34
Views
43
CrossRef citations to date
0
Altmetric
Review

Genetics and genomics of melanoma

&
Pages 131-143 | Published online: 10 Jan 2014

References

  • Gray-Schopfer V, Wellbrock C, Marais R. Melanoma biology and new targeted therapy. Nature445(7130), 851–857 (2007).
  • National Cancer Institute. SEER Cancer Statistics Review, 1975–2005. Ries LAG, Melbert D, Krapcho M, Stinchcomb DG et al. (Eds). National Cancer Institute. Bethesda, MD, USA (2008).
  • Rigel DS. Cutaneous ultraviolet exposure and its relationship to the development of skin cancer. J. Am. Acad. Dermatol.58(5 Suppl. 2), S129–S132 (2008).
  • Chin L. The genetics of malignant melanoma: lessons from mouse and man. Nat. Rev. Cancer3(8), 559–570 (2003).
  • Swetter SM, Boldrick JC, Jung SY, Egbert BM, Harvell JD. Increasing incidence of lentigo maligna melanoma subtypes: northern California and national trends 1990–2000. J. Invest. Dermatol.125(4), 685–691 (2005).
  • Forman SB, Ferringer TC, Peckham SJ et al. Is superficial spreading melanoma still the most common form of malignant melanoma? J. Am. Acad. Dermatol.58(6), 1013–1020 (2008).
  • Balch CM, Soong SJ, Gershenwald JE et al. Prognostic factors analysis of 17,600 melanoma patients: validation of the American Joint Committee on Cancer melanoma staging system. J. Clin. Oncol.19, 3622–3634 (2001).
  • Gimotty PA, Van Belle P, Elder DE et al. Biologic and prognostic significance of dermal Ki67 expression, mitoses, and tumorigenicity in thin invasive cutaneous melanoma. J. Clin. Oncol.23(31), 8048–8056 (2005).
  • Gilchrest BA, Eller MS, Geller AC, Yaar M. The pathogenesis of melanoma induced by ultraviolet radiation. N. Engl. J. Med.340(17), 1341–1348 (1999).
  • Gandini S, Sera F, Cattaruzza MS et al. Meta-analysis of risk factors for cutaneous melanoma: I. Common and atypical naevi. Eur. J. Cancer41(1), 28–44 (2005).
  • Ford D, Bliss JM, Swerdlow AJ et al. The International Melanoma Analysis Group (IMAGE). Risk of cutaneous melanoma associated with a family history of the disease. Int. J. Cancer62(4), 377–381 (1995).
  • Gandini S, Sera F, Cattaruzza MS et al. Meta-analysis of risk factors for cutaneous melanoma: III. Family history, actinic damage and phenotypic factors. Eur. J. Cancer41(14), 2040–2059 (2005).
  • Hussussian CJ, Struewing JP, Goldstein AM et al. Germline p16 mutations in familial melanoma. Nat. Genet.8(1), 15–21 (1994).
  • Kamb A, Shattuck-Eidens D, Eeles R et al. Analysis of the p16 gene (CDKN2) as a candidate for the chromosome 9p melanoma susceptibility locus. Nat. Genet.8(1), 23–26 (1994).
  • Chin L, Garraway LA, Fisher DE. Malignant melanoma: genetics and therapeutics in the genomic era. Genes Dev.20(16), 2149–2182 (2006).
  • Aitken J, Welch J, Duffy D et al.CDKN2A variants in a population-based sample of Queensland families with melanoma. J. Natl Cancer Inst.91(5), 446–452 (1999).
  • Tsao H, Zhang X, Kwitkiwski K et al. Low prevalence of germline CDKN2A and CDK4 mutations in patients with early-onset melanoma. Arch. Dermatol.136(9), 1118–1122 (2000).
  • Wolfel T, Hauer M, Schneider J et al. A p16INK4a-insensitive CDK4 mutant targeted by cytolytic T lymphocytes in a human melanoma. Science269(5228), 1281–1284 (1995).
  • Zuo L, Weger J, Yang Q et al. Germline mutations in the p16INK4a binding domain of CDK4 in familial melanoma. Nat. Genet.12(1), 97–99 (1996).
  • Molven A, Grimstvedt MB, Steine SJ et al. A large Norwegian family with inherited malignant melanoma, multiple atypical nevi, and CDK4 mutation. Genes Chromosomes Cancer44(1), 10–18 (2005).
  • Draper GJ, Sanders BM, Kingston JE. Second primary neoplasms in patients with retinoblastoma. Br. J. Cancer53(5), 661–671 (1986).
  • Fletcher O, Easton D, Anderson K et al. Lifetime risks of common cancers among retinoblastoma survivors. J. Natl Cancer Inst.96(5), 357–363 (2004).
  • Albino AP, Vidal MJ, McNutt NS et al. Mutation and expression of the p53 gene in human malignant melanoma. Melanoma Res.4(1), 35–45 (1994).
  • Castresana JS, Rubio MP, Vazquez JJ et al. Lack of allelic deletion and point mutation as mechanisms of p53 activation in human malignant melanoma. Int. J. Cancer55(4), 562–565 (1993).
  • Lubbe J, Reichel M, Burg G, Kleihues P. Absence of p53 gene mutations in cutaneous melanoma. J. Invest. Dermatol.102(5), 819–821 (1994).
  • Bardeesy N, Bastian BC, Hezel A et al. Dual inactivation of RB and p53 pathways in RAS-induced melanomas. Mol. Cell. Biol.21(6), 2144–2153 (2001).
  • Chin L, Pomerantz J, Polsky D et al. Cooperative effects of INK4a and ras in melanoma susceptibility in vivo. Genes Dev.11(21), 2822–2834 (1997).
  • Bastian BC, LeBoit PE, Hamm H, Brocker EB, Pinkel D. Chromosomal gains and losses in primary cutaneous melanomas detected by comparative genomic hybridization. Cancer Res.58(10), 2170–2175 (1998).
  • Koprowski H, Herlyn M, Balaban G et al. Expression of the receptor for epidermal growth factor correlates with increased dosage of chromosome 7 in malignant melanoma. Somat. Cell Mol. Genet.11(3), 297–302 (1985).
  • Udart M, Utikal J, Krahn GM, Peter RU. Chromosome 7 aneusomy. A marker for metastatic melanoma? Expression of the epidermal growth factor receptor gene and chromosome 7 aneusomy in nevi, primary malignant melanomas and metastases. Neoplasia3(3), 245–254 (2001).
  • Bardeesy N, Kim M, Xu J et al. Role of epidermal growth factor receptor signaling in RAS-driven melanoma. Mol. Cell. Biol.25(10), 4176–4188 (2005).
  • Dlugosz AA, Hansen L, Cheng C et al. Targeted disruption of the epidermal growth factor receptor impairs growth of squamous papillomas expressing the v-ras(Ha) oncogene but does not block in vitro keratinocyte responses to oncogenic ras. Cancer Res.57(15), 3180–3188 (1997).
  • Gangarosa LM, Sizemore N, Graves-Deal R et al. A raf-independent epidermal growth factor receptor autocrine loop is necessary for Ras transformation of rat intestinal epithelial cells. J. Biol. Chem.272(30), 18926–18931 (1997).
  • Sibilia M, Fleischmann A, Behrens A et al. The EGF receptor provides an essential survival signal for SOS-dependent skin tumor development. Cell102(2), 211–220 (2000).
  • Bottaro DP, Rubin JS, Faletto DL. Identification of the hepatocyte growth factor receptor as the c-met proto-oncogene product. Science251, 802–804 (1991).
  • Wiltshire RN, Duray P, Bittner ML et al. Direct visualization of the clonal progression of primary cutaneous melanoma: application of tissue microdissection and comparative genomic hybridization. Cancer Res.55, 3954–3957 (1995).
  • Natali PG, Nicotra MR, Di Renzo MF et al. Expression of the c-Met/HGF receptor in human melanocytic neoplasms: demonstration of the relationship to malignant melanoma tumour progression. Br. J. Cancer68(4), 746–750 (1993).
  • Vande Woude GF, Jeffers M, Cortner J et al. Met-HGF/SF: tumorigenesis, invasion and metastasis. Ciba Found. Symp.212, 119–130 (1997).
  • Rusciano D, Lorenzoni P, Burger MM. Expression of constitutively activated hepatocyte growth factor/scatter factor receptor (c-met) in B16 melanoma cells selected for enhanced liver colonization. Oncogene11(10), 1979–1987 (1995).
  • Otsuka T, Takayama H, Sharp R et al. c-Met autocrine activation induces development of malignant melanoma and acquisition of the metastatic phenotype. Cancer Res.58(22), 5157–5167 (1998).
  • Noonan FP, Recio JA, Takayama H et al. Neonatal sunburn and melanoma in mice. Nature413(6853), 271–272 (2001).
  • Recio JA, Noonan FP, Takayama H et al. Ink4a/arf deficiency promotes ultraviolet radiation-induced melanomagenesis. Cancer Res.62(22), 6724–6730 (2002).
  • McGill GG, Haq R, Nishimura EK, Fisher DE. c-Met expression is regulated by Mitf in the melanocyte lineage. J. Biol. Chem.281(15), 10365–10373 (2006).
  • Garraway LA, Widlund HR, Rubin MA et al. Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature436(7047), 117–122 (2005).
  • Montone KT, van Belle P, Elenitsas R, Elder DE. Proto-oncogene c-kit expression in malignant melanoma: protein loss with tumor progression. Mod. Pathol.10(9), 939–944 (1997).
  • Shen SS, Zhang PS, Eton O, Prieto VG. Analysis of protein tyrosine kinase expression in melanocytic lesions by tissue array. J. Cutan. Pathol.30(9), 539–547 (2003).
  • Isabel Zhu Y, Fitzpatrick JE. Expression of c-kit (CD117) in Spitz nevus and malignant melanoma. J. Cutan. Pathol.33(1), 33–37 (2006).
  • Huang S, Luca M, Gutman M et al. Enforced c-KIT expression renders highly metastatic human melanoma cells susceptible to stem cell factor-induced apoptosis and inhibits their tumorigenic and metastatic potential. Oncogene13, 2339–2347 (1996).
  • Yoshida H, Kunisada T, Kusakabe M, Nishikawa S, Nishikawa SI. Distinct stages of melanocyte differentiation revealed by anlaysis of nonuniform pigmentation patterns. Development122(4), 1207–1214 (1996).
  • Grichnik JM, Burch JA, Burchette J, Shea CR. The SCF/KIT pathway plays a critical role in the control of normal human melanocyte homeostasis. J. Invest. Dermatol.111(2), 233–238 (1998).
  • Sviderskaya EV, Wakeling WF, Bennett DC. A cloned, immortal line of murine melanoblasts inducible to differentiate to melanocytes. Development121(5), 1547–1557 (1995).
  • Willmore-Payne C, Holden JA, Tripp S, Layfield LJ. Human malignant melanoma: detection of BRAF- and c-kit-activating mutations by high-resolution amplicon melting analysis. Hum. Pathol.36(5), 486–493 (2005).
  • Willmore-Payne C, Holden JA, Hirschowitz S, Layfield LJ. BRAF and c-kit gene copy number in mutation-positive malignant melanoma. Hum. Pathol.37(5), 520–527 (2006).
  • Nakahara M, Isozaki K, Hirota S et al. A novel gain-of-function mutation of c-kit gene in gastrointestinal stromal tumors. Gastroenterology115(5), 1090–1095 (1998).
  • Fukuda R, Hamamoto N, Uchida Y et al. Gastrointestinal stromal tumor with a novel mutation of KIT proto-oncogene. Intern. Med.40(4), 301–303 (2001).
  • Curtin JA, Busam K, Pinkel D, Bastian BC. Somatic activation of KIT in distinct subtypes of melanoma. J. Clin. Oncol.24(26), 4340–4346 (2006).
  • Beadling C, Jacobson-Dunlop E, Hodi FS et al.KIT gene mutations and copy number in melanoma subtypes. Clin. Cancer Res.14(21), 6821–6828 (2008).
  • van Oosterom AT, Judson IR, Verweij J et al. Update of Phase I study of imatinib (STI571) in advanced soft tissue sarcomas and gastrointestinal stromal tumors: a report of the EORTC Soft Tissue and Bone Sarcoma Group. Eur. J. Cancer38(Suppl. 5), S83–S87 (2002).
  • van Oosterom AT, Judson I, Verweij J et al. Safety and efficacy of imatinib (STI571) in metastatic gastrointestinal stromal tumours: a Phase I study. Lancet358(9291), 1421–1423 (2001).
  • Verweij J, Casali PG, Zalcberg J et al. Progression-free survival in gastrointestinal stromal tumours with high-dose imatinib: randomised trial. Lancet364(9440), 1127–1134 (2004).
  • Demetri GD, von Mehren M, Blanke CD et al. Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N. Engl. J. Med.347(7), 472–480 (2002).
  • Hodi FS, Friedlander P, Corless CL et al. Major response to imatinib mesylate in KIT-mutated melanoma. J. Clin. Oncol.26(12), 2046–2051 (2008).
  • Lutzky J, Bauer J, Bastian BC. Dose-dependent, complete response to imatinib of a metastatic mucosal melanoma with a K642E KIT mutation. Pigment Cell Melanoma Res.21(4), 492–493 (2008).
  • Hanahan D, Weinberg RA. The hallmarks of cancer. Cell100(1), 57–70 (2000).
  • Jafari M, Papp T, Kirchner S et al. Analysis of ras mutations in human melanocytic lesions: activation of the ras gene seems to be associated with the nodular type of human malignant melanoma. J. Cancer Res. Clin. Oncol.121(1), 23–30 (1995).
  • van Elsas A, Zerp SF, van der Flier S et al. Relevance of ultraviolet-induced N-ras oncogene point mutations in development of primary human cutaneous melanoma. Am. J. Pathol.149(3), 883–893 (1996).
  • Papp T, Pemsel H, Zimmermann R et al. Mutational analysis of the N-ras, p53, p16INK4a, CDK4, and MC1R genes in human congenital melanocytic naevi. J. Med. Genet.36, 610–614 (1999).
  • Albino AP, Nanus DM, Mentle IR et al. Analysis of ras oncogenes in malignant melanoma and precursor lesions: correlation of point mutations with differentiation phenotype. Oncogene4, 1363–1374 (1989).
  • Bastian BC, LeBoit PE, Pinkel D. Mutations and copy number increase of HRAS in Spitz nevi with distinctive histopathological features. Am. J. Pathol.,157, 967–972 (2000).
  • Barnhill RL. The Spitzoid lesion: rethinking Spitz tumors, atypical variants, ‘Spitzoid melanoma’ and risk assessment. Mod. Pathol.19(Suppl. 2), S21–S33 (2006).
  • Smith KJ, Barrett TL, Skelton HG, 3rd, Lupton GP, Graham JH. Spindle cell and epithelioid cell nevi with atypia and metastasis (malignant Spitz nevus). Am. J. Surg. Pathol.13(11), 931–939 (1989).
  • Sharpless NE, Kannan K, Xu J, Bosenberg MW, Chin L. Both products of the mouse Ink4a/Arf locus suppress melanoma formation in vivo. Oncogene22(32), 5055–5059 (2003).
  • Ackermann J, Frutschi M, Kaloulis K et al. Metastasizing melanoma formation caused by expression of activated N-RasQ61K on an INK4a-deficient background. Cancer Res.65(10), 4005–4011 (2005).
  • Davies H, Bignell GR, Cox C et al. Mutations of the BRAF gene in human cancer. Nature417(6892), 949–954 (2002).
  • Lang J, Boxer M, MacKie R. Absence of exon 15 BRAF germline mutations in familial melanoma. Hum. Mutat.21(3), 327–330 (2003).
  • Casula M, Colombino M, Satta MP et al.BRAF gene is somatically mutated but does not make a major contribution to malignant melanoma susceptibility: the Italian Melanoma Intergroup Study. J. Clin. Oncol.22(2), 286–292 (2004).
  • Laud K, Kannengiesser C, Avril MF et al.BRAF as a melanoma susceptibility candidate gene? Cancer Res.63(12), 3061–3065 (2003).
  • Liu J, Suresh Kumar KG, Yu D et al. Oncogenic BRAF regulates β-Trcp expression and NF-κB activity in human melanoma cells. Oncogene26(13), 1954–1958 (2007).
  • Bhatt KV, Hu R, Spofford LS, Aplin AE. Mutant B-RAF signaling and cyclin D1 regulate Cks1/S-phase kinase-associated protein 2-mediated degradation of p27Kip1 in human melanoma cells. Oncogene26(7), 1056–1066 (2007).
  • Garnett MJ, Marais R. Guilty as charged: B-RAF is a human oncogene. Cancer Cell6(4), 313–319 (2004).
  • Maldonado JL, Fridlyand J, Patel H et al. Determinants of BRAF mutations in primary melanomas. J. Natl Cancer Inst.95(24), 1878–1890 (2003).
  • Edwards RH, Ward MR, Wu H et al. Absence of BRAF mutations in UV-protected mucosal melanomas. J. Med. Genet.41(4), 270–272 (2004).
  • Curtin JA, Fridlyand J, Kageshita T et al. Distinct sets of genetic alterations in melanoma. N. Engl. J. Med.353(20), 2135–2147 (2005).
  • Landi MT, Bauer J, Pfeiffer RM et al. MC1R germline variants confer risk for BRAF-mutant melanoma. Science313(5786), 521–522 (2006).
  • Kennedy C, ter Huurne J, Berkhout M et al. Melanocortin 1 receptor (MC1R) gene variants are associated with an increased risk for cutaneous melanoma which is largely independent of skin type and hair color. J. Invest. Dermatol.117(2), 294–300 (2001).
  • Duffy DL, Box NF, Chen W et al. Interactive effects of MC1R and OCA2 on melanoma risk phenotypes. Hum. Mol. Genet.13(4), 447–461 (2004).
  • Raimondi S, Sera F, Gandini S et al. MC1R variants, melanoma and red hair color phenotype: a meta-analysis. Int. J. Cancer122(12), 2753–2760 (2008).
  • Pollock PM, Harper UL, Hansen KS et al. High frequency of BRAF mutations in nevi. Nat. Genet.33(1), 19–20 (2003).
  • Kumar R, Angelini S, Snellman E, Hemminki K. BRAF mutations are common somatic events in melanocytic nevi. J. Invest. Dermatol.122(2), 342–348 (2004).
  • Saldanha G, Purnell D, Fletcher A et al. High BRAF mutation frequency does not characterize all melanocytic tumor types. Int. J. Cancer111(5), 705–710 (2004).
  • Yazdi AS, Palmedo G, Flaig MJ et al. Mutations of the BRAF gene in benign and malignant melanocytic lesions. J. Invest. Dermatol.121(5), 1160–1162 (2003).
  • Michaloglou C, Vredeveld LC, Soengas MS et al. BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature436(7051), 720–724 (2005).
  • Wellbrock C, Ogilvie L, Hedley D et al. V599EB-RAF is an oncogene in melanocytes. Cancer Res.64(7), 2338–2342 (2004).
  • Sharpless NE, DePinho RA. Cancer: crime and punishment. Nature436(7051), 636–637 (2005).
  • Wajapeyee N, Serra RW, Zhu X, Mahalingam M, Green MR. Oncogenic BRAF induces senescence and apoptosis through pathways mediated by the secreted protein IGFBP7. Cell132(3), 363–374 (2008).
  • Chudnovsky Y, Adams AE, Robbins PB, Lin Q, Khavari PA. Use of human tissue to assess the oncogenic activity of melanoma-associated mutations. Nat. Genet.37(7), 745–749 (2005).
  • Edlundh-Rose E, Egyhazi S, Omholt K et al.NRAS and BRAF mutations in melanoma tumours in relation to clinical characteristics: a study based on mutation screening by pyrosequencing. Melanoma Res.16(6), 471–478 (2006).
  • Goel VK, Lazar AJ, Warneke CL, Redston MS, Haluska FG. Examination of mutations in BRAF, NRAS, and PTEN in primary cutaneous melanoma. J. Invest. Dermatol.126(1), 154–160 (2006).
  • Jiveskog S, Ragnarsson-Olding B, Platz A, Ringborg U. N-ras mutations are common in melanomas from sun-exposed skin of humans but rare in mucosal membranes or unexposed skin. J. Invest. Dermatol.111(5), 757–761 (1998).
  • Dumaz N, Hayward R, Martin J et al. In melanoma, RAS mutations are accompanied by switching signaling from BRAF to CRAF and disrupted cyclic AMP signaling. Cancer Res.66(19), 9483–9491 (2006).
  • Kannengiesser C, Spatz A, Michiels S et al. Gene expression signature associated with BRAF mutations in human primary cutaneous melanomas. Mol. Oncol.425–430 (2008).
  • Shields JM, Thomas NE, Cregger M et al. Lack of extracellular signal-regulated kinase mitogen-activated protein kinase signaling shows a new type of melanoma. Cancer Res.67(4), 1502–1512 (2007).
  • Smalley KS, Xiao M, Villanueva J et al. CRAF inhibition induces apoptosis in melanoma cells with non-V600E BRAF mutations. Oncogene28(1), 85–94 (2008).
  • Kortylewski M, Heinrich PC, Kauffmann ME et al. Mitogen-activated protein kinases control p27/Kip1 expression and growth of human melanoma cells. Biochem J.357(Pt 1), 297–303 (2001).
  • Huntington JT, Shields JM, Der CJ et al. Overexpression of collagenase 1 (MMP-1) is mediated by the ERK pathway in invasive melanoma cells: role of BRAF mutation and fibroblast growth factor signaling. J. Biol. Chem.279(32), 33168–33176 (2004).
  • McGill GG, Horstmann M, Widlund HR et al. Bcl2 regulation by the melanocyte master regulator Mitf modulates lineage survival and melanoma cell viability. Cell109(6), 707–718 (2002).
  • Kwong L, Chin L, Wagner SN. Growth factors and oncogenes as targets in melanoma: lost in translation? Adv. Dermatol.23, 99–129 (2007).
  • Dai DL, Martinka M, Li G. Prognostic significance of activated Akt expression in melanoma: a clinicopathologic study of 292 cases. J. Clin. Oncol.23(7), 1473–1482 (2005).
  • Stahl JM, Sharma A, Cheung M et al. Deregulated Akt3 activity promotes development of malignant melanoma. Cancer Res.64(19), 7002–7010 (2004).
  • Ross P, Hall L, Haff LA. Quantitative approach to single-nucleotide polymorphism analysis using MALDI-TOF mass spectrometry. Biotechniques29(3), 620–626, 628–629 (2000).
  • Yoeli-Lerner M, Yiu GK, Rabinovitz I et al. Atk blocks breast cancer cell motility and invasion through the transcription factor NFAT. Mol. Cell20, 539–550 (2005).
  • Bastian BC. Understanding the progression of melanocytic neoplasia using genomic analysis: from fields to cancer. Oncogene22(20), 3081–3086 (2003).
  • Wu H, Goel V, Haluska FG. PTEN signaling pahtways in melanoma. Oncogene22, 3113–3122 (2003).
  • Pollock PM, Walker GJ, Glendening JM et al. PTEN inactivation is rare in melanoma tumours but occurs frequently in melanoma cell lines. Melanoma Res.12(6), 565–575 (2002).
  • Mikhail M, Velazquez E, Shapiro R et al. PTEN expression in melanoma: relationship with patient survival, Bcl-2 expression, and proliferation. Clin. Cancer Res.11(14), 5153–5157 (2005).
  • Slipicevic A, Holm R, Nguyen MT et al. Expression of activated Akt and PTEN in malignant melanomas: relationship with clinical outcome. Am. J. Clin. Pathol.124(4), 528–536 (2005).
  • Robertson GP, Furnari FB, Miele ME et al.In vitro loss of heterozygosity targets the PTEN/MMAC1 gene in melanoma. Proc. Natl Acad. Sci. USA95(16), 9418–9423 (1998).
  • Stewart AL, Mhashilkar AM, Yang XH et al. PI3 kinase blockade by Ad-PTEN inhibits invasion and induces apoptosis in RGP and metastatic melanoma cells. Mol. Med.8(8), 451–461 (2002).
  • Stahl JM, Cheung M, Sharma A et al. Loss of PTEN promotes tumor development in malignant melanoma. Cancer Res.63(11), 2881–2890 (2003).
  • Robertson GP. Functional and therapeutic significance of Akt deregulation in malignant melanoma. Cancer Metastasis Rev.24(2), 273–285 (2005).
  • You MJ, Castrillon DH, Bastian BC et al. Genetic analysis of Pten and Ink4a/Arf interactions in the suppression of tumorigenesis in mice. Proc. Natl Acad. Sci. USA99, 1455–1460 (2002).
  • Di Cristofano A, Pesce B, Cordon-Cardo C, Pandolfi PP. Pten is essential for embryonic development and tumour suppression. Nat. Genet.19(4), 348–355 (1998).
  • Stambolic V, Suzuki A, de la Pompa JL et al. Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell95(1), 29–39 (1998).
  • Podsypanina K, Ellenson LH, Nemes A et al. Mutation of Pten/Mmac1 in mice causes neoplasia in multiple organ systems. Proc. Natl Acad. Sci. USA96(4), 1563–1568 (1999).
  • Ma X, Ziel-van der Made AC, Autar B et al. Targeted biallelic inactivation of Pten in the mouse prostate leads to prostate cancer accompanied by increased epithelial cell proliferation but not by reduced apoptosis. Cancer Res.65(13), 5730–5739 (2005).
  • Trotman LC, Wang X, Alimonti A et al. Ubiquitination regulates PTEN nuclear import and tumor suppression. Cell128(1), 141–156 (2007).
  • Wang X, Trotman LC, Koppie T et al. NEDD4-1 is a proto-oncogenic ubiquitin ligase for PTEN. Cell128(1), 129–139 (2007).
  • Bedogni B, Welford SM, Kwan AC et al. Inhibition of phosphatidylinositol-3-kinase and mitogen-activated protein kinase kinase 1/2 prevents melanoma development and promotes melanoma regression in the transgenic TPRas mouse model. Mol. Cancer Ther.5(12), 3071–3077 (2006).
  • Smalley KS, Haass NK, Brafford PA et al. Multiple signaling pathways must be targeted to overcome drug resistance in cell lines derived from melanoma metastases. Mol. Cancer Ther.5(5), 1136–1144 (2006).
  • Tsao H, Goel V, Wu H, Yang G, Haluska FG. Genetic interaction between NRAS and BRAF mutations and PTEN/MMAC1 inactivation in melanoma. J. Invest. Dermatol.122(2), 337–341 (2004).
  • Winnepenninckx V, Lazar V, Michiels S et al. Gene expression profiling of primary cutaneous melanoma and clinical outcome. J. Natl Cancer Inst.98(7), 472–482 (2006).
  • Wellbrock C, Marais R. Elevated expression of MITF counteracts B-RAF-stimulated melanocyte and melanoma cell proliferation. J. Cell. Biol.170(5), 703–708 (2005).
  • Wellbrock C, Rana S, Paterson H et al. Oncogenic BRAF regulates melanoma proliferation through the lineage specific factor MITF. PLoS ONE3(7), e2734 (2008).
  • Garraway LA, Sellers WR. Lineage dependency and lineage-survival oncogenes in human cancer. Nat. Rev. Cancer6(8), 593–602 (2006).
  • Hemesath TJ, Steingrimsson E, McGill G et al. Microphthalmia, a critical factor in melanocyte development, defines a discrete transcription factor family. Genes Dev.8(22), 2770–2780 (1994).
  • Steingrimsson E, Moore KJ, Lamoreux ML et al. Molecular basis of mouse microphthalmia (mi) mutations helps explain their developmental and phenotypic consequences. Nat. Genet.8(3), 256–263 (1994).
  • Price ER, Fisher DE. Sensorineural deafness and pigmentation genes: melanocytes and the Mitf transcriptional network. Neuron30(1), 15–18 (2001).
  • Weeraratna AT, Jiang Y, Hostetter G et al. Wnt5a signaling directly affects cell motility and invasion of metastatic melanoma. Cancer Cell1(3), 279–288 (2002).
  • Muthusamy V, Duraisamy S, Bradbury CM et al. Epigenetic silencing of novel tumor suppressors in malignant melanoma. Cancer Res.66(23), 11187–11193 (2006).
  • Mori T, Martinez SR, O’Day SJ et al. Estrogen receptor-α methylation predicts melanoma progression. Cancer Res.66(13), 6692–6698 (2006).
  • Mirmohammadsadegh A, Marini A, Nambiar S et al. Epigenetic silencing of the PTEN gene in melanoma. Cancer Res.66(13), 6546–6552 (2006).
  • Kato Y, Salumbides BC, Wang X-F. Antitumor effect of the histone deacetylase inhibitor LAQ824 in combination with 13-cis-retinoic acid in human malignant melanoma. Mol. Cancer Ther.6, 70–81 (2007).
  • Volinia S, Calin GA, Liu CG et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc. Natl Acad. Sci. USA103(7), 2257–2261 (2006).
  • Gaur A, Jewell DA, Liang Y et al. Characterization of microRNA expression levels and their biological correlates in human cancer cell lines. Cancer Res.67(6), 2456–2468 (2007).
  • Zhang L, Huang J, Yang N et al. MicroRNAs exhibit high frequency genomic alterations in human cancer. Proc. Natl Acad. Sci. USA103(24), 9136–9141 (2006).
  • Kim M, Gans JD, Nogueira C et al. Comparative oncogenomics identifies NEDD9 as a melanoma metastasis gene. Cell125(7), 1269–1281 (2006).
  • Maser RS, Choudhury B, Campbell PJ et al. Chromosomally unstable mouse tumours have genomic alterations similar to diverse human cancers. Nature447(7147), 966–971 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.