758
Views
290
CrossRef citations to date
0
Altmetric
Review

Lipotoxicity in nonalcoholic fatty liver disease: not all lipids are created equal

, &
Pages 445-451 | Published online: 10 Jan 2014

References

  • Angulo P. Nonalcoholic fatty liver disease. N. Engl. J. Med.346, 1221–1231 (2002).
  • Wieckowska A, Feldstein AE. Nonalcoholic fatty liver disease in the pediatric population: a review. Curr. Opin. Pediatr.17, 636–641 (2005).
  • Brunt EM, Tiniakos DG. Pathological features of NASH. Front Biosci.10, 1475–1484 (2005).
  • Browning JD, Horton JD. Molecular mediators of hepatic steatosis and liver injury. J. Clin. Invest.114, 147–152 (2004).
  • Cheung O, Sanyal AJ. Abnormalities of lipid metabolism in nonalcoholic fatty liver disease. Semin. Liver Dis.28, 351–359 (2008).
  • Donnelly KL, Smith CI, Schwarzenberg SJ, Jessurun J, Boldt MD, Parks EJ. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J. Clin. Invest.115, 1343–1351 (2005).
  • McClain CJ, Barve S, Deaciuc I. Good fat/bad fat. Hepatology45, 1343–1346 (2007).
  • Day CP, James OF. Steatohepatitis: a tale of two ‘hits’? Gastroenterology114, 842–845 (1998).
  • Monetti M, Levin MC, Watt MJ et al. Dissociation of hepatic steatosis and insulin resistance in mice overexpressing DGAT in the liver. Cell Metab.6, 69–78 (2007).
  • Listenberger LL, Han X, Lewis SE et al. Triglyceride accumulation protects against fatty acid-induced lipotoxicity. Proc. Natl Acad. Sci. USA100, 3077–3082 (2003).
  • Yamaguchi K, Yang L, McCall S et al. Inhibiting triglyceride synthesis improves hepatic steatosis but exacerbates liver damage and fibrosis in obese mice with nonalcoholic steatohepatitis. Hepatology45, 1366–1374 (2007).
  • Unger RH. Lipotoxic diseases. Annu. Rev. Med.53, 319–336 (2002).
  • Li ZZ, Berk M, McIntyre TM, Feldstein AE. Hepatic lipid partitioning and liver damage in nonalcoholic fatty liver disease: role of stearoyl-coA desaturase. J. Biol. Chem.284, 5637–5644 (2009).
  • Feldstein AE, Canbay A, Angulo P et al. Hepatocyte apoptosis and fas expression are prominent features of human nonalcoholic steatohepatitis. Gastroenterology125, 437–443 (2003).
  • Delhalle S, Duvoix A, Schnekenburger M, Morceau F, Dicato M, Diederich M. An introduction to the molecular mechanisms of apoptosis. Ann. NY Acad. Sci.1010, 1–8 (2003).
  • Yuan J, Horvitz HR. A first insight into the molecular mechanisms of apoptosis. Cell116(2 Suppl.), S53–S56, S59 (2004).
  • Feldstein AE, Canbay A, Guicciardi ME, Higuchi H, Bronk SF, Gores GJ. Diet associated hepatic steatosis sensitizes to Fas mediated liver injury in mice. J. Hepatol.39, 978–983 (2003).
  • Malhi H, Barreyro FJ, Isomoto H, Bronk SF, Gores GJ. Free fatty acids sensitize hepatocytes to TRAIL mediated cytotoxicity. Gut56, 1124–1131 (2007).
  • Bouchier-Hayes L, Lartigue L, Newmeyer DD. Mitochondria: pharmacological manipulation of cell death. J. Clin. Invest.115, 2640–2647 (2005).
  • Caldwell SH, Chang CY, Nakamoto RK, Krugner-Higby L. Mitochondria in nonalcoholic fatty liver disease. Clin. Liver Dis.8, 595–617 (2004).
  • Fromenty B, Robin MA, Igoudjil A, Mansouri A, Pessayre D. The ins and outs of mitochondrial dysfunction in NASH. Diabetes Metab.30, 121–138 (2004).
  • Feldstein AE, Werneburg NW, Canbay A et al. Free fatty acids promote hepatic lipotoxicity by stimulating TNF-α expression via a lysosomal pathway. Hepatology40, 185–194 (2004).
  • Malhi H, Bronk SF, Werneburg NW, Gores GJ. Free fatty acids induce JNK-dependent hepatocyte lipoapoptosis. J. Biol. Chem.281, 12093–12101 (2006).
  • Feldstein AE, Werneburg NW, Li Z, Bronk SF, Gores GJ. Bax inhibition protects against free fatty acid-induced lysosomal permeabilization. Am. J. Physiol. Gastrointest. Liver Physiol.290, G1339–G1346 (2006).
  • Li Z, Berk M, McIntyre TM, Gores GJ, Feldstein AE. The lysosomal–mitochondrial axis in free fatty acid-induced hepatic lipotoxicity. Hepatology47, 1495–1503 (2008).
  • Mao C, Dong D, Little E, Luo S, Lee AS. Transgenic mouse model for monitoring endoplasmic reticulum stress in vivo. Nat. Med.10, 1013–1014 (2004).
  • Wei Y, Wang D, Pagliassotti MJ. Saturated fatty acid-mediated endoplasmic reticulum stress and apoptosis are augmented by trans-10, cis-12-conjugated linoleic acid in liver cells. Mol. Cell. Biochem.303, 105–113 (2007).
  • Wei Y, Wang D, Topczewski F, Pagliassotti MJ. Saturated fatty acids induce endoplasmic reticulum stress and apoptosis independently of ceramide in liver cells. Am. J. Physiol. Endocrinol. Metab.291, E275–E281 (2006).
  • Wang D, Wei Y, Pagliassotti MJ. Saturated fatty acids promote endoplasmic reticulum stress and liver injury in rats with hepatic steatosis. Endocrinology147, 943–951 (2006).
  • Puri P, Mirshahi F, Cheung O et al. Activation and dysregulation of the unfolded protein response in nonalcoholic fatty liver disease. Gastroenterology134, 568–576 (2008).
  • Mari M, Fernandez-Checa JC. Sphingolipid signalling and liver diseases. Liver Int.27, 440–450 (2007).
  • Kolesnick RN, Kronke M. Regulation of ceramide production and apoptosis. Annu. Rev. Physiol.60, 643–665 (1998).
  • Morales A, Lee H, Goni FM, Kolesnick R, Fernandez-Checa JC. Sphingolipids and cell death. Apoptosis12, 923–939 (2007).
  • Summers SA. Ceramides in insulin resistance and lipotoxicity. Prog. Lipid Res.45, 42–72 (2006).
  • Greco D, Kotronen A, Westerbacka J et al. Gene expression in human NAFLD. Am. J. Physiol. Gastrointest. Liver Physiol.294, G1281–G1287 (2008).
  • Mari M, Caballero F, Colell A et al. Mitochondrial free cholesterol loading sensitizes to TNF- and Fas-mediated steatohepatitis. Cell Metab.4, 185–198 (2006).
  • Puri P, Baillie RA, Wiest MM et al. A lipidomic analysis of nonalcoholic fatty liver disease. Hepatology46, 1081–1090 (2007).
  • Duncan RE, El-Sohemy A, Archer MC. Regulation of HMG-CoA reductase in MCF-7 cells by genistein, EPA, and DHA, alone and in combination with mevastatin. Cancer Lett.224, 221–228 (2005).
  • Sanyal AJ, Campbell-Sargent C, Mirshahi F et al. Nonalcoholic steatohepatitis: association of insulin resistance and mitochondrial abnormalities. Gastroenterology120, 1183–1192 (2001).
  • Caballero F, Fernandez A, De Lacy AM, Fernandez-Checa JC, Caballeria J, Garcia-Ruiz C. Enhanced free cholesterol, SREBP-2 and StAR expression in human NASH. J. Hepatol.50, 789–796 (2009).
  • Medzhitov R. Toll-like receptors and innate immunity. Nat. Rev. Immunol.1, 135–145 (2001).
  • Igolnikov AC, Spatz K, Green RM. C3H/HEJ mice with mutations of the Toll-like receptor 4 (TLR-4) are resistant to the methioninecholine deficient (MCD) diet induced non-alcoholic steatohepatitis (NASH). Hepatology36, A404 (2002).
  • Szabo G, Velayudham A, Romics L Jr, Mandrekar P. Modulation of non-alcoholic steatohepatitis by pattern recognition receptors in mice: the role of Toll-like receptors 2 and 4. Alcohol. Clin. Exp. Res.29(11 Suppl.), S140–S145 (2005).
  • Shi H, Kokoeva MV, Inouye K, Tzameli I, Yin H, Flier JS. TLR4 links innate immunity and fatty acid-induced insulin resistance. J. Clin. Invest.116, 3015–3025 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.