201
Views
35
CrossRef citations to date
0
Altmetric
Drug Profile

Immunotherapy with histamine dihydrochloride for the prevention of relapse in acute myeloid leukemia

, , , , &
Pages 381-391 | Published online: 10 Jan 2014

References

  • Deschler B, Lubbert M. Acute myeloid leukemia: epidemiology and etiology. Cancer107(9), 2099–2107 (2006).
  • Pulte D, Gondos A, Brenner H. Improvements in survival of adults diagnosed with acute myeloblastic leukemia in the early 21st century. Haematologica93(4), 594–600 (2008).
  • Pulte D, Gondos A, Brenner H. Expected long-term survival of patients diagnosed with acute myeloblastic leukemia during 2006–2010. Ann. Oncol.21(2), 335–341 (2010).
  • Newland A. Progress in the treatment of acute myeloid leukaemia in adults. Int. J. Hematol.76(Suppl. 1), 253–258 (2002).
  • Farag SS, Archer KJ, Mrozek K et al. Pretreatment cytogenetics add to other prognostic factors predicting complete remission and long-term outcome in patients 60 years of age or older with acute myeloid leukemia: results from Cancer and Leukemia Group B 8461. Blood108(1), 63–73 (2006).
  • Dohner K, Dohner H. Molecular characterization of acute myeloid leukemia. Haematologica93(7), 976–982 (2008).
  • Frohling S, Scholl C, Gilliland DG, Levine RL. Genetics of myeloid malignancies: pathogenetic and clinical implications. J. Clin. Oncol.23(26), 6285–6295 (2005).
  • Marcucci G, Mrozek K, Bloomfield CD. Molecular heterogeneity and prognostic biomarkers in adults with acute myeloid leukemia and normal cytogenetics. Curr. Opin. Hematol.12(1), 68–75 (2005).
  • Fernandez HF, Sun Z, Yao X et al. Anthracycline dose intensification in acute myeloid leukemia. N. Engl. J. Med.361(13), 1249–1259 (2009).
  • Kolitz JE, George SL, Dodge RK et al. Dose escalation studies of cytarabine, daunorubicin, and etoposide with and without multidrug resistance modulation with PSC-833 in untreated adults with acute myeloid leukemia younger than 60 years: final induction results of Cancer and Leukemia Group B Study 9621. J. Clin. Oncol.22(21), 4290–4301 (2004).
  • Fernandez HF, Rowe JM. Induction therapy in acute myeloid leukemia: intensifying and targeting the approach. Curr. Opin. Hematol.17(2), 79–84 (2010).
  • Mayer RJ, Davis RB, Schiffer CA et al. Intensive postremission chemotherapy in adults with acute myeloid leukemia. Cancer and Leukemia Group B. N. Engl. J. Med.331(14), 896–903 (1994).
  • Tallman MS, Gilliland DG, Rowe JM. Drug therapy for acute myeloid leukemia. Blood106(4), 1154–1163 (2005).
  • Buchner T, Hiddemann W, Berdel WE et al. 6-thioguanine, cytarabine, and daunorubicin (TAD) and high-dose cytarabine and mitoxantrone (HAM) for induction, TAD for consolidation, and either prolonged maintenance by reduced monthly TAD or TAD-HAM-TAD and one course of intensive consolidation by sequential HAM in adult patients at all ages with de novo acute myeloid leukemia (AML): a randomized trial of the German AML Cooperative Group. J. Clin. Oncol.21(24), 4496–4504 (2003).
  • Breems DA, Van Putten WL, Huijgens PC et al. Prognostic index for adult patients with acute myeloid leukemia in first relapse. J. Clin. Oncol.23(9), 1969–1978 (2005).
  • Burnett AK, Wheatley K, Goldstone AH et al. The value of allogeneic bone marrow transplant in patients with acute myeloid leukaemia at differing risk of relapse: results of the UK MRC AML 10 trial. Br. J. Haematol.118(2), 385–400 (2002).
  • Cornelissen JJ, van Putten WL, Verdonck LF et al. Results of a HOVON/SAKK donor versus no-donor analysis of myeloablative HLA-identical sibling stem cell transplantation in first remission acute myeloid leukemia in young and middle-aged adults: benefits for whom? Blood109(9), 3658–3666 (2007).
  • Koreth J, Aldridge J, Kim HT et al. Reduced-intensity conditioning hematopoietic stem cell transplantation in patients over 60 years: hematologic malignancy outcomes are not impaired in advanced age. Biol. Blood Marrow Transplant.16(6), 792–800 (2010).
  • Appelbaum FR. Optimising the conditioning regimen for acute myeloid leukaemia. Best Pract. Res.22(4), 543–550 (2009).
  • Brune M, Castaigne S, Catalano J et al. Improved leukemia-free survival after postconsolidation immunotherapy with histamine dihydrochloride and interleukin-2 in acute myeloid leukemia: results of a randomized Phase 3 trial. Blood108(1), 88–96 (2006).
  • Fenaux P, Chastang C, Chevret S et al. A randomized comparison of all transretinoic acid (ATRA) followed by chemotherapy and ATRA plus chemotherapy and the role of maintenance therapy in newly diagnosed acute promyelocytic leukemia. The European APL Group. Blood94(4), 1192–1200 (1999).
  • Tallman MS, Andersen JW, Schiffer CA et al. All-trans-retinoic acid in acute promyelocytic leukemia. N. Engl. J. Med.337(15), 1021–1028 (1997).
  • Tallman MS, Andersen JW, Schiffer CA et al. All-trans retinoic acid in acute promyelocytic leukemia: long-term outcome and prognostic factor analysis from the North American Intergroup protocol. Blood100(13), 4298–4302 (2002).
  • Duong HK, Sekeres MA. Targeted treatment of acute myeloid leukemia in older adults: role of gemtuzumab ozogamicin. Clin. Intervent. Aging4, 197–205 (2009).
  • Griffin JD, Linch D, Sabbath K, Larcom P, Schlossman SF. A monoclonal antibody reactive with normal and leukemic human myeloid progenitor cells. Leuk. Res.8(4), 521–534 (1984).
  • Peiper SC, Ashmun RA, Look AT. Molecular cloning, expression, and chromosomal localization of a human gene encoding the CD33 myeloid differentiation antigen. Blood72(1), 314–321 (1988).
  • Burnett A, Kell, WJ, Goldstone, AH et al. The addition of gemtuzumab–ozogamicin to induction therapy for AML improves disease free survival without extra toxisity: preliminary analysis of 1115 patients in the MRC AML 15 trial. In: ASH Annual Meeting Abstracts, Blood 108, (2006) (Abstract 13).
  • Fathi AT, Grant S, Karp JE. Exploiting cellular pathways to develop new treatment strategies for AML. Cancer Treat. Rev.36(2), 142–50 (2010).
  • Illmer T, Ehninger G. FLT3 kinase inhibitors in the management of acute myeloid leukemia. Clin. Lymphoma Myeloma8(Suppl. 1), S24–S34 (2007).
  • Archimbaud E, Bailly M, Dore JF. Inducibility of lymphokine activated killer (LAK) cells in patients with acute myelogenous leukaemia in complete remission and its clinical relevance. Br. J. Haematol.77(3), 328–334 (1991).
  • Pizzolo G, Trentin L, Vinante F et al. Natural killer cell function and lymphoid subpopulations in acute non-lymphoblastic leukaemia in complete remission. Br. J. Cancer58(3), 368–372 (1988).
  • Wu CJ, Ritz J. Induction of tumor immunity following allogeneic stem cell transplantation. Adv. Immunol.90, 133–173 (2006).
  • Rezvani AR, Storb RF. Separation of graft-vs.-tumor effects from graft-vs.-host disease in allogeneic hematopoietic cell transplantation. J. Autoimmun.30(3), 172–179 (2008).
  • Kolb HJ, Schattenberg A, Goldman JM et al. Graft-versus-leukemia effect of donor lymphocyte transfusions in marrow grafted patients. Blood86(5), 2041–2050 (1995).
  • Fauriat C, Just-Landi S, Mallet F et al. Deficient expression of NCR in NK cells from acute myeloid leukemia: evolution during leukemia treatment and impact of leukemia cells in NCRdull phenotype induction. Blood109(1), 323–330 (2007).
  • Montagna D, Maccario R, Locatelli F et al. Emergence of antitumor cytolytic T cells is associated with maintenance of hematologic remission in children with acute myeloid leukemia. Blood108(12), 3843–3850 (2006).
  • Melenhorst JJ, Scheinberg P, Chattopadhyay PK et al. High avidity myeloid leukemia-associated antigen-specific CD8+ T cells preferentially reside in the bone marrow. Blood113(10), 2238–2244 (2009).
  • Scheibenbogen C, Letsch A, Thiel E et al. CD8 T-cell responses to Wilms tumor gene product WT1 and proteinase 3 in patients with acute myeloid leukemia. Blood100(6), 2132–2137 (2002).
  • Oka Y, Tsuboi A, Taguchi T et al. Induction of WT1 (Wilms’ tumor gene)-specific cytotoxic T lymphocytes by WT1 peptide vaccine and the resultant cancer regression. Proc. Natl Acad. Sci. USA101(38), 13885–13890 (2004).
  • Rezvani K, Yong AS, Savani BN et al. Graft-versus-leukemia effects associated with detectable Wilms tumor-1 specific T lymphocytes after allogeneic stem-cell transplantation for acute lymphoblastic leukemia. Blood110(6), 1924–1932 (2007).
  • Schmitt M, Schmitt A, Rojewski MT et al. RHAMM-R3 peptide vaccination in patients with acute myeloid leukemia, myelodysplastic syndrome, and multiple myeloma elicits immunologic and clinical responses. Blood111(3), 1357–1365 (2008).
  • Schmitt M, Casalegno-Garduno R, Xu X, Schmitt A. Peptide vaccines for patients with acute myeloid leukemia. Expert Rev. Vaccines8(10), 1415–1425 (2009).
  • Mehrotra S, Mougiakakos D, Johansson CC, Voelkel-Johnson C, Kiessling R. Oxidative stress and lymphocyte persistence: implications in immunotherapy. Adv. Cancer Res.102, 197–227 (2009).
  • Brune M, Hansson M, Mellqvist UH, Hermodsson S, Hellstrand K. NK cell-mediated killing of AML blasts: role of histamine, monocytes and reactive oxygen metabolites. Eur. J. Haematol.57(4), 312–319 (1996).
  • Lotzova E, Savary CA, Herberman RB. Induction of NK cell activity against fresh human leukemia in culture with interleukin 2. J. Immunol.138(8), 2718–2727 (1987).
  • Baer MR, George SL, Caligiuri MA et al. Low-dose interleukin-2 immunotherapy does not improve outcome of patients age 60 years and older with acute myeloid leukemia in first complete remission: Cancer and Leukemia Group B Study 9720. J. Clin. Oncol.26(30), 4934–4939 (2008).
  • Blaise D, Attal M, Reiffers J et al. Randomized study of recombinant interleukin-2 after autologous bone marrow transplantation for acute leukemia in first complete remission. Eur. Cytokine Netw.11(1), 91–98 (2000).
  • Kolitz JE Hars V, DeAngelo DJ et al. Phase III trial of immunotherapy with recombinant Interleukin-2 (rIL-2) versus observation in patients < 60 years with acute myeloid leukemia (AML) in first remission (CR1): Preliminary results from cancer and leukemia Group B (CALGB) 19808. In: Blood 110, 53a–54a (2007) (Abstract 157).
  • Lange BJ, Smith FO, Feusner J et al. Outcomes in CCG-2961, a children’s oncology group Phase 3 trial for untreated pediatric acute myeloid leukemia: a report from the children’s oncology group. Blood111(3), 1044–1053 (2008).
  • Pautas C, Merabet F, Thomas X et al. Randomized study of intensified anthracycline doses for induction and recombinant interleukin-2 for maintenance in patients with acute myeloid leukemia age 50 to 70 years: results of the ALFA-9801 study. J. Clin. Oncol.28(5), 808–814 (2010).
  • Costello RT, Sivori S, Marcenaro E et al. Defective expression and function of natural killer cell-triggering receptors in patients with acute myeloid leukemia. Blood99(10), 3661–3667 (2002).
  • Buggins AG, Milojkovic D, Arno MJ et al. Microenvironment produced by acute myeloid leukemia cells prevents T cell activation and proliferation by inhibition of NF-κB, c-Myc, and pRb pathways. J. Immunol.167(10), 6021–6030 (2001).
  • Notter M, Willinger T, Erben U, Thiel E. Targeting of a B7–1 (CD80) immunoglobulin G fusion protein to acute myeloid leukemia blasts increases their costimulatory activity for autologous remission T cells. Blood97(10), 3138–3145 (2001).
  • Babe K, Serafin, WE. Histamine, bradykinin and their antagonists. In: Goodman & Gilman’s The Pharmacological Basis of Therapeutics (9th Edition). Hardman J, Limbird LE (Eds). McGraw-Hill, NY USA 581–600 (1996).
  • Hellstrand K, Hermodsson S. Histamine H2-receptor-mediated regulation of human natural killer cell activity. J. Immunol.137(2), 656–660 (1986).
  • Hellstrand K, Asea A, Dahlgren C, Hermodsson S. Histaminergic regulation of NK cells. Role of monocyte-derived reactive oxygen metabolites. J. Immunol.153(11), 4940–4947 (1994).
  • Mellqvist UH, Hansson M, Brune M et al. Natural killer cell dysfunction and apoptosis induced by chronic myelogenous leukemia cells: role of reactive oxygen species and regulation by histamine. Blood96(5), 1961–1968 (2000).
  • Rada B, Leto TL. Oxidative innate immune defenses by Nox/Duox family NADPH oxidases. Contrib. Microbiol.15, 164–187 (2008).
  • Klebanoff SJ. Myeloperoxidase: friend and foe. J. Leuk. Biol.77(5), 598–625 (2005).
  • Hultqvist M, Holmdahl R. Ncf1 (p47phox) polymorphism determines oxidative burst and the severity of arthritis in rats and mice. Cell. Immunol.233(2), 97–101 (2005).
  • Hagenow K, Gelderman KA, Hultqvist M et al. Ncf1-associated reduced oxidative burst promotes IL-33R+ T cell-mediated adjuvant-free arthritis in mice. J. Immunol.183(2), 874–881 (2009).
  • Hultqvist M, Olsson LM, Gelderman KA, Holmdahl R. The protective role of ROS in autoimmune disease. Trends. Immunol.30(5), 201–208 (2009).
  • Angelini G, Gardella S, Ardy M et al. Antigen-presenting dendritic cells provide the reducing extracellular microenvironment required for T lymphocyte activation. Proc. Natl Acad. Sci. USA99(3), 1491–1496 (2002).
  • Noelle RJ, Lawrence DA. Modulation of T-cell functions. I. Effect of 2-mercaptoethanol and macrophages on T-cell proliferation. Cell. Immunol.50(2), 416–431 (1980).
  • Hellstrand K, Hansson M, Hermodsson S. Adjuvant histamine in cancer immunotherapy. Semin. Cancer Biol.10(1), 29–39 (2000).
  • Romero AI, Thoren FB, Aurelius J et al. Post-consolidation immunotherapy with histamine dihydrochloride and interleukin-2 in AML. Scand. J. Immunol.70(3), 194–205 (2009).
  • Kono K, Salazar-Onfray F, Petersson M et al. Hydrogen peroxide secreted by tumor-derived macrophages down-modulates signal-transducing ζ molecules and inhibits tumor-specific T cell-and natural killer cell-mediated cytotoxicity. Eur. J. Immunol.26(6), 1308–1313 (1996).
  • Betten A, Bylund J, Christophe T et al. A proinflammatory peptide from Helicobacter pylori activates monocytes to induce lymphocyte dysfunction and apoptosis. J. Clin. Invest.108(8), 1221–1228 (2001).
  • Corsi MM, Maes HH, Wasserman K et al. Protection by L-2-oxothiazolidine-4-carboxylic acid of hydrogen peroxide-induced CD3ζ and CD16ζ chain down-regulation in human peripheral blood lymphocytes and lymphokine-activated killer cells. Biochem. Pharmacol.56(5), 657–662 (1998).
  • Otsuji M, Kimura Y, Aoe T, Okamoto Y, Saito T. Oxidative stress by tumor-derived macrophages suppresses the expression of CD3 ζ chain of T-cell receptor complex and antigen-specific T-cell responses. Proc. Natl Acad. Sci. USA93(23), 13119–13124 (1996).
  • Romero AI, Thoren FB, Brune M, Hellstrand K. NKp46 and NKG2D receptor expression in NK cells with CD56dim and CD56bright phenotype: regulation by histamine and reactive oxygen species. Br. J. Haematol.132(1), 91–98 (2006).
  • Asea A, Hansson M, Czerkinsky C et al. Histaminergic regulation of interferon-γ (IFN-γ) production by human natural killer (NK) cells. Clin. Exp. Immunol.105(2), 376–382 (1996).
  • Hansson M, Asea A, Ersson U, Hermodsson S, Hellstrand K. Induction of apoptosis in NK cells by monocyte-derived reactive oxygen metabolites. J. Immunol.156(1), 42–47 (1996).
  • Hansson M, Hermodsson S, Brune M et al. Histamine protects T cells and natural killer cells against oxidative stress. J. Interferon Cytokine Res.19(10), 1135–1144 (1999).
  • Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat. Rev. Immunol.9(3), 162–174 (2009).
  • Ostrand-Rosenberg S, Sinha P. Myeloid-derived suppressor cells: linking inflammation and cancer. J. Immunol.182(8), 4499–4506 (2009).
  • Buggins AG, Hirst WJ, Pagliuca A, Mufti GJ. Variable expression of CD3-ζ and associated protein tyrosine kinases in lymphocytes from patients with myeloid malignancies. Br. J. Haematol.100(4), 784–792 (1998).
  • Whiteside TL. Signaling defects in T lymphocytes of patients with malignancy. Cancer Immunol. Immunother.48(7), 346–352 (1999).
  • Gajewski TF, Meng Y, Blank C et al. Immune resistance orchestrated by the tumor microenvironment. Immunol. Rev.213, 131–145 (2006).
  • Frumento G, Piazza T, Di Carlo E, Ferrini S. Targeting tumor-related immunosuppression for cancer immunotherapy. Endocrine Metab. Immune Disord. Drug Targets6(3), 233–237 (2006).
  • Peranzoni E, Zilio S, Marigo I et al. Myeloid-derived suppressor cell heterogeneity and subset definition. Curr. Opin. Immunol.22(2), 238–244 (2010).
  • Smith MT, Wang Y, Kane E et al. Low NAD(P)H:quinone oxidoreductase 1 activity is associated with increased risk of acute leukemia in adults. Blood97(5), 1422–1426 (2001).
  • Sallmyr A, Fan J, Datta K et al. Internal tandem duplication of FLT3 (FLT3/ITD) induces increased ROS production, DNA damage, and misrepair: implications for poor prognosis in AML. Blood111(6), 3173–3182 (2008).
  • Hellstrand K, Asea A, Hermodsson S. Role of histamine in natural killer cell-mediated resistance against tumor cells. J. Immunol.145(12), 4365–4370 (1990).
  • Asea A, Hermodsson S, Hellstrand K. Histaminergic regulation of natural killer cell-mediated clearance of tumour cells in mice. Scand. J. Immunol.43(1), 9–15 (1996).
  • Johansson S, Landstrom M, Hellstrand K, Henriksson R. The response of Dunning R3327 prostatic adenocarcinoma to IL-2, histamine and radiation. Br. J. Cancer77(8), 1213–1219 (1998).
  • Samlowski WE, Petersen R, Cuzzocrea S et al. A nonpeptidyl mimic of superoxide dismutase, M40403, inhibits dose-limiting hypotension associated with interleukin-2 and increases its antitumor effects. Nat. Med.9(6), 750–755 (2003).
  • Agarwala SS, Glaspy J, O’Day SJ et al. Results from a randomized Phase III study comparing combined treatment with histamine dihydrochloride plus interleukin-2 versus interleukin-2 alone in patients with metastatic melanoma. J. Clin. Oncol.20(1), 125–133 (2002).
  • Agarwala SS, Hellstrand K, Gehlsen K, Naredi P. Immunotherapy with histamine and interleukin 2 in malignant melanoma with liver metastasis. Cancer Immunol. Immunother.53(9), 840–841 (2004).
  • Donskov F, Middleton M, Fode K et al. Two randomised Phase II trials of subcutaneous interleukin-2 and histamine dihydrochloride in patients with metastatic renal cell carcinoma. Br. J. Cancer93(7), 757–762 (2005).
  • Asemissen AM, Scheibenbogen C, Letsch A et al. Addition of histamine to interleukin 2 treatment augments type 1 T-cell responses in patients with melanoma in vivo: immunologic results from a randomized clinical trial of interleukin 2 with or without histamine (MP 104). Clin. Cancer Res.11(1), 290–297 (2005).
  • Brune M, Hellstrand K. Remission maintenance therapy with histamine and interleukin-2 in acute myelogenous leukaemia. Br. J. Haematol.92(3), 620–626 (1996).
  • Hellstrand K, Mellqvist UH, Wallhult E et al. Histamine and interleukin-2 in acute myelogenous leukemia. Leuk. Lymph.27(5–6), 429–438 (1997).
  • Brune M, Rowe JM, Buyse ME et al. Six-year outcomes update from a randomized Phase 3 trial in AML: durable effect of remission maintenance immunotherapy with histamine dihydrochloride and low-dose IL-2. Haematologica94(Suppl. 2), (2009).
  • Meropol NJ, Porter M, Blumenson LE et al. Daily subcutaneous injection of low-dose interleukin 2 expands natural killer cells in vivo without significant toxicity. Clin. Cancer Res.2(4), 669–677 (1996).
  • Wallhult E, Whisnant J, Nilsson B, Bhagwat D, Hellstrand K, Brune M. Quality of life during remission maintenance immunotherapy in acute myeloid leukemia: a prospective assessment using EORTC QLQ-C30 in a randomized Phase III trial of histamine dihydrochloride plus low-dose interleukin-2. Haematologica93(Suppl. 1), 6–14 (2008).
  • Donskov F, Hokland M, Marcussen N, Torp Madsen HH, von der Maase H. Monocytes and neutrophils as ‘bad guys’ for the outcome of interleukin-2 with and without histamine in metastatic renal cell carcinoma – results from a randomised Phase II trial. Br. J. Cancer94(2), 218–226 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.