533
Views
45
CrossRef citations to date
0
Altmetric
Review

Liver fibrosis in biliary atresia

Pages 335-343 | Published online: 10 Jan 2014

References

  • Balistreri WF, Grand R, Hoofnagle JH et al. Biliary atresia: current concepts and research directions – summary of a symposium. Hepatology23, 1682–1692 (1996).
  • Chang HK, Park YJ, Koh H et al. Hepatic fibrosis scan for liver stiffness score measurement: a useful preendoscopic screening test for the detection of varices in postoperative patients with biliary atresia. J. Pediatr. Gastroenterol. Nutr.49, 323–328 (2009).
  • McKiernan PJ, Baker AJ, Kelly DA. The frequency and outcome of biliary atresia in the UK and Ireland. Lancet355, 25–29 (2000).
  • Mills CO, Milkiewicz P, Muller M et al. Different pathways of canalicular secretion of sulfated and non-sulfated fluorescent bile acids: a study in isolated hepatocyte couplets and TR-rats. J. Hepatol.31, 678–684 (1999).
  • Yoon PW, Bresee JS, Olney RS, James LM, Khoury MJ. Epidemiology of biliary atresia: a population-based study. Pediatrics99, 376–382 (1997).
  • Narkewicz MR. Biliary atresia: an update on our understanding of the disorder. Curr. Opin. Pediatr.13, 435–440 (2001).
  • Perlmutter DH, Shepherd RW. Extrahepatic biliary atresia: a disease or a phenotype? Hepatology35, 1297–1304 (2002).
  • Davenport M, Howard ER. Macroscopic appearance at portoenterostomy – a prognostic variable in biliary atresia. J. Pediatr. Surg.31, 1387–1390 (1996).
  • Shteyer E, Ramm GA, Xu C, White FV, Shepherd RW. Outcome after portoenterostomy in biliary atresia: pivotal role of degree of liver fibrosis and intensity of stellate cell activation. J. Pediatr. Gastroenterol. Nutr.42, 93–99 (2006).
  • Weerasooriya VS, White FV, Shepherd RW. Hepatic fibrosis and survival in biliary atresia. J. Pediatr.144, 123–125 (2004).
  • Hartley JL, Davenport M, Kelly DA. Biliary atresia. Lancet374, 1704–1713 (2009).
  • Adrian JE, Kamps JAAM, Scherphof GL et al. A novel lipid-based drug carrier targeted to the non-parenchymal cells, including hepatic stellate cells, in the fibrotic livers of bile duct ligated rats. Biochim. Biophys. Acta1768, 1430–1439 (2007).
  • Bolkenius U, Hahn D, Gressner AM, Breitkopf K, Dooley S, Wickert L. Glucocorticoids decrease the bioavailability of TGF-β which leads to a reduced TGF-β signaling in hepatic stellate cells. Biochem. Biophys. Res. Commun.325, 1264–1270 (2004).
  • Caligiuri A, De Franco RM, Romanelli RG et al. Antifibrogenic effects of canrenone, an antialdosteronic drug, on human hepatic stellate cells. Gastroenterology124, 504–520 (2003).
  • Caligiuri A, De Franco RM, Romanelli RG et al. Antifibrogenic effects of canrenone, an antialdosteronic drug, on human hepatic stellate cells. Gastroenterology124, 504–520 (2003).
  • Cassiman D, Libbrecht L, Desmet V, Denef C, Roskams T. Hepatic stellate cell/myofibroblast subpopulations in fibrotic human and rat livers. J. Hepatol.36, 200–209 (2002).
  • Chen A, Beno DW, Davis BH. Suppression of stellate cell type I collagen gene expression involves AP-2 transmodulation of nuclear factor-1-dependent gene transcription. J. Biol. Chem.271, 25994–25998 (1996).
  • Dienstag JL, Goldin RD, Heathcote EJ et al. Histological outcome during long-term lamivudine therapy. Gastroenterology124, 105–117 (2003).
  • Hadziyannis SJ, Tassopoulos NC, Heathcote EJ et al. Adefovir dipivoxil for the treatment of hepatitis B e antigen-negative chronic hepatitis B. N. Engl. J. Med.348, 800–807 (2003).
  • Lai CL, Chien RN, Leung NW et al. A one-year trial of lamivudine for chronic hepatitis B. Asia Hepatitis Lamivudine Study Group. N. Engl. J. Med.339, 61–68 (1998).
  • Poynard T, McHutchison J, Manns M et al. Impact of pegylated interferon a-2b and ribavirin on liver fibrosis in patients with chronic hepatitis C. Gastroenterology122, 1303–1313 (2002).
  • Chojkier M, Houglum K, Solis-Herruzo J, Brenner DA. Stimulation of collagen gene expression by ascorbic acid in cultured human fibroblasts. A role for lipid peroxidation? J. Biol. Chem.264, 16957–16962 (1989).
  • Chen A, Davis BH. The DNA binding protein BTEB mediates acetaldehyde-induced, jun N-terminal kinase-dependent αI(I) collagen gene expression in rat hepatic stellate cells. Mol. Cell. Biol.20, 2818–2826 (2000).
  • Garcia-Trevijano ER, Iraburu MJ, Fontana L et al. Transforming growth factor β1 induces the expression of α1(I) procollagen mRNA by a hydrogen peroxide-C/EBPβ-dependent mechanism in rat hepatic stellate cells. Hepatology29, 960–970 (1999).
  • Lee KS, Buck M, Houglum K, Chojkier M. Activation of hepatic stellate cells by TGF α and collagen type I is mediated by oxidative stress through c-myb expression. J. Clin. Invest.96, 2461–2468 (1995).
  • Kim Y, Ratziu V, Choi SG, Lalazar A et al. Transcriptional activation of transforming growth factor β1 and its receptors by the Kruppel-like factor Zf9/core promoter-binding protein and Sp1. Potential mechanisms for autocrine fibrogenesis in response to injury. J. Biol. Chem.273, 33750–33758 (1998).
  • Kojima S, Hayashi S, Shimokado K et al. Transcriptional activation of urokinase by the Kruppel-like factor Zf9/COPEB activates latent TGF-β1 in vascular endothelial cells. Blood95, 1309–1316 (2000).
  • Comporti M, Arezzini B, Signorini C, Sgherri C, Monaco B, Gardi C. F2-isoprostanes stimulate collagen synthesis in activated hepatic stellate cells: a link with liver fibrosis? Lab. Invest.85, 1381–1391 (2005).
  • Gujral JS, Liu J, Farhood A, Hinson JA, Jaeschke H. Functional importance of ICAM-1 in the mechanism of neutrophil-induced liver injury in bile duct-ligated mice. Am. J. Physiol. Gastrointest. Liver Physiol.286, G499–G507 (2004).
  • Malhi H, Gores GJ, Lemasters JJ. Apoptosis and necrosis in the liver: a tale of two deaths? Hepatology43, S31–S44 (2006).
  • Rodrigues CM, Steer CJ. Mitochondrial membrane perturbations in cholestasis. J. Hepatol.32, 135–141 (2000).
  • Sokol RJ, Devereaux MW, Khandwala R. Effect of oxypurinol, a xanthine oxidase inhibitor, on hepatic injury in the bile duct-ligated rat. Pediatr. Res.44, 397–401 (1998).
  • Kawamura K, Kobayashi Y, Kageyama F et al. Enhanced hepatic lipid peroxidation in patients with primary biliary cirrhosis. Am. J. Gastroenterol.95, 3596–3601 (2000).
  • Papanikolaou G, Pantopoulos K. Iron metabolism and toxicity. Toxicol. Appl. Pharmacol.202, 199–211 (2005).
  • Ramm GA, Ruddell RG. Hepatotoxicity of iron overload: mechanisms of iron-induced hepatic fibrogenesis. Semin. Liver Dis.25, 433–449 (2005).
  • Shim H, Harris ZL. Genetic defects in copper metabolism. J. Nutr.133, 1527S–1531S (2003).
  • Desmet V, Roskams T, Van EP. Ductular reaction in the liver. Pathol. Res. Pract.191, 513–524 (1995).
  • Roskams T, Desmet V. Ductular reaction and its diagnostic significance. Semin. Diagn. Pathol.15, 259–269 (1998).
  • LeSage G, Glaser S, Alpini G. Regulation of cholangiocyte proliferation. Liver21, 73–80 (2001).
  • Slott PA, Liu MH, Tavoloni N. Origin, pattern, and mechanism of bile duct proliferation following biliary obstruction in the rat. Gastroenterology99, 466–477 (1990).
  • Polimeno L, Azzarone A, Zeng QH et al. Cell proliferation and oncogene expression after bile duct ligation in the rat: evidence of a specific growth effect on bile duct cells. Hepatology21, 1070–1078 (1995).
  • Alvaro D, Mancino MG, Glaser S et al. Proliferating cholangiocytes: a neuroendocrine compartment in the diseased liver. Gastroenterology132, 415–431 (2007).
  • Diaz R, Kim JW, Hui JJ et al. Evidence for the epithelial to mesenchymal transition in biliary atresia fibrosis. Hum. Pathol.39, 102–115 (2008).
  • Greenbaum LE, Wells RG. The role of stem cells in liver repair and fibrosis. Int. J. Biochem. Cell Biol. DOI:10.1016/j.biocel.2009.11.006 (2009) (Epub ahead of print).
  • Libbrecht L, Desmet V, Van DB, Roskams T. Deep intralobular extension of human hepatic ‘progenitor cells’ correlates with parenchymal inflammation in chronic viral hepatitis: can ‘progenitor cells’ migrate? J. Pathol.192, 373–378 (2000).
  • Lowes KN, Brennan BA, Yeoh GC, Olynyk JK. Oval cell numbers in human chronic liver diseases are directly related to disease severity. Am. J. Pathol.154, 537–541 (1999).
  • Petersen BE, Bowen WC, Patrene KD et al. Bone marrow as a potential source of hepatic oval cells. Science284, 1168–1170 (1999).
  • Preisegger KH, Factor VM, Fuchsbichler A, Stumptner C, Denk H, Thorgeirsson SS. Atypical ductular proliferation and its inhibition by transforming growth factor β1 in the 3,5-diethoxycarbonyl-1,4-dihydrocollidine mouse model for chronic alcoholic liver disease. Lab. Invest.79, 103–109 (1999).
  • Yang L, Faris RA, Hixson DC. Characterization of a mature bile duct antigen expressed on a subpopulation of biliary ductular cells but absent from oval cells. Hepatology18, 357–366 (1993).
  • Yang L, Faris RA, Hixson DC. Phenotypic heterogeneity within clonogenic ductal cell populations isolated from normal adult rat liver. Proc. Soc. Exp. Biol. Med.204, 280–288 (1993).
  • Kinnman N, Housset C. Peribiliary myofibroblasts in biliary type liver fibrosis. Front. Biosci.7, d496–d503 (2002).
  • Magness ST, Bataller R, Yang L, Brenner DA. A dual reporter gene transgenic mouse demonstrates heterogeneity in hepatic fibrogenic cell populations. Hepatology40, 1151–1159 (2004).
  • Forbes SJ, Russo FP, Rey V et al. A significant proportion of myofibroblasts are of bone marrow origin in human liver fibrosis. Gastroenterology126, 955–963 (2004).
  • Suskind DL, Muench MO. Searching for common stem cells of the hepatic and hematopoietic systems in the human fetal liver: CD34+ cytokeratin 7/8+ cells express markers for stellate cells. J. Hepatol.40, 261–268 (2004).
  • Dalakas E, Newsome PN, Boyle S et al. Bone marrow stem cells contribute to alcohol liver fibrosis in humans. Stem Cells Dev. DOI:10.1089/scd.2009.0387 (2009) (Epub ahead of print).
  • Kisseleva T, Uchinami H, Feirt N et al. Bone marrow-derived fibrocytes participate in pathogenesis of liver fibrosis. J. Hepatol.45, 429–438 (2006).
  • Russo FP, Alison MR, Bigger BW et al. The bone marrow functionally contributes to liver fibrosis. Gastroenterology130, 1807–1821 (2006).
  • Del CG, Murillo MM, Avarez-Barrientos A et al. Autocrine production of TGF-β confers resistance to apoptosis after an epithelial–mesenchymal transition process in hepatocytes: role of EGF receptor ligands. Exp. Cell Res.312, 2860–2871 (2006).
  • Ju W, Ogawa A, Heyer J et al. Deletion of Smad2 in mouse liver reveals novel functions in hepatocyte growth and differentiation. Mol. Cell. Biol.26, 654–667 (2006).
  • Kaimori A, Potter J, Kaimori JY, Wang C, Mezey E, Koteish A. Transforming growth factor-β1 induces an epithelial-to-mesenchymal transition state in mouse hepatocytes in vitro. J. Biol. Chem.282, 22089–22101 (2007).
  • Kojima T, Takano K, Yamamoto T et al. Transforming growth factor-β induces epithelial to mesenchymal transition by down-regulation of claudin-1 expression and the fence function in adult rat hepatocytes. Liver Int.28, 534–545 (2008).
  • Valdes F, Alvarez AM, Locascio A et al. The epithelial mesenchymal transition confers resistance to the apoptotic effects of transforming growth factor β in fetal rat hepatocytes. Mol. Cancer Res.1, 68–78 (2002).
  • Zeisberg M, Yang C, Martino M et al. Fibroblasts derive from hepatocytes in liver fibrosis via epithelial to mesenchymal transition. J. Biol. Chem.282, 23337–23347 (2007).
  • Mack CL, Falta MT, Sullivan AK et al. Oligoclonal expansions of CD4+ and CD8+ T-cells in the target organ of patients with biliary atresia. Gastroenterology133, 278–287 (2007).
  • Ohya T, Fujimoto T, Shimomura H, Miyano T. Degeneration of intrahepatic bile duct with lymphocyte infiltration into biliary epithelial cells in biliary atresia. J. Pediatr. Surg.30, 515–518 (1995).
  • Schweizer P, Petersen M, Jeszberger N, Ruck P, Dietz K. Immunohistochemical and molecular biological investigations regarding the pathogenesis of extrahepatic biliary atresia. (Part 1: immunohistochemical studies). Eur. J. Pediatr. Surg.13, 7–15 (2003).
  • Ahmed AF, Ohtani H, Nio M et al. CD8+ T cells infiltrating into bile ducts in biliary atresia do not appear to function as cytotoxic T cells: a clinicopathological analysis. J. Pathol.193, 383–389 (2001).
  • Dillon P, Belchis D, Tracy T, Cilley R, Hafer L, Krummel T. Increased expression of intercellular adhesion molecules in biliary atresia. Am. J. Pathol.145, 263–267 (1994).
  • Dillon PW, Belchis D, Minnick K, Tracy T. Differential expression of the major histocompatibility antigens and ICAM-1 on bile duct epithelial cells in biliary atresia. Tohoku J. Exp. Med.181, 33–40 (1997).
  • Kobayashi H, Puri P, O’Briain DS, Surana R, Miyano T. Hepatic overexpression of MHC class II antigens and macrophage-associated antigens (CD68) in patients with biliary atresia of poor prognosis. J. Pediatr. Surg.32, 590–593 (1997).
  • Shivakumar P, Campbell KM, Sabla GE et al. Obstruction of extrahepatic bile ducts by lymphocytes is regulated by IFN-γ in experimental biliary atresia. J. Clin. Invest.114, 322–329 (2004).
  • Shivakumar P, Sabla G, Mohanty S et al. Effector role of neonatal hepatic CD8+ lymphocytes in epithelial injury and autoimmunity in experimental biliary atresia. Gastroenterology133, 268–277 (2007).
  • Muraji T, Suskind DL, Irie N. Biliary atresia: a new immunological insight into etiopathogenesis. Expert Rev. Gastroenterol. Hepatol.3, 599–606 (2009).
  • Balistreri WF, Grand R, Hoofnagle JH et al. Biliary atresia: current concepts and research directions – summary of a symposium. Hepatology23, 1682–1692 (1996).
  • Liu C, Chiu JH, Chin T et al. Expression of fas ligand on bile ductule epithelium in biliary atresia – a poor prognostic factor. J. Pediatr. Surg.35, 1591–1596 (2000).
  • Sokol RJ, Mack C. Etiopathogenesis of biliary atresia. Semin. Liver Dis.21, 517–524 (2001).
  • Urushihara N, Iwagaki H, Yagi T et al. Elevation of serum interleukin-18 levels and activation of Kupffer cells in biliary atresia. J. Pediatr. Surg.35, 446–449 (2000).
  • Davenport M, Gonde C, Redkar R et al. Immunohistochemistry of the liver and biliary tree in extrahepatic biliary atresia. J. Pediatr. Surg.36, 1017–1025 (2001).
  • Ramm GA, Nair VG, Bridle KR, Shepherd RW, Crawford DH. Contribution of hepatic parenchymal and nonparenchymal cells to hepatic fibrogenesis in biliary atresia. Am. J. Pathol.153, 527–535 (1998).
  • Faiz Kabir Uddin Ahmed A, Ohtani H, Nio M et al. In situ expression of fibrogenic growth factors and their receptors in biliary atresia: comparison between early and late stages. J. Pathol.192, 73–80 (2000).
  • Seki E, De MS, Osterreicher CH et al. TLR4 enhances TGF-β signaling and hepatic fibrosis. Nat. Med.13, 1324–1332 (2007).
  • Duffield JS, Forbes SJ, Constandinou CM et al. Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. J. Clin. Invest.115, 56–65 (2005).
  • Rivera CA, Bradford BU, Hunt KJ et al. Attenuation of CCl(4)-induced hepatic fibrosis by GdCl(3) treatment or dietary glycine. Am. J. Physiol. Gastrointest. Liver Physiol.281, G200–G207 (2001).
  • Lamireau T, Le BB, Boussarie L et al. Expression of collagens type I and IV, osteonectin and transforming growth factor β-1 (TGFβ1) in biliary atresia and paucity of intrahepatic bile ducts during infancy. J. Hepatol.31, 248–255 (1999).
  • Pape L, Olsson K, Petersen C, von Wasilewski R, Melter M. Prognostic value of computerized quantification of liver fibrosis in children with biliary atresia. Liver Transpl.15, 876–882 (2009).
  • Tanano H, Hasegawa T, Kimura T et al. Proposal of fibrosis index using image analyzer as a quantitative histological evaluation of liver fibrosis in biliary atresia. Pediatr. Surg. Int.19, 52–56 (2003).
  • Abdi W, Millan JC, Mezey E. Sampling variability on percutaneous liver biopsy. Arch. Intern. Med.139, 667–669 (1979).
  • Regev A, Berho M, Jeffers LJ et al. Sampling error and intraobserver variation in liver biopsy in patients with chronic HCV infection. Am. J. Gastroenterol.97, 2614–2618 (2002).
  • Tamatani T, Kobayashi H, Tezuka K et al. Establishment of the enzyme-linked immunosorbent assay for connective tissue growth factor (CTGF) and its detection in the sera of biliary atresia. Biochem. Biophys. Res. Commun.251, 748–752 (1998).
  • Jiang CB, Lee HC, Yeung CY et al. A scoring system to predict the need for liver transplantation for biliary atresia after Kasai portoenterostomy. Eur. J. Pediatr.162, 603–606 (2003).
  • Olthoff KM, Brown RS Jr, Delmonico FL et al. Summary report of a national conference: evolving concepts in liver allocation in the MELD and PELD era. December 8, (2003), Washington, DC, USA. Liver Transpl.10, A6–A22 (2004).
  • Manning DS, Afdhal NH. Diagnosis and quantitation of fibrosis. Gastroenterology134, 1670–1681 (2008).
  • Sandrin L, Fourquet B, Hasquenoph JM et al. Transient elastography: a new noninvasive method for assessment of hepatic fibrosis. Ultrasound Med. Biol.29, 1705–1713 (2003).
  • de Lédinghen V, Le Bail B, Rebouissoux L et al. Liver stiffness measurement in children using FibroScan: feasibility study and comparison with Fibrotest, aspartate transaminase to platelets ratio index, and liver biopsy. J. Pediatr. Gastroenterol. Nutr.45, 443–450 (2007).
  • Huwart L, Salameh N, ter Beek L et al. MR elastography of liver fibrosis: preliminary results comparing spin-echo and echo-planar imaging. Eur. Radiol.18, 2535–2541 (2008).
  • Wallace K, Burt AD, Wright MC. Liver fibrosis. Biochem. J.411, 1–18 (2008).
  • Ghiassi-Nejad Z, Friedman SL. Advances in antifibrotic therapy. Expert Rev. Gastroenterol. Hepatol.2, 803–816 (2008).
  • Kotb MA. Review of historical cohort: ursodeoxycholic acid in extrahepatic biliary atresia. J. Pediatr. Surg.43, 1321–1327 (2008).
  • Willot S, Uhlen S, Michaud L et al. Effect of ursodeoxycholic acid on liver function in children after successful surgery for biliary atresia. Pediatrics122, e1236–e1241 (2008).
  • Escobar MA, Jay CL, Brooks RM et al. Effect of corticosteroid therapy on outcomes in biliary atresia after Kasai portoenterostomy. J. Pediatr. Surg.41, 99–103 (2006).
  • Meyers RL, Book LS, O’Gorman MA et al. High-dose steroids, ursodeoxycholic acid, and chronic intravenous antibiotics improve bile flow after Kasai procedure in infants with biliary atresia. J. Pediatr. Surg.38, 406–411 (2003).
  • Davenport M, Stringer MD, Tizzard SA, McClean P, Mieli-Vergani G, Hadzic N. Randomized, double-blind, placebo-controlled trial of corticosteroids after Kasai portoenterostomy for biliary atresia. Hepatology46, 1821–1827 (2007).
  • Muraji T, Higashimoto Y. The improved outlook for biliary atresia with corticosteroid therapy. J. Pediatr. Surg.32, 1103–1106 (1997).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.