649
Views
67
CrossRef citations to date
0
Altmetric
Review

The IL-23/IL-17 pathway in inflammatory bowel disease

&
Pages 223-237 | Published online: 10 Jan 2014

References

  • Loftus EV Jr. Clinical epidemiology of inflammatory bowel disease: incidence, prevalence, and environmental influences. Gastroenterology126(6), 1504–1517 (2004).
  • Loftus EV Jr, Sandborn WJ. Epidemiology of inflammatory bowel disease. Gastroenterol. Clin. N. Am.31(1), 1–20 (2002).
  • Triantafillidis JK, Nasioulas G, Kosmidis PA. Colorectal cancer and inflammatory bowel disease: epidemiology, risk factors, mechanisms of carcinogenesis and prevention strategies. Anticancer Res.29(7), 2727–2737 (2009).
  • Bernstein CN, Blanchard JF, Rawsthorne P, Yu N. The prevalence of extraintestinal diseases in inflammatory bowel disease: a population-based study. Am. J. Gastroenterol.96(4), 1116–1122 (2001).
  • Bernstein CN, Wajda A, Blanchard JF. The clustering of other chronic inflammatory diseases in inflammatory bowel disease: apopulation-based study. Gastroenterology129(3), 827–836 (2005).
  • Abraham C, Cho JH. Inflammatory bowel disease. N. Engl. J. Med.361(21), 2066–2078 (2009).
  • Fuss IJ, Neurath M, Boirivant M et al. Disparate CD4+ lamina propria (LP) lymphokine secretion profiles in inflammatory bowel disease. Crohn’s disease LP cells manifest increased secretion of IFN-γ, whereas ulcerative colitis LP cells manifest increased secretion of IL-5. J. Immunol.157(3), 1261–1270 (1996).
  • Monteleone G, Biancone L, Marasco R et al. Interleukin 12 is expressed and actively released by Crohn’s disease intestinal lamina propria mononuclear cells. Gastroenterology112(4), 1169–1178 (1997).
  • Parronchi P, Romagnani P, Annunziato F et al. Type 1 T-helper cell predominance and interleukin-12 expression in the gut of patients with Crohn’s disease. Am. J. Pathol.150(3), 823–832 (1997).
  • Heller F, Florian P, Bojarski C et al. Interleukin-13 is the key effector Th2 cytokine in ulcerative colitis that affects epithelial tight junctions, apoptosis, and cell restitution. Gastroenterology129(2), 550–564 (2005).
  • Niessner M, Volk BA. Altered Th1/Th2 cytokine profiles in the intestinal mucosa of patients with inflammatory bowel disease as assessed by quantitative reversed transcribed polymerase chain reaction (RT-PCR). Clin. Exp. Immunol.101(3), 428–435 (1995).
  • Lee TW, Fedorak RN. Tumor necrosis factor-α monoclonal antibodies in the treatment of inflammatory bowel disease: clinical practice pharmacology. Gastroenterol. Clin. N. Am.39(3), 543–557 (2010).
  • Mannon PJ, Fuss IJ, Mayer L et al. Anti-interleukin-12 antibody for active Crohn’s disease. N. Engl. J. Med.351(20), 2069–2079 (2004).
  • Sandborn WJ, Feagan BG, Fedorak RN et al. A randomized trial of Ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with moderate-to-severe Crohn’s disease. Gastroenterology135(4), 1130–1141 (2008).
  • Toedter GP, Blank M, Lang Y, Chen D, Sandborn WJ, de Villiers WJ. Relationship of C-reactive protein with clinical response after therapy with ustekinumab in Crohn’s disease. Am. J. Gastroenterol.104(11), 2768–2773 (2009).
  • Sandborn WJ, Gasink C, Gao L et al. A multicenter, randomized, double-blind, placebo-controlled, Phase 2b study of ustekinumab, a human monoclonal antibody to IL-12/23p40, in patients with moderately to severely active Crohn’s disease: results through week 22 from the Certifi trial. Gastroenterology140(5 Suppl. 1), S109 (2012).
  • Cua DJ, Sherlock J, Chen Y et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature421(6924), 744–748 (2003).
  • Murphy CA, Langrish CL, Chen Y et al. Divergent pro- and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J. Exp. Med.198(12), 1951–1957 (2003).
  • Zheng Y, Danilenko DM, Valdez P et al. Interleukin-22, a T(h)17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature445(7128), 648–651 (2007).
  • Yen D, Cheung J, Scheerens H et al. IL-23 is essential for T cell-mediated colitis and promotes inflammation via IL-17 and IL-6. J. Clin. Invest.116(5), 1310–1316 (2006).
  • Uhlig HH, McKenzie BS, Hue S et al. Differential activity of IL-12 and IL-23 in mucosal and systemic innate immune pathology. Immunity25(2), 309–318 (2006).
  • Hue S, Ahern P, Buonocore S et al. Interleukin-23 drives innate and T cell-mediated intestinal inflammation. J. Exp. Med.203(11), 2473–2483 (2006).
  • Kullberg MC, Jankovic D, Feng CG et al. IL-23 plays a key role in Helicobacter hepaticus-induced T cell-dependent colitis. J. Exp. Med.203(11), 2485–2494 (2006).
  • Elson CO, Cong Y, Weaver CT et al. Monoclonal anti-interleukin 23 reverses active colitis in a T cell-mediated model in mice. Gastroenterology132(7), 2359–2370 (2007).
  • Li Y, Chu N, Hu A, Gran B, Rostami A, Zhang GX. Increased IL-23p19 expression in multiple sclerosis lesions and its induction in microglia. Brain130(Pt 2), 490–501 (2007).
  • Lee E, Trepicchio WL, Oestreicher JL et al. Increased expression of interleukin 23 p19 and p40 in lesional skin of patients with psoriasis vulgaris. J. Exp. Med.199(1), 125–130 (2004).
  • Kim HR, Cho ML, Kim KW et al. Up-regulation of IL-23p19 expression in rheumatoid arthritis synovial fibroblasts by IL-17 through PI3-kinase-, NF-κB- and p38 MAPK-dependent signalling pathways. Rheumatology (Oxford)46(1), 57–64 (2007).
  • Langrish CL, McKenzie BS, Wilson NJ, de Waal Malefyt R, Kastelein RA, Cua DJ. IL-12 and IL-23: master regulators of innate and adaptive immunity. Immunol. Rev.202, 96–105 (2004).
  • Trinchieri G. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat. Rev. Immunol.3(2), 133–146 (2003).
  • Willenborg DO, Fordham S, Bernard CC, Cowden WB, Ramshaw IA. IFN-γ plays a critical down-regulatory role in the induction and effector phase of myelin oligodendrocyte glycoprotein-induced autoimmune encephalomyelitis. J. Immunol.157(8), 3223–3227 (1996).
  • Krakowski M, Owens T. Interferon-γ confers resistance to experimental allergic encephalomyelitis. Eur. J. Immunol.26(7), 1641–1646 (1996).
  • Duong TT, St Louis J, Gilbert JJ, Finkelman FD, Strejan GH. Effect of anti-interferon-γ and anti-interleukin-2 monoclonal antibody treatment on the development of actively and passively induced experimental allergic encephalomyelitis in the SJL/J mouse. J. Neuroimmunol.36(2–3), 105–115 (1992).
  • Billiau A, Heremans H, Vandekerckhove F et al. Enhancement of experimental allergic encephalomyelitis in mice by antibodies against IFN-γ. J. Immunol.140(5), 1506–1510 (1988).
  • Oppmann B, Lesley R, Blom B et al. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity13(5), 715–725 (2000).
  • Stallmach A, Giese T, Schmidt C, Ludwig B, Mueller-Molaian I, Meuer SC. Cytokine/chemokine transcript profiles reflect mucosal inflammation in Crohn’s disease. Int. J. Colorectal. Dis.19(4), 308–315 (2004).
  • LeibundGut-Landmann S, Gross O, Robinson MJ et al. Syk- and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17. Nat. Immunol.8(6), 630–638 (2007).
  • Re F, Strominger JL. Toll-like receptor 2 (TLR2) and TLR4 differentially activate human dendritic cells. J. Biol. Chem.276(40), 37692–37699 (2001).
  • van Beelen AJ, Zelinkova Z, Taanman-Kueter EW et al. Stimulation of the intracellular bacterial sensor NOD2 programs dendritic cells to promote interleukin-17 production in human memory T cells. Immunity27(4), 660–669 (2007).
  • Sheibanie AF, Tadmori I, Jing H, Vassiliou E, Ganea D. Prostaglandin E2 induces IL-23 production in bone marrow-derived dendritic cells. FASEB J.18(11), 1318–1320 (2004).
  • Parham C, Chirica M, Timans J et al. A receptor for the heterodimeric cytokine IL-23 is composed of IL-12Rβ1 and a novel cytokine receptor subunit, IL-23R. J. Immunol.168(11), 5699–5708 (2002).
  • Awasthi A, Riol-Blanco L, Jager A et al. Cutting edge: IL-23 receptor gfp reporter mice reveal distinct populations of IL-17-producing cells. J. Immunol.182(10), 5904–5908 (2009).
  • Buonocore S, Ahern PP, Uhlig HH et al. Innate lymphoid cells drive interleukin-23-dependent innate intestinal pathology. Nature464(7293), 1371–1375 (2010).
  • Huang W, Na L, Fidel PL, Schwarzenberger P. Requirement of interleukin-17A for systemic anti-Candida albicans host defense in mice. J. Infect. Dis.190(3), 624–631 (2004).
  • Mangan PR, Harrington LE, O’Quinn DB et al. Transforming growth factor-β induces development of the T(h)17 lineage. Nature441(7090), 231–234 (2006).
  • Ye P, Garvey PB, Zhang P et al. Interleukin-17 and lung host defense against Klebsiella pneumoniae infection. Am. J. Respir. Cell. Mol. Biol.25(3), 335–340 (2001).
  • Khader SA, Bell GK, Pearl JE et al. IL-23 and IL-17 in the establishment of protective pulmonary CD4+ T cell responses after vaccination and during Mycobacterium tuberculosis challenge. Nat. Immunol.8(4), 369–377 (2007).
  • Langrish CL, Chen Y, Blumenschein WM et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J. Exp. Med.201(2), 233–240 (2005).
  • Korn T, Bettelli E, Oukka M, Kuchroo VK. IL-17 and Th17 cells. Annu. Rev. Immunol.27, 485–517 (2009).
  • Stritesky GL, Yeh N, Kaplan MH. IL-23 promotes maintenance but not commitment to the Th17 lineage. J. Immunol.181(9), 5948–5955 (2008).
  • McGeachy MJ, Chen Y, Tato CM et al. The interleukin 23 receptor is essential for the terminal differentiation of interleukin 17-producing effector T helper cells in vivo. Nat. Immunol.10(3), 314–324 (2009).
  • Veldhoen M, Hocking RJ, Atkins CJ, Locksley RM, Stockinger B. TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity24(2), 179–189 (2006).
  • Bettelli E, Carrier Y, Gao W et al. Reciprocal developmental pathways for the generation of pathogenic effector Th17 and regulatory T cells. Nature441(7090), 235–238 (2006).
  • Zhou L, Ivanov II, Spolski R et al. IL-6 programs T(h)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat. Immunol.8(9), 967–974 (2007).
  • Nurieva R, Yang XO, Martinez G et al. Essential autocrine regulation by IL-21 in the generation of inflammatory T cells. Nature448(7152), 480–483 (2007).
  • Korn T, Bettelli E, Gao W et al. IL-21 initiates an alternative pathway to induce proinflammatory T(h)17 cells. Nature448(7152), 484–487 (2007).
  • Chung Y, Chang SH, Martinez GJ et al. Critical regulation of early Th17 cell differentiation by interleukin-1 signaling. Immunity30(4), 576–587 (2009).
  • Sutton C, Brereton C, Keogh B, Mills KH, Lavelle EC. A crucial role for interleukin (IL)-1 in the induction of IL-17-producing T cells that mediate autoimmune encephalomyelitis. J. Exp. Med.203(7), 1685–1691 (2006).
  • Ivanov II, McKenzie BS, Zhou L et al. The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell126(6), 1121–1133 (2006).
  • Zhang F, Meng G, Strober W. Interactions among the transcription factors Runx1, RORγt and Foxp3 regulate the differentiation of interleukin 17-producing T cells. Nat. Immunol.9(11), 1297–1306 (2008).
  • Yang XO, Pappu BP, Nurieva R et al. T helper 17 lineage differentiation is programmed by orphan nuclear receptors ROR α and ROR γ. Immunity28(1), 29–39 (2008).
  • Kimura A, Naka T, Nohara K, Fujii-Kuriyama Y, Kishimoto T. Aryl hydrocarbon receptor regulates Stat1 activation and participates in the development of Th17 cells. Proc. Natl Acad. Sci. USA105(28), 9721–9726 (2008).
  • Veldhoen M, Hirota K, Westendorf AM et al. The aryl hydrocarbon receptor links Th17-cell-mediated autoimmunity to environmental toxins. Nature453(7191), 106–109 (2008).
  • Huber M, Brustle A, Reinhard K et al. IRF4 is essential for IL-21-mediated induction, amplification, and stabilization of the Th17 phenotype. Proc. Natl Acad. Sci. USA105(52), 20846–20851 (2008).
  • Harris TJ, Grosso JF, Yen HR et al. Cutting edge: an in vivo requirement for STAT3 signaling in Th17 development and TH17-dependent autoimmunity. J. Immunol.179(7), 4313–4317 (2007).
  • Bauquet AT, Jin H, Paterson AM et al. The costimulatory molecule ICOS regulates the expression of c-Maf and IL-21 in the development of follicular T helper cells and Th-17 cells. Nat. Immunol.10(2), 167–175 (2009).
  • Park H, Li Z, Yang XO et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat. Immunol.6(11), 1133–1141 (2005).
  • Nakae S, Iwakura Y, Suto H, Galli SJ. Phenotypic differences between Th1 and Th17 cells and negative regulation of Th1 cell differentiation by IL-17. J. Leukoc. Biol.81(5), 1258–1268 (2007).
  • Zheng SG, Gray JD, Ohtsuka K, Yamagiwa S, Horwitz DA. Generation ex vivo of TGF-β-producing regulatory T cells from CD4+CD25- precursors. J. Immunol.169(8), 4183–4189 (2002).
  • Chen W, Jin W, Hardegen N et al. Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-β induction of transcription factor Foxp3. J. Exp. Med.198(12), 1875–1886 (2003).
  • Ghoreschi K, Laurence A, Yang XP et al. Generation of pathogenic T(h)17 cells in the absence of TGF-β signalling. Nature467(7318), 967–971 (2010).
  • Acosta-Rodriguez EV, Napolitani G, Lanzavecchia A, Sallusto F. Interleukins 1β and 6 but not transforming growth factor-β are essential for the differentiation of interleukin 17-producing human T helper cells. Nat. Immunol.8(9), 942–949 (2007).
  • Wilson NJ, Boniface K, Chan JR et al. Development, cytokine profile and function of human interleukin 17-producing helper T cells. Nat. Immunol.8(9), 950–957 (2007).
  • Manel N, Unutmaz D, Littman DR. The differentiation of human T(h)-17 cells requires transforming growth factor-β and induction of the nuclear receptor RORγt. Nat. Immunol.9(6), 641–649 (2008).
  • Volpe E, Servant N, Zollinger R et al. A critical function for transforming growth factor-β, interleukin 23 and proinflammatory cytokines in driving and modulating human T(h)-17 responses. Nat. Immunol.9(6), 650–657 (2008).
  • Yang L, Anderson DE, Baecher-Allan C et al. IL-21 and TGF-β are required for differentiation of human T(h)17 cells. Nature454(7202), 350–352 (2008).
  • Cosmi L, De Palma R, Santarlasci V et al. Human interleukin 17-producing cells originate from a CD161+CD4+ T cell precursor. J. Exp. Med.205(8), 1903–1916 (2008).
  • Kleinschek MA, Boniface K, Sadekova S et al. Circulating and gut-resident human Th17 cells express CD161 and promote intestinal inflammation. J. Exp. Med.206(3), 525–534 (2009).
  • Acosta-Rodriguez EV, Rivino L, Geginat J et al. Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells. Nat. Immunol.8(6), 639–646 (2007).
  • Cua DJ, Tato CM. Innate IL-17-producing cells: the sentinels of the immune system. Nat. Rev. Immunol.10(7), 479–489 (2010).
  • Chua WJ, Hansen TH. Bacteria, mucosal-associated invariant T cells and MR1. Immunol. Cell Biol.88(8), 767–769 (2010).
  • Lochner M, Peduto L, Cherrier M et al.In vivo equilibrium of proinflammatory IL-17+ and regulatory IL-10+ Foxp3+ RORγ t+ T cells. J. Exp. Med.205(6), 1381–1393 (2008).
  • Martin B, Hirota K, Cua DJ, Stockinger B, Veldhoen M. Interleukin-17-producing γδ T cells selectively expand in response to pathogen products and environmental signals. Immunity31(2), 321–330 (2009).
  • Roark CL, French JD, Taylor MA, Bendele AM, Born WK, O’Brien RL. Exacerbation of collagen-induced arthritis by oligoclonal, IL-17-producing γδ T cells. J. Immunol.179(8), 5576–5583 (2007).
  • Sutton CE, Lalor SJ, Sweeney CM, Brereton CF, Lavelle EC, Mills KH. Interleukin-1 and IL-23 induce innate IL-17 production from γδ T cells, amplifying Th17 responses and autoimmunity. Immunity31(2), 331–341 (2009).
  • Ito Y, Usui T, Kobayashi S et al. γδ T cells are the predominant source of interleukin-17 in affected joints in collagen-induced arthritis, but not in rheumatoid arthritis. Arthritis Rheum.60(8), 2294–2303 (2009).
  • Ness-Schwickerath KJ, Jin C, Morita CT. Cytokine requirements for the differentiation and expansion of IL-17A- and IL-22-producing human Vγ2Vδ2 T cells. J. Immunol.184(12), 7268–7280 (2010).
  • Michel ML, Keller AC, Paget C et al. Identification of an IL-17-producing NK1.1(neg) iNKT cell population involved in airway neutrophilia. J. Exp. Med.204(5), 995–1001 (2007).
  • Rachitskaya AV, Hansen AM, Horai R et al. Cutting edge: NKT cells constitutively express IL-23 receptor and RORγt and rapidly produce IL-17 upon receptor ligation in an IL-6-independent fashion. J. Immunol.180(8), 5167–5171 (2008).
  • Dusseaux M, Martin E, Serriari N et al. Human MAIT cells are xenobiotic-resistant, tissue-targeted, CD161hi IL-17-secreting T cells. Blood117(4), 1250–1259 (2011).
  • Northfield JW, Kasprowicz V, Lucas M et al. CD161 expression on hepatitis C virus-specific CD8+ T cells suggests a distinct pathway of T cell differentiation. Hepatology47(2), 396–406 (2008).
  • Billerbeck E, Kang YH, Walker L et al. Analysis of CD161 expression on human CD8+ T cells defines a distinct functional subset with tissue-homing properties. Proc. Natl Acad. Sci. USA107(7), 3006–3011 (2010).
  • Takatori H, Kanno Y, Watford WT et al. Lymphoid tissue inducer-like cells are an innate source of IL-17 and IL-22. J. Exp. Med.206(1), 35–41 (2009).
  • Vondenhoff MF, Kraal G, Mebius RE. Lymphoid organogenesis in brief. Eur. J. Immunol.37(Suppl. 1), S46–S52 (2007).
  • Mebius RE, Rennert P, Weissman IL. Developing lymph nodes collect CD4+CD3- LTβ+ cells that can differentiate to APC, NK cells, and follicular cells but not T or B cells. Immunity7(4), 493–504 (1997).
  • Randall TD, Carragher DM, Rangel-Moreno J. Development of secondary lymphoid organs. Annu. Rev. Immunol.26, 627–650 (2008).
  • Cupedo T, Crellin NK, Papazian N et al. Human fetal lymphoid tissue-inducer cells are interleukin 17-producing precursors to RORC+ CD127+ natural killer-like cells. Nat. Immunol.10(1), 66–74 (2009).
  • Schmutz S, Bosco N, Chappaz S et al. Cutting edge: IL-7 regulates the peripheral pool of adult RORγ+ lymphoid tissue inducer cells. J. Immunol.183(4), 2217–2221 (2009).
  • Cella M, Fuchs A, Vermi W et al. A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity. Nature457(7230), 722–725 (2009).
  • Crellin NK, Trifari S, Kaplan CD, Cupedo T, Spits H. Human NKp44+IL-22+ cells and LTi-like cells constitute a stable RORC+ lineage distinct from conventional natural killer cells. J. Exp. Med.207(2), 281–290 (2010).
  • Satoh-Takayama N, Lesjean-Pottier S, Vieira P et al. IL-7 and IL-15 independently program the differentiation of intestinal CD3-NKp46+ cell subsets from Id2-dependent precursors. J. Exp. Med.207(2), 273–280 (2010).
  • Crellin NK, Trifari S, Kaplan CD, Satoh-Takayama N, Di Santo JP, Spits H. Regulation of cytokine secretion in human CD127(+) LTi-like innate lymphoid cells by Toll-like receptor 2. Immunity33(5), 752–764 (2010).
  • Moro K, Yamada T, Tanabe M et al. Innate production of T(h)2 cytokines by adipose tissue-associated c-Kit(+)Sca-1(+) lymphoid cells. Nature463(7280), 540–544 (2009).
  • Neill DR, Wong SH, Bellosi A et al. Nuocytes represent a new innate effector leukocyte that mediates Type 2 immunity. Nature464(7293), 1367–1370 (2010).
  • Hueber AJ, Asquith DL, Miller AM et al. Mast cells express IL-17A in rheumatoid arthritis synovium. J. Immunol.184(7), 3336–3340 (2010).
  • Li L, Huang L, Vergis AL et al. IL-17 produced by neutrophils regulates IFN-γ-mediated neutrophil migration in mouse kidney ischemia–reperfusion injury. J. Clin. Invest.120(1), 331–342 (2010).
  • Yang XO, Panopoulos AD, Nurieva R et al. STAT3 regulates cytokine-mediated generation of inflammatory helper T cells. J. Biol. Chem.282(13), 9358–9363 (2007).
  • Wright JF, Guo Y, Quazi A et al. Identification of an interleukin 17F/17A heterodimer in activated human CD4+ T cells. J. Biol. Chem.282(18), 13447–13455 (2007).
  • Yao Z, Spriggs MK, Derry JM et al. Molecular characterization of the human interleukin (IL)-17 receptor. Cytokine9(11), 794–800 (1997).
  • Toy D, Kugler D, Wolfson M et al. Cutting edge: interleukin 17 signals through a heteromeric receptor complex. J. Immunol.177(1), 36–39 (2006).
  • Kuestner RE, Taft DW, Haran A et al. Identification of the IL-17 receptor related molecule IL-17RC as the receptor for IL-17F. J. Immunol.179(8), 5462–5473 (2007).
  • Xu S, Cao X. Interleukin-17 and its expanding biological functions. Cell. Mol. Immunol.7(3), 164–174 (2010).
  • Kawaguchi M, Onuchic LF, Li XD et al. Identification of a novel cytokine, ML-1, and its expression in subjects with asthma. J. Immunol.167(8), 4430–4435 (2001).
  • Kawaguchi M, Kokubu F, Odaka M et al. Induction of granulocyte-macrophage colony-stimulating factor by a new cytokine, ML-1 (IL-17F), via Raf I–MEK–ERK pathway. J. Allergy Clin. Immunol.114(2), 444–450 (2004).
  • Yang XO, Chang SH, Park H et al. Regulation of inflammatory responses by IL-17F. J. Exp. Med.205(5), 1063–1075 (2008).
  • Liang SC, Tan XY, Luxenberg DP et al. Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J. Exp. Med.203(10), 2271–2279 (2006).
  • Ishigame H, Kakuta S, Nagai T et al. Differential roles of interleukin-17A and -17F in host defense against mucoepithelial bacterial infection and allergic responses. Immunity30(1), 108–119 (2009).
  • Schwarzenberger P, Kolls JK. Interleukin 17: an example for gene therapy as a tool to study cytokine mediated regulation of hematopoiesis. J. Cell Biochem. Suppl.38, 88–95 (2002).
  • Parrish-Novak J, Foster DC, Holly RD, Clegg CH. Interleukin-21 and the IL-21 receptor: novel effectors of NK and T cell responses. J. Leukoc. Biol.72(5), 856–863 (2002).
  • Ozaki K, Kikly K, Michalovich D, Young PR, Leonard WJ. Cloning of a Type 1 cytokine receptor most related to the IL-2 receptor β chain. Proc. Natl Acad. Sci. USA97(21), 11439–11444 (2000).
  • Spolski R, Leonard WJ. Interleukin-21: basic biology and implications for cancer and autoimmunity. Annu. Rev. Immunol.26, 57–79 (2008).
  • Zeng R, Spolski R, Finkelstein SE et al. Synergy of IL-21 and IL-15 in regulating CD8+ T cell expansion and function. J. Exp. Med.201(1), 139–148 (2005).
  • Fantini MC, Rizzo A, Fina D et al. IL-21 regulates experimental colitis by modulating the balance between Treg and Th17 cells. Eur. J. Immunol.37(11), 3155–3163 (2007).
  • Peluso I, Fantini MC, Fina D et al. IL-21 counteracts the regulatory T cell-mediated suppression of human CD4+ T lymphocytes. J. Immunol.178(2), 732–739 (2007).
  • Strengell M, Matikainen S, Siren J et al. IL-21 in synergy with IL-15 or IL-18 enhances IFN-γ production in human NK and T cells. J. Immunol.170(11), 5464–5469 (2003).
  • Monteleone G, Monteleone I, Fina D et al. Interleukin-21 enhances T-helper cell Type 1 signaling and interferon-γ production in Crohn’s disease. Gastroenterology128(3), 687–694 (2005).
  • Ozaki K, Spolski R, Feng CG et al. A critical role for IL-21 in regulating immunoglobulin production. Science298(5598), 1630–1634 (2002).
  • Wurster AL, Rodgers VL, Satoskar AR et al. Interleukin 21 is a T helper (Th) cell 2 cytokine that specifically inhibits the differentiation of naive Th cells into interferon γ-producing Th1 cells. J. Exp. Med.196(7), 969–977 (2002).
  • Ozaki K, Spolski R, Ettinger R et al. Regulation of B cell differentiation and plasma cell generation by IL-21, a novel inducer of Blimp-1 and Bcl-6. J. Immunol.173(9), 5361–5371 (2004).
  • Pene J, Gauchat JF, Lecart S et al. Cutting edge: IL-21 is a switch factor for the production of IgG1 and IgG3 by human B cells. J. Immunol.172(9), 5154–5157 (2004).
  • Monteleone G, Caruso R, Fina D et al. Control of matrix metalloproteinase production in human intestinal fibroblasts by interleukin 21. Gut55(12), 1774–1780 (2006).
  • Caruso R, Fina D, Peluso I et al. A functional role for interleukin-21 in promoting the synthesis of the T-cell chemoattractant, MIP-3α, by gut epithelial cells. Gastroenterology132(1), 166–175 (2007).
  • King C, Ilic A, Koelsch K, Sarvetnick N. Homeostatic expansion of T cells during immune insufficiency generates autoimmunity. Cell117(2), 265–277 (2004).
  • Jin H, Oyoshi MK, Le Y et al. IL-21R is essential for epicutaneous sensitization and allergic skin inflammation in humans and mice. J. Clin. Invest.119(1), 47–60 (2009).
  • Distler JH, Jungel A, Kowal-Bielecka O et al. Expression of interleukin-21 receptor in epidermis from patients with systemic sclerosis. Arthritis Rheum.52(3), 856–864 (2005).
  • Sawalha AH, Kaufman KM, Kelly JA et al. Genetic association of interleukin-21 polymorphisms with systemic lupus erythematosus. Ann. Rheum. Dis.67(4), 458–461 (2008).
  • Fina D, Sarra M, Fantini MC et al. Regulation of gut inflammation and Th17 cell response by interleukin-21. Gastroenterology134(4), 1038–1048 (2008).
  • van Heel DA, Franke L, Hunt KA et al. A genome-wide association study for celiac disease identifies risk variants in the region harboring IL2 and IL21. Nat. Genet.39(7), 827–829 (2007).
  • Glas J, Stallhofer J, Ripke S et al. Novel genetic risk markers for ulcerative colitis in the IL2/IL21 region are in epistasis with IL23R and suggest a common genetic background for ulcerative colitis and celiac disease. Am. J. Gastroenterol.104(7), 1737–1744 (2009).
  • Stallhofer J, Denk GU, Glas J et al. Analysis of IL2/IL21 gene variants in cholestatic liver diseases reveals an association with primary sclerosing cholangitis. Digestion84(1), 29–35 (2011).
  • Xie MH, Aggarwal S, Ho WH et al. Interleukin (IL)-22, a novel human cytokine that signals through the interferon receptor-related proteins CRF2-4 and IL-22R. J. Biol. Chem.275(40), 31335–31339 (2000).
  • Wolk K, Kunz S, Witte E, Friedrich M, Asadullah K, Sabat R. IL-22 increases the innate immunity of tissues. Immunity21(2), 241–254 (2004).
  • Wolk K, Witte E, Wallace E et al. IL-22 regulates the expression of genes responsible for antimicrobial defense, cellular differentiation, and mobility in keratinocytes: a potential role in psoriasis. Eur. J. Immunol.36(5), 1309–1323 (2006).
  • Wolk K, Haugen HS, Xu W et al. IL-22 and IL-20 are key mediators of the epidermal alterations in psoriasis while IL-17 and IFN-γ are not. J. Mol. Med.87(5), 523–536 (2009).
  • Duhen T, Geiger R, Jarrossay D, Lanzavecchia A, Sallusto F. Production of interleukin 22 but not interleukin 17 by a subset of human skin-homing memory T cells. Nat. Immunol.10(8), 857–863 (2009).
  • Trifari S, Kaplan CD, Tran EH, Crellin NK, Spits H. Identification of a human helper T cell population that has abundant production of interleukin 22 and is distinct from T(h)-17, T(h)1 and T(h)2 cells. Nat. Immunol.10(8), 864–871 (2009).
  • Zheng Y, Valdez PA, Danilenko DM et al. Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat. Med.14(3), 282–289 (2008).
  • Aujla SJ, Chan YR, Zheng M et al. IL-22 mediates mucosal host defense against Gram-negative bacterial pneumonia. Nat. Med.14(3), 275–281 (2008).
  • Ma HL, Liang S, Li J et al. IL-22 is required for Th17 cell-mediated pathology in a mouse model of psoriasis-like skin inflammation. J. Clin. Invest.118(2), 597–607 (2008).
  • Radaeva S, Sun R, Pan HN, Hong F, Gao B. Interleukin 22 (IL-22) plays a protective role in T cell-mediated murine hepatitis: IL-22 is a survival factor for hepatocytes via STAT3 activation. Hepatology39(5), 1332–1342 (2004).
  • Zenewicz LA, Yancopoulos GD, Valenzuela DM, Murphy AJ, Karow M, Flavell RA. Interleukin-22 but not interleukin-17 provides protection to hepatocytes during acute liver inflammation. Immunity27(4), 647–659 (2007).
  • Sugimoto K, Ogawa A, Mizoguchi E et al. IL-22 ameliorates intestinal inflammation in a mouse model of ulcerative colitis. J. Clin. Invest.118(2), 534–544 (2008).
  • Zenewicz LA, Yancopoulos GD, Valenzuela DM, Murphy AJ, Stevens S, Flavell RA. Innate and adaptive interleukin-22 protects mice from inflammatory bowel disease. Immunity29(6), 947–957 (2008).
  • Andoh A, Zhang Z, Inatomi O et al. Interleukin-22, a member of the IL-10 subfamily, induces inflammatory responses in colonic subepithelial myofibroblasts. Gastroenterology129(3), 969–984 (2005).
  • Brand S, Beigel F, Olszak T et al. IL-22 is increased in active Crohn’s disease and promotes proinflammatory gene expression and intestinal epithelial cell migration. Am. J. Physiol. Gastrointest. Liver Physiol.290(4), G827–G838 (2006).
  • Geremia A, Arancibia-Carcamo CV, Fleming MP et al. IL-23-responsive innate lymphoid cells are increased in inflammatory bowel disease. J. Exp. Med.208(6), 1127–1133 (2011).
  • Wolk K, Witte E, Hoffmann U et al. IL-22 induces lipopolysaccharide-binding protein in hepatocytes: a potential systemic role of IL-22 in Crohn’s disease. J. Immunol.178(9), 5973–5981 (2007).
  • Knappe A, Hor S, Wittmann S, Fickenscher H. Induction of a novel cellular homolog of interleukin-10, AK155, by transformation of T lymphocytes with herpesvirus saimiri. J. Virol.74(8), 3881–3887 (2000).
  • Wolk K, Kunz S, Asadullah K, Sabat R. Cutting edge: immune cells as sources and targets of the IL-10 family members? J. Immunol.168(11), 5397–5402 (2002).
  • Sheikh F, Baurin VV, Lewis-Antes A et al. Cutting edge: IL-26 signals through a novel receptor complex composed of IL-20 receptor 1 and IL-10 receptor 2. J. Immunol.172(4), 2006–2010 (2004).
  • Hor S, Pirzer H, Dumoutier L et al. The T-cell lymphokine interleukin-26 targets epithelial cells through the interleukin-20 receptor 1 and interleukin-10 receptor 2 chains. J. Biol. Chem.279(32), 33343–33351 (2004).
  • Dambacher J, Beigel F, Zitzmann K et al. The role of the novel Th17 cytokine IL-26 in intestinal inflammation. Gut58(9), 1207–1217 (2009).
  • Maloy KJ, Salaun L, Cahill R, Dougan G, Saunders NJ, Powrie F. CD4+CD25+ T(R) cells suppress innate immune pathology through cytokine-dependent mechanisms. J. Exp. Med.197(1), 111–119 (2003).
  • Powrie F, Leach MW, Mauze S, Caddle LB, Coffman RL. Phenotypically distinct subsets of CD4+ T cells induce or protect from chronic intestinal inflammation in C. B-17 scid mice. Int. Immunol.5(11), 1461–1471 (1993).
  • Leach MW, Bean AG, Mauze S, Coffman RL, Powrie F. Inflammatory bowel disease in C.B-17 scid mice reconstituted with the CD45RBhigh subset of CD4+ T cells. Am. J. Pathol.148(5), 1503–1515 (1996).
  • Morrissey PJ, Charrier K, Braddy S, Liggitt D, Watson JD. CD4+ T cells that express high levels of CD45RB induce wasting disease when transferred into congenic severe combined immune deficient mice. Disease development is prevented by cotransfer of purified CD4+ T cells. J. Exp. Med.178(1), 237–244 (1993).
  • Izcue A, Hue S, Buonocore S et al. Interleukin-23 restrains regulatory T cell activity to drive T cell-dependent colitis. Immunity28(4), 559–570 (2008).
  • Ahern PP, Schiering C, Buonocore S et al. Interleukin-23 drives intestinal inflammation through direct activity on T cells. Immunity33(2), 279–288 (2010).
  • Leppkes M, Becker C, Ivanov II et al. RORγ-expressing Th17 cells induce murine chronic intestinal inflammation via redundant effects of IL-17A and IL-17F. Gastroenterology136(1), 257–267 (2009).
  • Sonnenberg GF, Monticelli LA, Elloso MM, Fouser LA, Artis D. CD4(+) lymphoid tissue-inducer cells promote innate immunity in the gut. Immunity34(1), 122–134 (2011).
  • Geddes K, Rubino SJ, Magalhaes JG et al. Identification of an innate T helper Type 17 response to intestinal bacterial pathogens. Nat. Med.17(7), 837–844 (2011).
  • Becker C, Dornhoff H, Neufert C et al. Cutting edge: IL-23 cross-regulates IL-12 production in T cell-dependent experimental colitis. J. Immunol.177(5), 2760–2764 (2006).
  • Duerr RH, Taylor KD, Brant SR et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science314(5804), 1461–1463 (2006).
  • Barrett JC, Hansoul S, Nicolae DL et al. Genome-wide association defines more than 30 distinct susceptibility loci for Crohn’s disease. Nat. Genet.40(8), 955–962 (2008).
  • Fisher SA, Tremelling M, Anderson CA et al. Genetic determinants of ulcerative colitis include the ECM1 locus and five loci implicated in Crohn’s disease. Nat. Genet.40(6), 710–712 (2008).
  • Franke A, Balschun T, Karlsen TH et al. Replication of signals from recent studies of Crohn’s disease identifies previously unknown disease loci for ulcerative colitis. Nat. Genet.40(6), 713–715 (2008).
  • Anderson CA, Boucher G, Lees CW et al. Meta-analysis identifies 29 additional ulcerative colitis risk loci, increasing the number of confirmed associations to 47. Nat. Genet.43(3), 246–252 (2011).
  • Di Meglio P, Di Cesare A, Laggner U et al. The IL23R R381Q gene variant protects against immune-mediated diseases by impairing IL-23-induced Th17 effector response in humans. PLoS One6(2), e17160 (2011).
  • Pidasheva S, Trifari S, Phillips A et al. Functional studies on the IBD susceptibility gene IL23R implicate reduced receptor function in the protective genetic variant R381Q. PLoS One6(10), e25038 (2011).
  • Sarin R, Wu X, Abraham C. Inflammatory disease protective R381Q IL23 receptor polymorphism results in decreased primary CD4+ and CD8+ human T-cell functional responses. Proc. Natl Acad. Sci. USA108(23), 9560–9565 (2011).
  • Schmechel S, Konrad A, Diegelmann J et al. Linking genetic susceptibility to Crohn’s disease with Th17 cell function: IL-22 serum levels are increased in Crohn’s disease and correlate with disease activity and IL23R genotype status. Inflamm. Bowel Dis.14(2), 204–212 (2008).
  • Jurgens M, Laubender RP, Hartl F et al. Disease activity, ANCA, and IL23R genotype status determine early response to infliximab in patients with ulcerative colitis. Am. J. Gastroenterol.105(8), 1811–1819 (2010).
  • Cargill M, Schrodi SJ, Chang M et al. A large-scale genetic association study confirms IL12B and leads to the identification of IL23R as psoriasis-risk genes. Am. J. Hum. Genet.80(2), 273–290 (2007).
  • Burton PR, Clayton DG, Cardon LR et al. Association scan of 14,500 nonsynonymous SNPs in four diseases identifies autoimmunity variants. Nat. Genet.39(11), 1329–1337 (2007).
  • Franke A, McGovern DP, Barrett JC et al. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn’s disease susceptibility loci. Nat. Genet.42(12), 1118–1125 (2010).
  • Arisawa T, Tahara T, Shibata T et al. The influence of polymorphisms of interleukin-17A and interleukin-17F genes on the susceptibility to ulcerative colitis. J. Clin. Immunol.28(1), 44–49 (2008).
  • Chen B, Zeng Z, Hou J, Chen M, Gao X, Hu P. Association of interleukin-17F 7488 single nucleotide polymorphism and inflammatory bowel disease in the Chinese population. Scand. J. Gastroenterol.44(6), 720–726 (2009).
  • Seiderer J, Elben I, Diegelmann J et al. Role of the novel Th17 cytokine IL-17F in inflammatory bowel disease (IBD): upregulated colonic IL-17F expression in active Crohn’s disease and analysis of the IL17F p.His161Arg polymorphism in IBD. Inflamm. Bowel Dis.14(4), 437–445 (2008).
  • Schmidt C, Giese T, Ludwig B et al. Expression of interleukin-12-related cytokine transcripts in inflammatory bowel disease: elevated interleukin-23p19 and interleukin-27p28 in Crohn’s disease but not in ulcerative colitis. Inflamm. Bowel Dis.11(1), 16–23 (2005).
  • Fuss IJ, Becker C, Yang Z et al. Both IL-12p70 and IL-23 are synthesized during active Crohn’s disease and are down-regulated by treatment with anti-IL-12 p40 monoclonal antibody. Inflamm. Bowel Dis.12(1), 9–15 (2006).
  • Holtta V, Klemetti P, Sipponen T et al. IL-23/IL-17 immunity as a hallmark of Crohn’s disease. Inflamm. Bowel Dis.14(9), 1175–1184 (2008).
  • Fujino S, Andoh A, Bamba S et al. Increased expression of interleukin 17 in inflammatory bowel disease. Gut52(1), 65–70 (2003).
  • Nielsen OH, Kirman I, Rudiger N, Hendel J, Vainer B. Upregulation of interleukin-12 and -17 in active inflammatory bowel disease. Scand. J. Gastroenterol.38(2), 180–185 (2003).
  • Kobayashi T, Okamoto S, Hisamatsu T et al. IL23 differentially regulates the Th1/Th17 balance in ulcerative colitis and Crohn’s disease. Gut57(12), 1682–1689 (2008).
  • Kaser A, Ludwiczek O, Holzmann S et al. Increased expression of CCL20 in human inflammatory bowel disease. J. Clin. Immunol.24(1), 74–85 (2004).
  • Brand S, Olszak T, Beigel F et al. Cell differentiation dependent expressed CCR6 mediates ERK-1/2, SAPK/JNK, and Akt signaling resulting in proliferation and migration of colorectal cancer cells. J. Cell. Biochem.97(4), 709–723 (2006).
  • Talley NJ, Abreu MT, Achkar JP et al. An evidence-based systematic review on medical therapies for inflammatory bowel disease. Am. J. Gastroenterol.106(Suppl. 1), S2–S25 (2011).
  • Hueber W, Sands BE, Lewitzky S et al.; for the Secukinumab in Crohn’s Disease Study Group. Secukinumab, a human anti-IL17A monoclonal antibody, for moderate to severe Crohn’s disease: randomized, double-blind placebo controlled trial. Gut (2012) (In Press).
  • Hu Y, Shen F, Crellin NK, Ouyang W. The IL-17 pathway as a major therapeutic target in autoimmune diseases. Ann. NY Acad. Sci.1217, 60–76 (2011).
  • Hueber W, Sands BE, Vandemeulebroecke M et al. Inhibition of IL-17A by secukinumab is ineffective for Crohn’s disease (CD). Presented at: 6th ECCO Congress. Dublin, Ireland, 24–26 February 2011.
  • Noguchi D, Wakita D, Tajima M et al. Blocking of IL-6 signaling pathway prevents CD4+ T cell-mediated colitis in a T(h)17-independent manner. Int. Immunol.19(12), 1431–1440 (2007).
  • Zhang Z, Zheng M, Bindas J, Schwarzenberger P, Kolls JK. Critical role of IL-17 receptor signaling in acute TNBS-induced colitis. Inflamm. Bowel Dis.12(5), 382–388 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.