425
Views
51
CrossRef citations to date
0
Altmetric
Review

Role of gut microbiota in Crohn’s disease

, &
Pages 535-546 | Published online: 10 Jan 2014

References

  • Hooper LV, Midtvedt T, Gordon JI. How host–microbial interactions shape the nutrient environment of the mammalian intestine. Annu. Rev. Nutr.22, 283–307 (2002).
  • Kanauchi O, Mitsuyama K, Araki Y, Andoh A. Modification of intestinal flora in the treatment of inflammatory bowel disease. Curr. Pharm. Des.9, 333–346 (2003).
  • Geert RDH, Karel G, Mark P et al. Early lesions of recurrent Crohn’s disease caused by infusion of intestinal contents in excluded ileum. Gastroenterology114, 262–267 (1998).
  • Rutgeerts P, Goboes K, Peeters M et al. Effect of faecal stream diversion on recurrence of Crohn’s disease in the neoterminal ileum. Lancet338, 771–774 (1991).
  • Nuding S, Fellermann K, Wehkamp J, Stange EF. Reduced mucosal antimicrobial activity in Crohn’s disease of the colon. Gut56, 1240–1247 (2007).
  • Taurog JD, Maika SD, Simmons WA, Breban M, Hammer RE. Susceptibility to inflammatory disease in HLA-B27 transgenic rat lines correlates with the level of B27 expression. J. Immunol.150, 4168–4178 (1993).
  • Ralf K, Jurgen L, Donna R, Klaus R. Interleukin-10-deficient mice develop chronic enterocolitis. Cell75, 263–274 (1993).
  • Packey CD, Sartor RB. Commensal bacteria, traditional and opportunistic pathogens, dysbiosis and bacterial killing in inflammatory bowel disease. Curr. Opin. Infect. Dis.22, 292–301 (2009).
  • Mazmanian SK, Round JL, Kasper DL. A microbial symbiosis factor prevents intestinal inflammatory disease. Nature453, 620–625 (2008).
  • Feller M, Huwiler K, Stephan R et al.Mycobacterium avium subspecies paratuberculosis and Crohn’s disease: a systematic review and meta-analysis. Lancet Infect. Dis.7, 607–613 (2007).
  • Bringer MA, Glasser AL, Tung CH, Meresse S, Darfeuille-Michaud A. The Crohn’s disease-associated adherent-invasive Escherichia coli strain LF82 replicates in mature phagolysosomes within J774 macrophages. Cell Microbiol.8, 471–484 (2006).
  • Sokol H, Seksik P, Furet JP et al. Low counts of Faecalibacterium prausnitzii in colitis microbiota. Inflamm. Bowel Dis.15(8), 1183–1189 (2009).
  • Willing B, Halfvarson J, Dicksved J et al. Twin studies reveal specific imbalances in the mucosa-associated microbiota of patients with ileal Crohn’s disease. Inflamm. Bowel Dis.15, 653–660(2009).
  • Scanu AM, Bull TJ, Cannas S et al.Mycobacterium avium subspecies paratuberculosis infection in cases of irritable bowel syndrome and comparison with Crohn’s disease and Johne’s disease: common neural and immune pathogenicities. J. Clin. Microbiol.45, 3883–3890 (2007).
  • Frank DN, St Amand AL, Feldman RA et al. Molecular–phylogenetic characterization of microbial community imbalances in human inflammatory bowel disease. Proc. Natl Acad. Sci. USA104, 13780–13785 (2007).
  • Hasegawa M, Yang K, Hashimoto M et al. Differential release and distribution of NOD1 and NOD2 immunostimulatory molecules among bacterial species and environments. J. Biol. Chem.281, 29054–29063 (2006).
  • Gordon JI, Hooper LV, McNevin MS, Wong M, Bry L. Epithelial cell growth and differentiation. III. Promoting diversity in the intestine: conversations between the microflora, epithelium, and diffuse GALT. Am. J. Physiol. Gastrointest. Liver Physiol.273, G565–G570 (1997).
  • Backhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI. Host–bacterial mutualism in the human intestine. Science307, 1915–1920 (2005).
  • Hooper LV, Gordon JI. Commensal host–bacterial relationships in the gut. Science292, 1115–1118 (2001).
  • Stappenbeck TS, Hooper LV, Gordon JI. Developmental regulation of intestinal angiogenesis by indigenous microbes via paneth cells. Proc. Natl Acad. Sci. USA99, 15451–15455 (2002).
  • Barrett JC, Hansoul S, Nicolae DL et al. Genome-wide association defines more than 30 distinct susceptibility loci for Crohn’s disease. Nat. Genet.40(8), 955–962 (2008).
  • Ogura Y, Bonen DK, Inohara N et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature411, 603–606 (2001).
  • Hugot JP, Chamaillard M, Zouali H et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature411, 599–603 (2001).
  • Hampe J, Franke A, Rosenstiel P et al. A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat. Genet.39, 207–211 (2007).
  • Prescott NJ, Fisher SA, Franke A et al. A nonsynonymous SNP in ATG16L1 predisposes to ileal Crohn’s disease and is independent of CARD15 and IBD5. Gastroenterology132, 1665–1671 (2007).
  • Eckmann L, Kagnoff MF, Fierer J. Intestinal epithelial cells as watchdogs for the natural immune system. Trends Microbiol.3, 118–120 (1995).
  • Janeway CA Jr, Medzhitov R. Innate immune recognition. Annu. Rev. Immunol.20, 197–216 (2002).
  • Falk PG, Hooper LV, Midtvedt T, Gordon JI. Creating and maintaining the gastrointestinal ecosystem: what we know and need to know from gnotobiology. Microbiol. Mol. Biol. Rev.62, 1157–1170 (1998).
  • Wehkamp J, Salzman NH, Porter E et al. Reduced paneth cell α-defensins in ileal Crohn’s disease. Proc. Natl Acad. Sci. USA102, 18129–18134 (2005).
  • McFall-Ngai M, Henderson B, Ruby E. The Influence of Cooperative Bacteria on Animal Host Biology. Cambridge University Press, Cambridge, UK (2005).
  • Cario E. Bacterial interactions with cells of the intestinal mucosa: Toll-like receptors and NOD2. Gut54, 1182–1193 (2005).
  • Girardin SE, Travassos LH, Herve M et al. Peptidoglycan molecular requirements allowing detection by NOD1 and NOD2. J. Biol. Chem.278, 41702–41708 (2003).
  • Braat H, Peppelenbosch MP, Hommes DW. Immunology of Crohn’s disease. Ann. NY Acad. Sci.1072, 135–154 (2006).
  • Mackie RI, Sghir A, Gaskins HR. Developmental microbial ecology of the neonatal gastrointestinal tract. Am. J. Clin. Nutr.69, 1035S–1045S (1999).
  • Ley RE, Peterson DA, Gordon JI. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell124, 837–848 (2006).
  • Fallingborg J. Intraluminal pH of the human gastrointestinal tract. Dan. Med. Bull.46, 183–196 (1999).
  • Macfarlane GT, Gibson GR, Cummings JH. Comparison of fermentation reactions in different regions of the human colon. J. Appl. Bacteriol.72, 57–64 (1992).
  • Suau A, Bonnet R, Sutren M et al. Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Appl. Environ. Microbiol.65, 4799–4807 (1999).
  • Eckburg PB, Bik EM, Bernstein CN et al. Diversity of the human intestinal microbial flora. Science308, 1635–1638 (2005).
  • Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature444, 1022–1023 (2006).
  • Hooper LV, Wong MH, Thelin A et al. Molecular analysis of commensal host–microbial relationships in the intestine. Science291, 881–884 (2001).
  • Hooper LV, Xu J, Falk PG, Midtvedt T, Gordon JI. A molecular sensor that allows a gut commensal to control its nutrient foundation in a competitive ecosystem. Proc. Natl Acad. Sci. USA96, 9833–9838 (1999).
  • Hooper LV. Bacterial contributions to mammalian gut development. Trends Microbiol.12, 129–134 (2004).
  • Ley RE, Backhed F, Turnbaugh P et al. Obesity alters gut microbial ecology. Proc. Natl Acad. Sci. USA102, 11070–11075 (2005).
  • Neish AS, Gewirtz AT, Zeng H et al. Prokaryotic regulation of epithelial responses by inhibition of IκB-α ubiquitination. Science289, 1560–1563 (2000).
  • Kelly D, Campbell JI, King TP et al. Commensal anaerobic gut bacteria attenuate inflammation by regulating nuclear-cytoplasmic shuttling of PPAR-γ and RelA. Nat. Immunol.5, 104–112 (2004).
  • Hermon-Taylor J, Bull TJ, Sheridan JM et al. Causation of Crohn’s disease by Mycobacterium avium subspecies paratuberculosis. Can. J. Gastroenterol.14, 521–539 (2000).
  • Quirke P. Antagonist. Mycobacterium avium subspecies paratuberculosis is a cause of Crohn’s disease. Gut49, 757–760 (2001).
  • Bernstein CN, Nayar G, Hamel A, Blanchard JF. Study of animal-borne infections in the mucosas of patients with inflammatory bowel disease and population-based controls. J. Clin. Microbiol.41, 4986–4990(2003).
  • Cummings JH, Macfarlane GT. Colonic microflora: nutrition and health. Nutrition13, 476–478 (1997).
  • Kaser A, Lee AH, Franke A et al. XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease. Cell134, 743–756 (2008).
  • Ferguson LR, Shelling AN, Browning BL, Huebner C, Petermann I. Genes, diet and inflammatory bowel disease. Mutat. Res.622, 70–83 (2007).
  • Kocsis AK, Lakatos PL, Somogyvari F et al. Association of β-defensin 1 single nucleotide polymorphisms with Crohn’s disease. Scand. J. Gastroenterol.43, 299–307 (2008).
  • Fellermann K, Stange DE, Schaeffeler E et al. A chromosome 8 gene-cluster polymorphism with low human β-defensin 2 gene copy number predisposes to Crohn’s disease of the colon. Am. J. Hum. Genet.79, 439–448 (2006).
  • Grimm MC, Pavli P. NOD2 mutations and Crohn’s disease: are paneth cells and their antimicrobial peptides the link? Gut53, 1558–1560 (2004).
  • Szyk A, Wu Z, Tucker K et al. Crystal structures of human α-defensins HNP4, HD5 and HD6. Protein Sci.15, 2749–2760 (2006).
  • Ayabe T, Satchell DP, Wilson CL et al. Secretion of microbicidal α-defensins by intestinal paneth cells in response to bacteria. Nat. Immunol.1, 113–118 (2000).
  • Wilson CL, Ouellette AJ, Satchell DP et al. Regulation of intestinal α-defensin activation by the metalloproteinase matrilysin in innate host defense. Science286, 113–117 (1999).
  • Jan MS, Huang YH, Shieh B et al. CC chemokines induce neutrophils to chemotaxis, degranulation, and α-defensin release. J. Acquir. Immune Defic. Syndr.41, 6–16 (2006).
  • Salzman NH, Underwood MA, Bevins CL. Paneth cells, defensins, and the commensal microbiota: a hypothesis on intimate interplay at the intestinal mucosa. Semin. Immunol.19, 70–83 (2007).
  • Wehkamp J, Wang G, Kubler I et al. The Paneth cell α-defensin deficiency of ileal Crohn’s disease is linked to Wnt/Tcf-4. J. Immunol.179, 3109–3118 (2007).
  • Eftimiadi C, Buzzi E, Tonetti M et al. Short-chain fatty acids produced by anaerobic bacteria alter the physiological responses of human neutrophils to chemotactic peptide. J. Infect.14, 43–53 (1987).
  • Peyron P, Bordier C, N’Diaye EN, Maridonneau-Parini I. Nonopsonic phagocytosis of Mycobacterium kansasii by human neutrophils depends on cholesterol and is mediated by CR3 associated with glycosylphosphatidylinositol-anchored proteins. J. Immunol.165, 5186–5191 (2000).
  • Butterworth AD, Thomas AG, Akobeng AK. Probiotics for induction of remission in Crohn’s disease. Cochrane Database Syst. Rev.CD006634 (2008).
  • Schultz M, Lindstrom AL. Rationale for probiotic treatment strategies in inflammatory bowel disease. Expert Rev. Gastroenterol. Hepatol.2, 337–355 (2008).
  • Petermann I, Huebner C, Browning BL et al. Interactions among genes influencing bacterial recognition increase IBD risk in a population-based New Zealand cohort. Hum. Immunol.70, 440–446 (2009).
  • Mondel M, Schroeder BO, Zimmermann K et al. Probiotic E. coli treatment mediates antimicrobial human β-defensin synthesis and fecal excretion in humans. Mucosal Immunol.2, 166–172 (2009).
  • Spehlmann ME, Begun AZ, Burghardt J et al. Epidemiology of inflammatory bowel disease in a German twin cohort: results of a nationwide study. Inflamm. Bowel Dis.14, 968–976 (2008).
  • Dicksved J, Halfvarson J, Rosenquist M et al. Molecular analysis of the gut microbiota of identical twins with Crohn’s disease. ISME J.2, 716–727 (2008).
  • Mankertz J, Schulzke JD. Altered permeability in inflammatory bowel disease: pathophysiology and clinical implications. Curr. Opin. Gastroenterol.23, 379–383 (2007).
  • Wrackmeyer U, Hansen GH, Seya T, Danielsen EM. Intelectin: a novel lipid raft-associated protein in the enterocyte brush border. Biochemistry45, 9188–9197 (2006).
  • Singh SB, Davis AS, Taylor GA, Deretic V. Human IRGM induces autophagy to eliminate intracellular mycobacteria. Science (New York, NY)313, 1438–1441 (2006).
  • Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell132, 27–42 (2008).
  • Rioux JD, Xavier RJ, Taylor KD et al. Genome-wide association study identifies new susceptibility loci for Crohn’s disease and implicates autophagy in disease pathogenesis. Nat. Genet.39, 596–604 (2007).
  • Cummings JR, Cooney R, Pathan S et al. Confirmation of the role of ATG16L1 as a Crohn’s disease susceptibility gene. Inflamm. Bowel Dis.13, 941–946 (2007).
  • Baldassano RN, Bradfield JP, Monos DS et al. Association of the T300A non-synonymous variant of the ATG16L1 gene with susceptibility to paediatric Crohn’s disease. Gut56, 1171–1173 (2007).
  • Yamazaki K, Onouchi Y, Takazoe M et al. Association analysis of genetic variants in IL23R, ATG16L1 and 5p13.1 loci with Crohn’s disease in Japanese patients. J. Hum. Genet.52, 575–583 (2007).
  • Amano A, Nakagawa I, Yoshimori T. Autophagy in innate immunity against intracellular bacteria. J. Biochem.140, 161–166 (2006).
  • Birmingham CL, Brumell JH. Methods to monitor autophagy of Salmonella enterica serovar Typhimurium. Methods Enzymol.452, 325–343 (2009).
  • Kelekar A. Autophagy. Ann. NY Acad. Sci.1066, 259–271 (2005).
  • Scherz-Shouval R, Shvets E, Fass E et al. Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J.26, 1749–1760 (2007).
  • Kadowaki M, Karim MR, Carpi A, Miotto G. Nutrient control of macroautophagy in mammalian cells. Mol. Aspects Med.27, 426–443 (2006).
  • Reis e Sousa C. Immunology. Eating in to avoid infection. Science315, 1376–1377 (2007).
  • Husebye H, Halaas O, Stenmark H et al. Endocytic pathways regulate Toll-like receptor 4 signaling and link innate and adaptive immunity. EMBO J.25, 683–692 (2006).
  • Roberts RL, Hollis-Moffatt JE, Gearry RB et al. Confirmation of association of IRGM and NCF4 with ileal Crohn’s disease in a population-based cohort. Genes Immun.9(6), 561–565 (2008).
  • Parkes M, Barrett JC, Prescott NJ et al. Sequence variants in the autophagy gene IRGM and multiple other replicating loci contribute to Crohn’s disease susceptibility. Nat. Genet.39, 830–832 (2007).
  • Collazo CM, Yap GS, Sempowski GD et al. Inactivation of LRG-47 and IRG-47 reveals a family of interferon g-inducible genes with essential, pathogen-specific roles in resistance to infection. J. Exp. Med.194, 181–188 (2001).
  • Plowey ED, Cherra SJ 3rd, Liu YJ, Chu CT. Role of autophagy in G2019S-LRRK2-associated neurite shortening in differentiated SH-SY5Y cells. J. Neurochem.105, 1048–1056 (2008).
  • West AB, Moore DJ, Biskup S et al. Parkinson’s disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity. Proc. Natl Acad. Sci. USA102, 16842–16847 (2005).
  • Smith WW, Pei Z, Jiang H et al. Kinase activity of mutant LRRK2 mediates neuronal toxicity. Nat. Neurosci.9, 1231–1233 (2006).
  • van der Sluis M, de Koning BA, de Bruijn AC et al. MUC2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection. Gastroenterology131, 117–129 (2006).
  • Schultsz C, van Den Berg FM, Ten Kate FW, Tytgat GN, Dankert J. The intestinal mucus layer from patients with inflammatory bowel disease harbors high numbers of bacteria compared with controls. Gastroenterology117, 1089–1097 (1999).
  • Bonen D, Cho J. The genetics of inflammatory bowel disease. Gastroenterology124, 521–536 (2003).
  • Van Heel D, McGovern D, Jewell D. Crohn’s disease: genetic susceptibility, bacteria, and innate immunity. Lancet357, 1902–1904 (2001).
  • Takeda K, Kaisho T, Akira S. Toll-like receptors. Annu. Rev. Immunol.21, 335–376 (2003).
  • Aderem A, Ulevitch RJ. Toll-like receptors in the induction of the innate immune response. Nature406, 782–787 (2000).
  • Mahida Y, Rolfe V. Host–bacterial interactions in inflammatory bowel disease. Clin. Sci.107, 331–341 (2004).
  • Kobayashi K, Inohara N, Hernandez LD et al. RICK/Rip2/CARDIAK mediates signalling for receptors of the innate and adaptive immune systems. Nature416, 194–199 (2002).
  • Inohara N, Ogura Y, Fontalba A et al. host recognition of bacterial muramyl dipeptide mediated through NOD2. Implications for Crohn’s disease. J. Biol. Chem.278, 5509–5512 (2003).
  • Hruz P, Zinkernagel AS, Jenikova G et al. NOD2 contributes to cutaneous defense against Staphylococcus aureus through α-toxin-dependent innate immune activation. Proc. Natl Acad. Sci. USA106(31), 12873–12878 (2009).
  • Watanabe T, Kitani A, Murray PJ, Strober W. NOD2 is a negative regulator of Toll-like receptor 2-mediated T-helper type 1 responses. Nat. Immunol.5, 800–808 (2004).
  • Kim YG, Park JH, Shaw MH et al. The cytosolic sensors NOD1 and NOD2 are critical for bacterial recognition and host defense after exposure to Toll-like receptor ligands. Immunity28, 246–257 (2008).
  • Browning BL, Huebner C, Petermann I et al. Has Toll-like receptor 4 been prematurely dismissed as an inflammatory bowel disease gene? Association study combined with meta-analysis shows strong evidence for association. Am. J. Gastroenterol.102, 2504–2512 (2007).
  • Huebner C, Ferguson LR, Han DY et al. Nucleotide-binding oligomerization domain containing 1 (NOD1) haplotypes and single nucleotide polymorphisms modify susceptibility to inflammatory bowel disease in a New Zealand caucasian population: a case–control study. BMC Res. Notes2, 52 (2009).
  • Koslowski MJ, Kubler I, Chamaillard M et al. Genetic variants of Wnt transcription factor TCF-4 (TCF7L2) putative promoter region are associated with small intestinal Crohn’s disease. PLoS One4, e4496 (2009).
  • Wehkamp J, Harder J, Weichenthal M et al.NOD2 (CARD15) mutations in Crohn’s disease are associated with diminished mucosal α-defensin expression. Gut53, 1658–1664 (2004).
  • Ouellette AJ, Darmoul D, Tran D et al. Peptide localization and gene structure of cryptdin 4, a differentially expressed mouse paneth cell α-defensin. Infect. Immun.67, 6643–6651 (1999).
  • Lesage S, Zouali H, Cezard JP et al.CARD15/NOD2 mutational analysis and genotype-phenotype correlation in 612 patients with inflammatory bowel disease. Am. J. Hum. Genet.70, 845–857 (2002).
  • Hampe J, Grebe J, Nikolaus S et al. Association of NOD2 (CARD 15) genotype with clinical course of Crohn’s disease: a cohort study. Lancet359, 1661–1665 (2002).
  • Ferguson LR, Browning BL, Huebner C et al. Single nucleotide polymorphisms in human paneth cell defensin A5 may confer susceptibility to inflammatory bowel disease in a New Zealand Caucasian population. Dig. Liver Dis.40, 723–730 (2008).
  • Hafner S, Timmer A, Herfarth H et al. The role of domestic hygiene in inflammatory bowel disease: hepatitis A and worm infestations. Eur. J. Gastroenterol. Hepatol.20, 561–566 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.