapy. Expert Rev. Clin. Pharmacol. 2(5), 491–515 (2009).
  • Chanda P, Hamainza B, Mulenga S, Chalwe V, Msiska C, Chizema-Kawesha E. Early results of integrated malaria control and implications for the management of fever in under-five children at a peripheral health facility: a case study of Chongwe rural health centre in Zambia. Malar. J. 8, 49 (2009).
  • Denis MB, Tsuyuoka R, Lim P et al. Efficacy of artemether–lumefantrine for the treatment of uncomplicated falciparum malaria in northwest Cambodia. Trop. Med. Int. Health 11(12), 1800–1807 (2006).
  • Denis MB, Tsuyuoka R, Poravuth Y et al. Surveillance of the efficacy of artesunate and mefloquine combination for the treatment of uncomplicated falciparum malaria in Cambodia. Trop. Med. Int. Health 11(9), 1360–1366 (2006).
  • Vijaykadga S, Rojanawatsirivej C, Cholpol S, Phoungmanee D, Nakavej A, Wongsrichanalai C. In vivo sensitivity monitoring of mefloquine monotherapy and artesunate–mefloquine combinations for the treatment of uncomplicated falciparum malaria in Thailand in 2003. Trop. Med. Int. Health 11(2), 211–219 (2006).
  • Wongsrichanalai C, Meshnick SR. Declining artesunate–mefloquine efficacy against falciparum malaria on the Cambodia–Thailand border. Emerging Infect. Dis. 14(5), 716–719 (2008).
  • Noedl H, Se Y, Schaecher K, Smith BL, Socheat D, Fukuda MM; Artemisinin Resistance in Cambodia 1 (ARC1) Study Consortium. Evidence of artemisinin-resistant malaria in western Cambodia. N. Engl. J. Med. 359(24), 2619–2620 (2008).
  • Noedl H, Socheat D, Satimai W. Artemisinin-resistant malaria in Asia. N. Engl. J. Med. 361(5), 540–541 (2009).
  • Dondorp AM, Nosten F, Yi P et al. Artemisinin resistance in Plasmodium falciparum malaria. N. Engl. J. Med. 361(5), 455–467 (2009).
  • Dondorp AM, Yeung S, White L et al. Artemisinin resistance: current status and scenarios for containment. Nat. Rev. Microbiol. 8(4), 272–280 (2010).
  • Noedl H, Se Y, Sriwichai S et al. Artemisinin resistance in Cambodia: a clinical trial designed to address an emerging problem in southeast Asia. Clin. Infect. Dis. 51(11), e82–e89 (2010).
  • Na-Bangchang K, Ruengweerayut R, Mahamad P, Ruengweerayut K, Chaijaroenkul W. Declining in efficacy of a three-day combination regimen of mefloquine-artesunate in a multi-drug resistance area along the Thai–Myanmar border. Malar. J. 9, 273 (2010).
  • Phyo AP, Nkhoma S, Stepniewska K et al. Emergence of artemisinin-resistant malaria on the western border of Thailand: a longitudinal study. Lancet 379(9830), 1960–1966 (2012).
  • Cui L, Su XZ. Discovery, mechanisms of action and combination therapy of artemisinin. Expert Rev. Anti Infect. Ther. 7(8), 999–1013 (2009).
  • Eastman RT, Fidock DA. Artemisinin-based combination therapies: a vital tool in efforts to eliminate malaria. Nat. Rev. Microbiol. 7(12), 864–874 (2009).
  • Ding XC, Beck HP, Raso G. Plasmodium sensitivity to artemisinins: magic bullets hit elusive targets. Trends Parasitol. 27(2), 73–81 (2011).
  • Karbwang J, Na-Bangchang K, Congpoung K, Thanavibul A, Harinasuta T. Pharmacokinetics of oral artesunate in thai patients with uncomplicated falciparum malaria. Clin. Drug Investig. 15(1), 37–43 (1998).
  • Anderson TJ, Nair S, Nkhoma S et al. High heritability of malaria parasite clearance rate indicates a genetic basis for artemisinin resistance in western Cambodia. J. Infect. Dis. 201(9), 1326–1330 (2010).
  • Dondrop AM, Fairhust RM, Slutsker L et al. The threat of artemisinin-resistant malaria. N. Engl. J. Med. 365, 1073–1075 (2011).
  • Saralamba S, Pan-Ngum W, Maude RJ et al. Intrahost modeling of artemisinin resistance in Plasmodium falciparum. Proc. Natl Acad. Sci. USA 108(11), 397–402 (2011).
  • Tyner SD, Lon C, Se Y et al. Ex vivo drug sensitivity profiles of Plasmodium falciparum field isolates from Cambodia and Thailand, 2005 to 2010, determined by a histidine-rich protein-2 assay. Malar. J. 11, 198 (2012).
  • Satimai W, Sudathip P, Vijaykadga S et al. Artemisinin resistance containment project in Thailand. II: Responses to mefloquine–artesunate combination therapy among falciparum malaria patients in provinces bordering Cambodia. Malar. J. 11, 300 (2012).
  • Hüttinger F, Satimai W, Wernsdorfer G, Wiedermann U, Congpuong K, Wernsdorfer WH. Sensitivity to artemisinin, mefloquine and quinine of Plasmodium falciparum in northwestern Thailand. Wien Klin. Wochenschr. 122(Suppl. 3), 52–56 (2010).
  • Pradines B, Bertaux L, Pomares C, Delaunay P, Marty P. Reduced in vitro susceptibility to artemisinin derivatives associated with multi-resistance in a traveller returning from South-East Asia. Malar. J. 10, 268 (2011).
  • Yang H, Liu D, Yang Y et al. Changes in susceptibility of Plasmodium falciparum to artesunate in vitro in Yunnan Province, China. Trans. R. Soc. Trop. Med. Hyg. 97(2), 226–228 (2003).
  • Huong NM, Hewitt S, Davis TM et al. Resistance of Plasmodium falciparum to antimalarial drugs in a highly endemic area of southern Viet Nam: a study in vivo and in vitro. Trans. R. Soc. Trop. Med. Hyg. 95(3), 325–329 (2001).
  • Jambou R, Legrand E, Niang M et al. Resistance of Plasmodium falciparum field isolates to in vitro artemether and point mutations of the SERCA-type PfATPase6. Lancet 366(9501), 1960–1963 (2005).
  • WHO. Update on artemisinin resistance. WHO, Geneva, Switzerland (2011).
  • Fairhurst RM, Nayyar GM, Breman JG et al. Artemisinin-resistant malaria: research challenges, opportunities, and public health implications. Am. J. Trop. Med. Hyg. 87(2), 231–241 (2012).
  • Borrmann S, Sasi P, Mwai L et al. Declining responsiveness of Plasmodium falciparum infections to artemisinin-based combination treatments on the Kenyan coast. PLoS One 6(11), e26005 (2011).
  • Kachur SP, MacArthur JR, Slutsker L. A call to action: addressing the challenge of artemisinin-resistant malaria. Expert Rev. Anti Infect. Ther. 8(4), 365–366 (2010).
  • Sutherland CJ, Alloueche A, Curtis J et al. Gambian children successfully treated with chloroquine can harbor and transmit Plasmodium falciparum gametocytes carrying resistance genes. Am. J. Trop. Med. Hyg. 67(6), 578–585 (2002).
  • Ezzet F, van Vugt M, Nosten F, Looareesuwan S, White NJ. Pharmacokinetics and pharmacodynamics of lumefantrine (benflumetol) in acute falciparum malaria. Antimicrob. Agents Chemother. 44(3), 697–704 (2000).
  • Price RN, Uhlemann AC, van Vugt M et al. Molecular and pharmacological determinants of the therapeutic response to artemether–lumefantrine in multidrug-resistant Plasmodium falciparum malaria. Clin. Infect. Dis. 42(11), 1570–1577 (2006).
  • Wernsdorfer WH, Payne D. The dynamics of drug resistance in Plasmodium falciparum. Pharmacol. Ther. 50(1), 95–121 (1991).
  • White NJ, Pongtavornpinyo W. The de novo selection of drug-resistant malaria parasites. Proc. Biol. Sci. 270(1514), 545–554 (2003).
  • Chaijaroenkul W, Wisedpanichkij R, Na-Bangchang K. Monitoring of in vitro susceptibilities and molecular markers of resistance of Plasmodium falciparum isolates from Thai–Myanmar border to chloroquine, quinine, mefloquine and artesunate. Acta Trop. 113(2), 190–194 (2010).
  • Kokwaro G, Mwai L, Nzila A. Artemether/lumefantrine in the treatment of uncomplicated falciparum malaria. Expert Opin. Pharmacother. 8(1), 75–94 (2007).
  • Ezzet F, Mull R, Karbwang J. Population pharmacokinetics and therapeutic response of CGP 56697 (artemether + benflumetol) in malaria patients. Br. J. Clin. Pharmacol. 46(6), 553–561 (1998).
  • Bloland PB, Ettling M, Meek S. Combination therapy for malaria in Africa: hype or hope? Bull. World Health Organ. 78(12), 1378–1388 (2000).
  • Sanguansermsri T, Flatz G, Flatz SD. Distribution of hemoglobin E and beta-thalassemia in Kampuchea (Cambodia). Hemoglobin 11(5), 481–486 (1987).
  • Sanguansermsri T, Flatz SD, Flatz G. The hemoglobin E belt at the Thailand–Kampuchea border: ethnic and environmental determinants of hemoglobin E and beta-thalassemia gene frequencies. Gene Geogr. 1(3), 155–161 (1987).
  • Amaratunga C, Sreng S, Suon S et al. Artemisinin-resistant Plasmodium falciparum malaria in Pursat province, western Cambodia: a parasite-clearance-rate study. Lancet Infect. Dis.12(11), 851–858 (2012)
  • Yuthavong Y, Butthep P, Bunyaratvej A, Fucharoen S. Decreased sensitivity of artesunate and chloroquine of Plasmodium falciparum infecting hemoglobin H and/or hemoglobin constant spring erythrocytes. J. Clin. Invest. 83(2), 502–505 (1989).
  • Kamchonwongpaisan S, Chandra-ngam G, Avery MA, Yuthavong Y. Resistance to artemisinin of malaria parasites (Plasmodium falciparum) infecting alpha-thalassemic erythrocytes in vitro. Competition in drug accumulation with uninfected erythrocytes. J. Clin. Invest. 93(2), 467–473 (1994).
  • Vattanaviboon P, Wilairat P, Yuthavong Y. Binding of dihydroartemisinin to hemoglobin H: role in drug accumulation and host-induced antimalarial ineffectiveness of alpha-thalassemic erythrocytes. Mol. Pharmacol. 53(3), 492–496 (1998).
  • Charoenteeraboon J, Kamchonwongpaisan S, Wilairat P, Vattanaviboon P, Yuthavong Y. Inactivation of artemisinin by thalassemic erythrocytes. Biochem. Pharmacol. 59(11), 1337–1344 (2000).
  • Lachant NA, Tanaka KR. Impaired antioxidant defense in hemoglobin E-containing erythrocytes: a mechanism protective against malaria? Am. J. Hematol. 26(3), 211–219 (1987).
  • Cheng ML, Ho HY, Tseng HC, Lee CH, Shih LY, Chiu DT. Antioxidant deficit and enhanced susceptibility to oxidative damage in individuals with different forms of alpha-thalassaemia. Br. J. Haematol. 128(1), 119–127 (2005).
  • Laosombat V, Sattayasevana B, Chotsampancharoen T, Wongchanchailert M. Glucose-6-phosphate dehydrogenase variants associated with favism in Thai children. Int. J. Hematol. 83(2), 139–143 (2006).
  • O’Neill PM, Barton VE, Ward SA. The molecular mechanism of action of artemisinin – the debate continues. Molecules 15(3), 1705–1721 (2010).
  • Chotivanich K, Udomsangpetch R, Dondorp A et al. The mechanisms of parasite clearance after antimalarial treatment of Plasmodium falciparum malaria. J. Infect. Dis. 182(2), 629–633 (2000).
  • Chotivanich K, Udomsangpetch R, McGready R et al. Central role of the spleen in malaria parasite clearance. J. Infect. Dis. 185(10), 1538–1541 (2002).
  • Buffet PA, Milon G, Brousse V et al. Ex vivo perfusion of human spleens maintains clearing and processing functions. Blood 107(9), 3745–3752 (2006).
  • Kerb R, Fux R, Mörike K et al. Pharmacogenetics of antimalarial drugs: effect on metabolism and transport. Lancet Infect. Dis. 9(12), 760–774 (2009).
  • Li XQ, Björkman A, Andersson TB, Gustafsson LL, Masimirembwa CM. Identification of human cytochrome P(450)s that metabolise anti-parasitic drugs and predictions of in vivo drug hepatic clearance from in vitro data. Eur. J. Clin. Pharmacol. 59(5–6), 429–442 (2003).
  • Di YM, Chow VD, Yang LP, Zhou SF. Structure, function, regulation and polymorphism of human cytochrome P450 2A6. Curr. Drug Metab. 10(7), 754–780 (2009).
  • Mahavorasirikul W, Tassaneeyakul W, Satarug S, Reungweerayut R, Na-Bangchang C, Na-Bangchang K. CYP2A6 genotypes and coumarin-oxidation phenotypes in a Thai population and their relationship to tobacco smoking. Eur. J. Clin. Pharmacol. 65(4), 377–384 (2009).
  • Gyamfi MA, Fujieda M, Kiyotani K, Yamazaki H, Kamataki T. High prevalence of cytochrome P450 2A6*1A alleles in a black African population of Ghana. Eur. J. Clin. Pharmacol. 60(12), 855–857 (2005).
  • Meshnick SR. Artemisinin: mechanisms of action, resistance and toxicity. Int. J. Parasitol. 32(13), 1655–1660 (2002).
  • Summers RL, Nash MN, Martin RE. Know your enemy: understanding the role of PfCRT in drug resistance could lead to new antimalarial tactics. Cell. Mol. Life Sci. 69(12), 1967–1995 (2012).
  • Klonis N, Crespo-Ortiz MP, Bottova I et al. Artemisinin activity against Plasmodium falciparum requires hemoglobin uptake and digestion. Proc. Natl Acad. Sci. USA 108(28), 11405–11410 (2011).
  • Krishna S, Pulcini S, Fatih F, Staines H. Artemisinins and the biological basis for the PfATP6/SERCA hypothesis. Trends Parasitol. 26(11), 517–523 (2010).
  • Raj DK, Mu J, Jiang H et al. Disruption of a Plasmodium falciparum multidrug resistance-associated protein (PfMRP) alters its fitness and transport of antimalarial drugs and glutathione. J. Biol. Chem. 284(12), 7687–7696 (2009).
  • Foote SJ, Kyle DE, Martin RK et al. Several alleles of the multidrug-resistance gene are closely linked to chloroquine resistance in Plasmodium falciparum. Nature 345(6272), 255–258 (1990).
  • Price RN, Cassar C, Brockman A et al. The pfmdr1 gene is associated with a multidrug-resistant phenotype in Plasmodium falciparum from the western border of Thailand. Antimicrob. Agents Chemother. 43(12), 2943–2949 (1999).
  • Duraisingh MT, Roper C, Walliker D, Warhurst DC. Increased sensitivity to the antimalarials mefloquine and artemisinin is conferred by mutations in the pfmdr1 gene of Plasmodium falciparum. Mol. Microbiol. 36(4), 955–961 (2000).
  • Reed MB, Saliba KJ, Caruana SR, Kirk K, Cowman AF. Pgh1 modulates sensitivity and resistance to multiple antimalarials in Plasmodium falciparum. Nature 403(6772), 906–909 (2000).
  • Sidhu AB, Valderramos SG, Fidock DA. pfmdr1 mutations contribute to quinine resistance and enhance mefloquine and artemisinin sensitivity in Plasmodium falciparum. Mol. Microbiol. 57(4), 913–926 (2005).
  • Cowman AF, Galatis D, Thompson JK. Selection for mefloquine resistance in Plasmodium falciparum is linked to amplification of the pfmdr1 gene and cross-resistance to halofantrine and quinine. Proc. Natl Acad. Sci. USA 91(3), 1143–1147 (1994).
  • Pickard AL, Wongsrichanalai C, Purfield A et al. Resistance to antimalarials in southeast Asia and genetic polymorphisms in pfmdr1. Antimicrob. Agents Chemother. 47(8), 2418–2423 (2003).
  • Price RN, Uhlemann AC, Brockman A et al. Mefloquine resistance in Plasmodium falciparum and increased pfmdr1 gene copy number. Lancet 364(9432), 438–447 (2004).
  • Sidhu AB, Uhlemann AC, Valderramos SG, Valderramos JC, Krishna S, Fidock DA. Decreasing pfmdr1 copy number in Plasmodium falciparum malaria heightens susceptibility to mefloquine, lumefantrine, halofantrine, quinine, and artemisinin. J. Infect. Dis. 194(4), 528–535 (2006).
  • Picot S, Bienvenu AL, Konate S et al. Safety of epoietin beta-quinine drug combination in children with cerebral malaria in Mali. Malar. J. 8, 169 (2009).
  • Muhamad P, Phompradit P, Sornjai W et al. Polymorphisms of molecular markers of antimalarial drug resistance and relationship with artesunate–mefloquine combination therapy in patients with uncomplicated Plasmodium falciparum malaria in Thailand. Am. J. Trop. Med. Hyg. 85(3), 568–572 (2011).
  • Alker AP, Lim P, Sem R et al. Pfmdr1 and in vivo resistance to artesunate–mefloquine in falciparum malaria on the Cambodian–Thai border. Am. J. Trop. Med. Hyg. 76(4), 641–647 (2007).
  • Lim P, Alker AP, Khim N et al. Pfmdr1 copy number and arteminisin derivatives combination therapy failure in falciparum malaria in Cambodia. Malar. J. 8, 11 (2009).
  • Gadalla NB, Adam I, Elzaki SE et al. Increased pfmdr1 copy number and sequence polymorphisms in Plasmodium falciparum isolates from Sudanese malaria patients treated with artemether–lumefantrine. Antimicrob. Agents Chemother. 55(11), 5408–5411 (2011).
  • Veiga MI, Ferreira PE, Jörnhagen L et al. Novel polymorphisms in Plasmodium falciparum ABC transporter genes are associated with major ACT antimalarial drug resistance. PLoS One 6(5), e20212 (2011).
  • Uhlemann AC, Cameron A, Eckstein-Ludwig U et al. A single amino acid residue can determine the sensitivity of SERCAs to artemisinins. Nat. Struct. Mol. Biol. 12(7), 628–629 (2005).
  • Mugittu K, Genton B, Mshinda H, Beck HP. Molecular monitoring of Plasmodium falciparum resistance to artemisinin in Tanzania. Malar. J. 5, 126 (2006).
  • Dahlström S, Veiga MI, Ferreira P et al. Diversity of the sarco/endoplasmic reticulum Ca2+-ATPase orthologue of Plasmodium falciparum (PfATP6). Infect. Genet. Evol. 8(3), 340–345 (2008).
  • Ferreira ID, Martinelli A, Rodrigues LA et al. Plasmodium falciparum from Pará state (Brazil) shows satisfactory in vitro response to artemisinin derivatives and absence of the S769N mutation in the SERCA-type PfATPase6. Trop. Med. Int. Health 13(2), 199–207 (2008).
  • Menegon M, Sannella AR, Majori G, Severini C. Detection of novel point mutations in the Plasmodium falciparum ATPase6 candidate gene for resistance to artemisinins. Parasitol. Int. 57(2), 233–235 (2008).
  • Tahar R, Ringwald P, Basco LK. Molecular epidemiology of malaria in Cameroon. XXVIII. In vitro activity of dihydroartemisinin against clinical isolates of Plasmodium falciparum and sequence analysis of the P. falciparum ATPase 6 gene. Am. J. Trop. Med. Hyg. 81(1), 13–18 (2009).
  • Chavchich M, Gerena L, Peters J, Chen N, Cheng Q, Kyle DE. Role of pfmdr1 amplification and expression in induction of resistance to artemisinin derivatives in Plasmodium falciparum. Antimicrob. Agents Chemother. 54(6), 2455–2464 (2010).
  • Imwong M, Dondorp AM, Nosten F et al. Exploring the contribution of candidate genes to artemisinin resistance in Plasmodium falciparum. Antimicrob. Agents Chemother. 54(7), 2886–2892 (2010).
  • Jambou R, Martinelli A, Pinto J et al. Geographic structuring of the Plasmodium falciparum sarco(endo)plasmic reticulum Ca2+ ATPase (PfSERCA) gene diversity. PLoS One 5(2), e9424 (2010).
  • Valderramos SG, Scanfeld D, Uhlemann AC, Fidock DA, Krishna S. Investigations into the role of the Plasmodium falciparum SERCA (PfATP6) L263E mutation in artemisinin action and resistance. Antimicrob. Agents Chemother. 54(9), 3842–3852 (2010).
  • Phompradit P, Wisedpanichkij R, Muhamad P, Chaijaroenkul W, Na-Bangchang K. Molecular analysis of pfatp6 and pfmdr1 polymorphisms and their association with in vitro sensitivity in Plasmodium falciparum isolates from the Thai–Myanmar border. Acta Trop. 120(1–2), 130–135 (2011).
  • Hunt P, Afonso A, Creasey A et al. Gene encoding a deubiquitinating enzyme is mutated in artesunate- and chloroquine-resistant rodent malaria parasites. Mol. Microbiol. 65(1), 27–40 (2007).
  • Hunt P, Martinelli A, Modrzynska K et al. Experimental evolution, genetic analysis and genome re-sequencing reveal the mutation conferring artemisinin resistance in an isogenic lineage of malaria parasites. BMC Genomics 11, 499 (2010).
  • Teuscher F, Gatton ML, Chen N, Peters J, Kyle DE, Cheng Q. Artemisinin-induced dormancy in Plasmodium falciparum: duration, recovery rates, and implications in treatment failure. J. Infect. Dis. 202(9), 1362–1368 (2010).
  • Witkowski B, Lelièvre J, Barragán MJ et al. Increased tolerance to artemisinin in Plasmodium falciparum is mediated by a quiescence mechanism. Antimicrob. Agents Chemother. 54(5), 1872–1877 (2010).
  • Mok S, Imwong M, Mackinnon MJ et al. Artemisinin resistance in Plasmodium falciparum is associated with an altered temporal pattern of transcription. BMC Genomics 12, 391 (2011).
  • Stepniewska K, Ashley E, Lee SJ et al. In vivo parasitological measures of artemisinin susceptibility. J. Infect. Dis. 201(4), 570–579 (2010).
  • Lim P, Wongsrichanalai C, Chim P et al. Decreased in vitro susceptibility of Plasmodium falciparum isolates to artesunate, mefloquine, chloroquine, and quinine in Cambodia from 2001 to 2007. Antimicrob. Agents Chemother. 54(5), 2135–2142 (2010).
  • Mårtensson A, Strömberg J, Sisowath C et al. Efficacy of artesunate plus amodiaquine versus that of artemether–lumefantrine for the treatment of uncomplicated childhood Plasmodium falciparum malaria in Zanzibar, Tanzania. Clin. Infect. Dis. 41(8), 1079–1086 (2005).
  • Sisowath C, Strömberg J, Mårtensson A et al. In vivo selection of Plasmodium falciparum pfmdr1 86N coding alleles by artemether–lumefantrine (Coartem). J. Infect. Dis. 191(6), 1014–1017 (2005).
  • Sisowath C, Ferreira PE, Bustamante LY et al. The role of pfmdr1 in Plasmodium falciparum tolerance to artemether–lumefantrine in Africa. Trop. Med. Int. Health 12(6), 736–742 (2007).
  • Rogers WO, Sem R, Tero T et al. Failure of artesunate–mefloquine combination therapy for uncomplicated Plasmodium falciparum malaria in southern Cambodia. Malar. J. 8, 10 (2009).
  • Socheat D, Denis MB, Fandeur T et al. Mekong malaria. II. Update of malaria, multi-drug resistance and economic development in the Mekong region of southeast Asia. Southeast Asian J. Trop. Med. Public Health 34(Suppl. 4), 1–102 (2003).
  • Shah NK, Alker AP, Sem R et al. Molecular surveillance for multidrug-resistant Plasmodium falciparum, Cambodia. Emerging Infect. Dis. 14(10), 1637–1640 (2008).
  • Duffy PE, Sibley CH. Are we losing artemisinin combination therapy already? Lancet 366(9501), 1908–1909 (2005).
  • Anderson TJ, Nair S, Sudimack D et al. Geographical distribution of selected and putatively neutral SNPs in southeast Asian malaria parasites. Mol. Biol. Evol. 22(12), 2362–2374 (2005).
  • Mu J, Myers RA, Jiang H et al. Plasmodium falciparum genome-wide scans for positive selection, recombination hot spots and resistance to antimalarial drugs. Nat. Genet. 42(3), 268–271 (2010).
  • Watkins WM, Mosobo M. Treatment of Plasmodium falciparum malaria with pyrimethamine-sulfadoxine: selective pressure for resistance is a function of long elimination half-life. Trans. R. Soc. Trop. Med. Hyg. 87(1), 75–78 (1993).
  • Hutagalung R, Paiphun L, Ashley EA et al. A randomized trial of artemether–lumefantrine versus mefloquine–artesunate for the treatment of uncomplicated multi-drug resistant Plasmodium falciparum on the western border of Thailand. Malar. J. 4, 46 (2005).
  • Laufer MK. Monitoring antimalarial drug efficacy: current challenges. Curr. Infect. Dis. Rep. 11(1), 59–65 (2009).
  • WHO. Global Plan for Artemisinin Resistance Containment (GPARC). WHO, Geneva, Switzerland (2011).
  • Yeung S, Van Damme W, Socheat D, White NJ, Mills A. Access to artemisinin combination therapy for malaria in remote areas of Cambodia. Malar. J. 7, 96 (2008).
  • Rathod PK, McErlean T, Lee PC. Variations in frequencies of drug resistance in Plasmodium falciparum. Proc. Natl Acad. Sci. USA 94(17), 9389–9393 (1997).
  • Newton PN, Hampton CY, Alter-Hall K et al. Characterization of ‘Yaa Chud’ Medicine on the Thailand–Myanmar border: selecting for drug-resistant malaria and threatening public health. Am. J. Trop. Med. Hyg. 79(5), 662–669 (2008).
  • Maude RJ, Pontavornpinyo W, Saralamba S et al. The last man standing is the most resistant: eliminating artemisinin-resistant malaria in Cambodia. Malar. J. 8, 31 (2009).
  • Pongtavornpinyo W, Hastings IM, Dondorp A et al. Probability of emergence of antimalarial resistance in different stages of the parasite life cycle. Evol. Appl. 2(1), 52–61 (2009).
  • von Seidlein L, Greenwood BM. Mass administrations of antimalarial drugs. Trends Parasitol. 19(10), 452–460 (2003).
  • WHO. Strategic plan to strengthen malaria control and elimination in the Greater Mekong Sub-region: 2010–2014; A Mekong Malaria Programme Partnership Initiative – Working Document. WHO, Geneva, Switzerland (2009).
  • WHO. Progress on the containment of artemisinin tolerant malaria parasites in South-East Asia (ARCE) initiative. WHO, Geneva, Switzerland (2010).
  • Sibley CH, Guerin PJ, Ringwald P. Monitoring antimalarial resistance: launching a cooperative effort. Trends Parasitol. 26(5), 221–224 (2010).
  • Mwai L, Diriye A, Masseno V et al. Genome wide adaptations of Plasmodium falciparum in response to lumefantrine selective drug pressure. PLoS ONE 7(2), e31623 (2012).
  • Méndez F, Herrera S, Murrain B et al. Selection of antifolate-resistant Plasmodium falciparum by sulfadoxine–pyrimethamine treatment and infectivity to Anopheles mosquitoes. Am. J. Trop. Med. Hyg. 77(3), 438–443 (2007).
  • Nyunt MM, Plowe CV. Pharmacologic advances in the global control and treatment of malaria: combination therapy and resistance. Clin. Pharmacol. Ther. 82(5), 601–605 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.