315
Views
23
CrossRef citations to date
0
Altmetric
Review

Biofluid metabonomics using 1H NMR spectroscopy: the road to biomarker discovery in gastroenterology and hepatology

, , , &
Pages 239-251 | Published online: 10 Jan 2014

References

  • Nicholson JK, Lindon JC, Holmes E. ‘Metabonomics’: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica29(11), 1181–1189 (1999).
  • Nicholson JK, Lindon JC. Systems biology: metabonomics. Nature455(7216), 1054–1056 (2008).
  • Lander ES, Linton LM, Birren B et al. International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature409, 860–921 (2001).
  • Venter JC, Adams MD, Myers EW et al. The sequence of the human genome. Science291(5507), 1304–1351 (2001).
  • James P. Protein identification in the post-genome era: the rapid rise of proteomics. Q. Rev. Biophys.30(04), 279–331 (1997).
  • Lindon JC, Nicholson JK, Holmes E, Everett JR. Metabonomics: metabolic processes studied by NMR spectroscopy of biofluids. Concepts Magn. Reson.12(5), 289–320 (2000).
  • Want EJ, Nordström A, Morita H, Siuzdak G. From exogenous to endogenous: the inevitable imprint of mass spectrometry in metabolomics. J. Proteome Res.6(2), 459–468 (2007).
  • Nicholson JK, Lindon JC. Systems biology: metabonomics. Nature455(7216), 1054–1056 (2008).
  • Bernstein CN, Fried M, Krabshuis JH. World gastroenterology organization practice guidelines for the diagnosis and management of IBD in 2010. Inflamm. Bowel Dis.16(1), 112–124 (2010).
  • Sherman M. Optimum imaging for small suspected hepatocellular carcinoma. Gut59(5), 570–571 (2010).
  • Soininen P, Kangas AJ, Würtz P et al. High-throughput serum NMR metabonomics for cost-effective holistic studies on systemic metabolism. Analyst134(9), 1781–1785 (2009).
  • Dunn WB, Ellis DI. Metabolomics: current analytical platforms and methodologies. TrAC Trends Anal. Chem.24(4), 285–294 (2005).
  • Lindon JC, Holmes E, Nicholson JK. So what’s the deal with metabonomics? Anal. Chem.75(17), 384A–391A (2003).
  • Chen H, Pan Z, Talaty N, Raftery D, Cooks RG. Combining desorption electrospray ionization mass spectrometry and nuclear magnetic resonance for differential metabolomics without sample preparation. Rapid Commun. Mass Spectrometry20(10), 1577–1584 (2006).
  • Keun HC, Ebbels TM, Antti H et al. Analytical reproducibility in 1H NMR-based metabonomic urinalysis. Chem. Res. Toxicol.15(11), 1380–1386 (2002).
  • Lenz EM, Wilson ID. Analytical strategies in metabonomics. J. Proteome Res.6(2), 443–458 (2007).
  • Keun HC, Beckonert O, Griffin JL et al. Cryogenic probe 13C NMR spectroscopy of urine for metabonomic studies. Anal. Chem.74(17), 4588–4593 (2002).
  • Coen M, O’Sullivan M, Bubb WA, Kuchel PW, Sorrell T. Proton nuclear magnetic resonance-based metabonomics for rapid diagnosis of meningitis and ventriculitis. Clin. Infect. Dis.41, 1582–1590 (2005).
  • Crockford DJ, Holmes E, Lindon JC et al. Statistical heterospectroscopy, an approach to the integrated analysis of NMR and UPLC-MS data sets: application in metabonomic toxicology studies. Anal. Chem.78(2), 363–371 (2006).
  • Fiehn O, Robertson D, Van de Werf J et al. The metabolomics standards initiative (MSI). Metabolomics3(3), 175–178 (2007).
  • Sumner L, Amberg A, Barrett D et al. Proposed minimum standards for chemical analysis: Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics3(3), 211–221 (2007).
  • Goodacre R, Broadhurst D, Smilde A et al. Proposed minimum reporting standards for data analysis in metabolomics. Metabolomics3(3), 231–241 (2007).
  • Bjerrum JT, Nielsen OH, Wang YL, Olsen J. Technology insight: metabonomics in gastroenterology-basic principles and potential clinical applications. Nat. Clin. Pract. Gastroenterol. Hepatol.5(6), 332–343 (2008).
  • Beckonert O, Keun HC, Ebbels TM et al. Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat. Protoc.2(11), 2692–2703 (2007).
  • Jacobs DM, Deltimple N, van Velzen E et al.1H NMR metabolite profiling of feces as a tool to assess the impact of nutrition on the human microbiome. NMR Biomed.21(6), 615–626 (2008).
  • Bernini P, Bertini I, Luchinat C, Nincheri P, Staderini S, Turano P. Standard operating procedures for pre-analytical handling of blood and urine for metabolomic studies and biobanks. J. Biomol. NMR49(3–4), 231–243 (2011).
  • Wu J, An Y, Yao J, Wang Y, Tang H. An optimised sample preparation method for NMR-based faecal metabonomic analysis. Analyst135(5), 1023–1030 (2010).
  • Lenz EM, Bright J, Wilson ID, Morgan SR, Nash AF. A 1H NMR-based metabonomic study of urine and plasma samples obtained from healthy human subjects. J. Pharm. Biomed. Anal.33(5), 1103–1115 (2003).
  • Nordstrom A, Lewensohn R. Metabolomics: moving to the clinic. J. Neuroimmune. Pharmacol.5(1), 4–17 (2010).
  • Rasmussen LG, Savorani F, Larsen TM, Dragsted LO, Astrup A, Engelsen SB. Standardization of factors that influence human urine metabolomics. Metabolomics7(1), 71–83 (2011).
  • Assfalg M, Bertini I, Colangiuli D et al. Evidence of different metabolic phenotypes in humans. Proc. Natl Acad. Sci. USA105(5), 1420–1424 (2008).
  • Walsh MC, Brennan L, Malthouse JP, Roche HM, Gibney MJ. Effect of acute dietary standardization on the urinary, plasma, and salivary metabolomic profiles of healthy humans. Am. J. Clin. Nutr.84(3), 531–539 (2006).
  • Winnike JH, Busby MG, Watkins PB, O’Connell TM. Effects of a prolonged standardized diet on normalizing the human metabolome. Am. J. Clin. Nutr.90(6), 1496–1501 (2009).
  • Bezabeh T, Somorjai RL, Smith IC. MR metabolomics of fecal extracts: applications in the study of bowel diseases. Magn. Reson. Chem.47(S1), S54–S61 (2009).
  • Boesch C. Molecular aspects of magnetic resonance imaging and spectroscopy. Mol. Aspects Med.20(4–5), 185–318 (1999).
  • The Handbook of Metabonomics and Metabolomics (1st Edition). Lindon JC, Nicholson JK, Holmes E (Eds). Elsevier Science, Oxford, UK (2007).
  • Ludwig C, Viant MR. Two-dimensional J-resolved NMR spectroscopy: review of a key methodology in the metabolomics toolbox. Phytochem. Anal.21(1), 22–32 (2010).
  • Nicholson JK, Foxall PJ, Spraul M, Farrant RD, Lindon JC. 750 MHz 1H and 1H-13C NMR spectroscopy of human blood plasma. Anal. Chem.67(5), 793–811 (1995).
  • Zheng M, Lu P, Liu Y, Pease J, Usuka J, Liao G, Peltz G. 2D NMR metabonomic analysis: a novel method for automated peak alignment. Bioinformatics23(21), 2926–2933 (2007).
  • Van QN, Issag HJ, Jiang Q. Comparison of 1D and 2D NMR spectroscopy for metabolic profiling. J. Proteome Res.7(2), 630–639 (2008).
  • Ando I, Hirose T, Nemoto T et al. Quantification of molecules in 1H-NMR metabolomics with formate as a concentration standard. J. Toxicol. Sci.35(2), 253–256 (2010).
  • Lewis IA, Schommer SC, Hodis B. Method for determining molar concentrations of metabolites in complex solutions from two-dimensional 1H-13C NMR spectra. Anal. Chem.79(24), 9385–9390 (2007).
  • Xia J, Bjorndahl TC, Tang P, Wishart DS. MetaboMiner – semi-automated identification of metabolites from 2D NMR spectra of complex biofluids. BMC Bioinformatics9(1), 507 (2008).
  • De Meyer T, Sinnaeve D, Van Gasse B et al. Evaluation of standard and advanced preprocessing methods for the univariate analysis of blood serum 1H-NMR spectra. Anal. Bioanal. Chem.398(4), 1781–1790 (2010).
  • Metabolomics, Metabonomics and Metabolite Profiling (1st Edition). Griffiths WJ (Ed.). RSC Publishing, Cambridge, UK (2008).
  • Shariff MI, Ladep NG, Cox IJ et al. Characterization of urinary biomarkers of hepatocellular carcinoma using magnetic resonance spectroscopy in a Nigerian population. J. Proteome Res.9(2), 1096–1103 (2010).
  • Barker M, Rayens W. Partial least squares for discrimination. J. Chemometrics17(3), 166–173 (2003).
  • Zuppi C, Messana I, Forni F et al.1H NMR spectra of normal urines: reference ranges of the major metabolites. Clin. Chim. Acta265(1), 85–97 (1997).
  • Feng J, Li X, Pei F, Chen X, Li S, Nie Y. 1H NMR analysis for metabolites in serum and urine from rats administrated chronically with La (NO3)3. Anal. Biochem.301(1), 1–7 (2002).
  • Wevers RA, Engelke U, Heerschap A. High-resolution 1H-NMR spectroscopy of blood plasma for metabolic studies. Clin. Chem.40(7), 1245–1250 (1994).
  • Wishart DS, Tzur D, Knox C et al. HMDB: the human metabolome database. Nucleic Acids Res.35(Database issue), D521–D526 (2007).
  • Westerhuis JA, Hoefsloot H, Smit S et al. Assessment of PLS-DA cross validation. Metabolomics4(1), 81–89 (2008).
  • Madsen R, Lundstedt T, Trygg J. Chemometrics in metabolomics: a review in human disease diagnosis. Anal. Chim. Acta659(1–2), 23–33 (2010).
  • Seksik P, Rigottier-Gois L, Gramet G et al. Alterations of the dominant faecal bacterial groups in patients with Crohn’s disease of the colon. Gut52(2), 237–242 (2003).
  • Ott SJ, Musfeldt M, Wenderoth DF et al. Reduction in diversity of the colonic mucosa associated bacterial microflora in patients with active inflammatory bowel disease. Gut53(5), 685–693 (2004).
  • Sokol H, Seksik P, Rigottier-Gois L et al. Specificities of the fecal microbiota in inflammatory bowel disease. Inflamm. Bowel Dis.12(2), 106–111 (2006).
  • Sartor RB. Microbial influences in inflammatory bowel diseases. Gastroenterology134(2), 577–598 (2008).
  • Williams HR, Cox IJ, Walker DG et al. Characterization of inflammatory bowel disease with urinary metabolic profiling. Am. J. Gastroenterol.104(6), 1435–1444 (2009).
  • Li M, Wang B, Zhang M et al. Symbiotic gut microbes modulate human metabolic phenotypes. Proc. Natl Acad. Sci. USA105(6), 2117–2122 (2008).
  • Kühn R, Löhler J, Rennick D, Rajewsky K, Müller W. Interleukin-10-deficient mice develop chronic enterocolitis. Cell75(2), 263–274 (1993).
  • Franke A, Balschun T, Karlsen TH et al. Sequence variants in IL10, ARPC2 and multiple other loci contribute to ulcerative colitis susceptibility. Nat. Genet.40(11), 1319–1323 (2008).
  • Murdoch TB, Fu H, MacFarlane S, Sydora BC, Fedorak RN, Slupsky CM. Urinary metabolic profiles of inflammatory bowel disease in interleukin-10 gene-deficient mice. Anal. Chem.80(14), 5524–5531 (2008).
  • Smith JL, Wishnok JS, Deen WM. Metabolism and excretion of methylamines in rats. Toxicol. Appl. Pharmacol.125(2), 296–308 (1994).
  • Seibel BA, Walsh PJ. Trimethylamine oxide accumulation in marine animals: relationship to acylglycerol storage. J. Exp. Biol.205(3), 297–306 (2002).
  • Nicholls AW, Mortishire-Smith RJ, Nicholson JK. NMR spectroscopic-based metabonomic studies of urinary metabolite variation in acclimatizing germ-free rats. Chem. Res. Toxicol.16(11), 1395–1404 (2003).
  • Toye AA, Dumas ME, Blancher C et al. Subtle metabolic and liver gene transcriptional changes underlie diet-induced fatty liver susceptibility in insulin-resistant mice. Diabetologia50(9), 1867–1879 (2007).
  • Dumas ME, Barton RH, Toye A et al. Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice. Proc. Natl Acad. Sci. USA103(33), 12511–12516 (2006).
  • Bjerrum JT, Nielsen OH, Hao F et al. Metabonomics in ulcerative colitis: diagnostics, biomarker identification, and insight into the pathophysiology. J. Proteome Res.9(2), 954–962 (2009).
  • Seksik P, Sokol H, Lepage P et al. Review article: the role of bacteria in onset and perpetuation of inflammatory bowel disease. Aliment. Pharmacol. Ther.24(S3), 11–18 (2006).
  • Strober W, Fuss I, Mannon P. The fundamental basis of inflammatory bowel disease. J. Clin. Invest.117(3), 514–521 (2007).
  • Marchesi JR, Holmes E, Khan F et al. Rapid and noninvasive metabonomic characterization of inflammatory bowel disease. J. Proteome Res.6(2), 546–551 (2007).
  • Scheppach W, Weiler F. The butyrate story: old wine in new bottles? Curr. Opin. Clin. Nutr. Metab. Care7(5), 563–567 (2004).
  • Jansson J, Willing B, Lucio M et al. Metabolomics reveals metabolic biomarkers of Crohn’s disease. PLoS One4(7), e6386 (2009).
  • Le Gall G, Noor SO, Ridgway K et al. Metabolomics of faecal extracts detects altered metabolic activity of gut microbiota in ulcerative colitis and irritable bowel syndrome. J. Proteome Res.10(9), 4208–4218 (2011).
  • Roediger WE, Heyworth M, Willoughby P, Piris J, Moore A, Truelove SC. Luminal ions and short chain fatty acids as markers of functional activity of the mucosa in ulcerative colitis. J. Clin. Pathol.35(3), 323–326 (1982).
  • Takaishi H, Matsuki T, Nakazawa A et al. Imbalance in intestinal microflora constitution could be involved in the pathogenesis of inflammatory bowel disease. Int. J. Med. Microbiol.298(5–6), 463–472 (2008).
  • Bertini I, Calabrò A, De Carli V et al. The metabonomic signature of celiac disease. J. Proteome Res.8(1), 170–177 (2008).
  • Bernini P, Bertini I, Calabro A et al. Are patients with potential celiac disease really potential? The answer of metabonomics. J. Proteome Res.10(2), 714–721 (2011).
  • Weissenborn K, Ennen JC, Schomerus H, Rückert N, Hecker H. Neuropsychological characterization of hepatic encephalopathy. J. Hepatol.34(5), 768–773 (2001).
  • Mooney S, Hasssanein TI, Hilsabeck RC et al. Utility of the Repeatable battery for the assessment of neuropsychological status (RBANS) in patients with end-stage liver disease awaiting liver transplant. Arch. Clin. Neuropsychol.22(2), 175–186 (2007).
  • Bajaj JS, Saeian K, Verber MD et al. Inhibitory control test is a simple method to diagnose minimal hepatic encephalopathy and predict development of overt hepatic encephalopathy. Am. J. Gastroenterol.102(4), 754–760 (2007).
  • Iduru S, Hisamuddin K, Mullen KD. Minimal hepatic encephalopathy: simplifying its diagnosis. Am. J. Gastroenterol.102(7), 1537–1538 (2007).
  • Jimenez B, Montonliu C, MacIntyre DA et al. Serum metabolic signature of minimal hepatic encephalopathy by 1H-nuclear magnetic resonance. J. Proteome Res.9(10), 5180–5187 (2010).
  • Liu Q, Duan ZP, Ha DK, Bengmark S, Kurtovic J, Riordan SM. Synbiotic modulation of gut flora: effect on minimal hepatic encephalopathy in patients with cirrhosis. Hepatology39(5), 1441–1449 (2004).
  • Bajaj JS, Saeian K, Christensen KM et al. Probiotic yogurt for the treatment of minimal hepatic encephalopathy. Am. J. Gastroenterol.103(7), 1707–1715 (2008).
  • Lavanchy D. The global burden of hepatitis C. Liver Int.29(S1), 74–81 (2009).
  • Godoy MMG, Lopes EPA, Silva RO et al. Hepatitis C virus infection diagnosis using metabonomics. J. Viral Hepat.17(12), 854–858 (2010).
  • Shariff MI, Gomaa AI, Cox J et al. Urinary metabolic biomarkers of hepatocellular carcinoma in an Egyptian population: a validation study. J. Proteome Res.10(4), 1828–1836 (2011).
  • Gao H, Lu Q, Liu X, Cong H, Zhao L, Wang H, Lin D. Application of 1H NMR-based metabonomics in the study of metabolic profiling of human hepatocellular carcinoma and liver cirrhosis. Cancer Sci.100(4), 782–785 (2009).
  • Wakatsuki M, Suzuki Y, Nakamoto S et al. Clinical usefulness of CYFRA 21-1 for esophageal squamous cell carcinoma in radiation therapy. J. Gastroenterol. Hepatol.22(5), 715–719 (2007).
  • Brockmann JG, St Nottberg H, Glodny B, Heinecke A, Senninger NJ. CYFRA 21-1 serum analysis in patients with esophageal cancer. Clin. Cancer Res.6(11), 4249–4252 (2000).
  • Zhang J, Liu L, Wei S et al. Metabolomics study of esophageal adenocarcinoma. J. Thorac. Cardiovasc. Surg.141(2), 469–475 (2011).
  • Leung WK, Wu MS, Kakugawa Y et al. Screening for gastric cancer in Asia: current evidence and practice. Lancet Oncol.9(3), 279–287 (2008).
  • Kim K, Yang J, Kwack S et al. Toxicometabolomics of urinary biomarkers for human gastric cancer in a mouse model. J. Toxicol. Environ. Health Part A73(21–22), 1420–1430 (2010).
  • Jemal A, Siegel R, Xu J, Ward E. Cancer statistics 2010. CA Cancer J. Clin..60(5), 277–300 (2010).
  • Bathe OF, Shaykhutdinov R, Kopciuk K. Feasibility of identifying pancreatic cancer based on serum metabolomics. Cancer Epidemiol. Biomarkers Prev.20(1), 140–147 (2011).
  • Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics 2009. CA Cancer J. Clin.59(4), 225–249 (2009).
  • Chan EC, Koh PK, Mal M et al. Metabolic profiling of human colorectal cancer using high-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy and gas chromatography mass spectrometry (GC/MS). J. Proteome Res.8(1), 352–361 (2008).
  • Fletcher RH. Carcinoembryonic antigen. Ann. Intern. Med.104(1), 66–73 (1986).
  • Winawer SJ. The multidisciplinary management of gastrointestinal cancer: colorectal cancer screening. Best Pract. Res. Clin. Gastroenterol.21(6), 1031–1048 (2007).
  • Wang W, Feng B, Li X et al. Urinary metabolic profiling of colorectal carcinoma based on online affinity solid phase extraction-high performance liquid chromatography and ultra-performance liquid chromatography-mass spectrometry. Mol. Biosystems6(10), 1947–1955 (2010).
  • Qiu Y, Cai G, Su M et al. Urinary metabonomic study on colorectal cancer. J. Proteome Res.9(3), 1627–1634 (2010).
  • Burzynski SR. Aging: gene silencing or gene activation? Med. Hypotheses64(1), 201–208 (2005).
  • Qiu Y, Cai G, Su M et al. Serum metabolite profiling of human colorectal cancer using GC–TOFMS and UPLC–QTOFMS. J. Proteome Res.8(10), 4844–4850 (2009).
  • Bezabeh T, Somorjai R, Dolenko B et al. Detecting colorectal cancer by 1H magnetic resonance spectroscopy of fecal extracts. NMR Biomed.22(6), 593–600 (2009).
  • Okada A, Takehara H, Yoshida K et al. Increased aspartate and glutamate levels in both gastric and colon cancer tissues. Tokushima J. Exp. Med.140(1–2), 19–25 (1993).
  • Monleón D, Morales JM, Barrasa A, López JA, Vázquez C, Celda B. Metabolite profiling of fecal water extracts from human colorectal cancer. NMR Biomed.22(3), 342–348 (2009).
  • Boffa LC, Lupton JR, Mariani MR et al. Modulation of colonic epithelial cell proliferation, histone acetylation, and luminal short chain fatty acids by variation of dietary fiber (wheat bran) in rats. Cancer Res.52(21), 5906–5912 (1992).
  • Hague A, Paraskeva C. The short-chain fatty acid butyrate induces apoptosis in colorectal tumour cell lines. Eur. J. Cancer Prevent.4(5), 359–364 (1995).
  • Abrahamse SL, Pool-Zobel BL, Rechkemmer G. Potential of short chain fatty acids to modulate the induction of DNA damage and changes in the intracellular calcium concentration by oxidative stress in isolated rat distal colon cells. Carcinogenesis20(4), 629–634 (1999).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.