129
Views
33
CrossRef citations to date
0
Altmetric
Review

Immunomodulation for inhibitors in hemophilia A: the important role of Treg cells

Pages 469-483 | Published online: 10 Jan 2014

References

  • Davie EW, Fujikawa K, Kisiel W. The coagulation cascade: initiation, maintenance, and regulation. Biochemistry30, 10363–10370 (1991).
  • Hoyer LW, Scandella D. Factor VIII inhibitors: structure and function in autoantibody and hemophilia A patients. Semin. Hematol.31(2 Suppl. 4), 1–5 (1994).
  • Briet E, Mauser-Bunschoten EP. [Revision consensus hemophilia: treatment and responsibility. Nederlandse Vereniging van Hemophilia Patients]. Ned. Tijdschr. Geneeskd.141(52), 2566–2571 (1997).
  • Darby SC, Keeling DM, Spooner RJ et al. The incidence of Factor VIII and factor IX inhibitors in the hemophilia population of the UK and their effect on subsequent mortality, 1977–1999. J. Thromb. Haemost.2(7), 1047–1054 (2004).
  • Ehrenforth S, Kreuz W, Scharrer I et al. Incidence of development of Factor VIII and factor IX inhibitors in haemophiliacs. Lancet339(8793), 594–598 (1992).
  • Lusher JM, Arkin S, Abildgaard CF, Schwartz RS. Recombinant Factor VIII for the treatment of previously untreated patients with hemophilia A. Safety, efficacy, and development of inhibitors. Kogenate Previously Untreated Patient Study Group. N. Engl. J. Med.328(7), 453–459 (1993).
  • Jacquemin M, Vantomme V, Buhot C et al. CD4+ T-cell clones specific for wild-type Factor VIII: a molecular mechanism responsible for a higher incidence of inhibitor formation in mild/moderate hemophilia A. Blood101(4), 1351–1358 (2003).
  • Roth DA, Tawa NE Jr, O’Brien JM, Treco DA, Selden RF. Nonviral transfer of the gene encoding coagulation Factor VIII in patients with severe hemophilia A. N. Engl. J. Med.344(23), 1735–1742 (2001).
  • Powell JS, Ragni MV, White GC 2nd et al. Phase 1 trial of FVIII gene transfer for severe hemophilia A using a retroviral construct administered by peripheral intravenous infusion. Blood102(6), 2038–2045 (2003).
  • White GC 2nd. Gene therapy in hemophilia: clinical trials update. Thromb. Haemost.86(1), 172–177 (2001).
  • Andrews JL, Kadan MJ, Gorziglia MI, Kaleko M, Connelly S. Generation and characterization of E1/E2a/E3/E4-deficient adenoviral vectors encoding human Factor VIII. Mol. Ther.3(3), 329–336 (2001).
  • Sarkar R, Gao GP, Chirmule N, Tazelaar J, Kazazian HHJ. Partial corretion of murine hemophilia A with neo-antigenic murine Factor VIII. Hum. Gene Ther.11, 881–894 (2000).
  • Chao H, Mao L, Bruce AT, Walsh CE. Sustained expression of human Factor VIII in mice using a parvovirus-based vector. Blood95(5), 1594–1599 (2000).
  • Greengard JS, Jolly PJ. Animal testing of retroviral-mediated gene therapy for Factor VIII deficiency. Thromb. Haemost.82(2), 555–561 (1999).
  • VandenDriessche T, Vanslembrouck V, Goovaerts I et al. Long-term expression of human coagulation Factor VIII and correction of hemophilia A after In vivo retroviral gene transfer in Factor VIII-deficient mice. Proc. Natl Acad. Sci. USA96(18), 10379–10384 (1999).
  • Stein CS, Kang Y, Sauter SL et al.In vivo treatment of hemophilia A and mucopolysaccharidosis type VII using nonprimate lentiviral vectors. Mol. Ther.3(6), 850–856 (2001).
  • Miao CH, Ye X, Thompson AR. High-level Factor VIII gene expression In vivo achieved by nonviral liver-specific gene therapy vectors. Hum. Gene Ther.14(14), 1297–1305 (2003).
  • Ye P, Thompson AR, Sarkar R et al. Naked DNA transfer of Factor VIII induced transgene-specific, species-independent immune response in hemophilia A mice. Mol. Ther.10(1), 117–126 (2004).
  • Bi L, Lawler AM, Antonarakis SE et al. Targeted disruption of the mouse Factor VIII gene produces a model of haemophilia A. Nat. Genet.10(1), 119–121 (1995).
  • Qian J, Collins M, Sharpe AH, Hoyer LW. Prevention and treatment of Factor VIII inhibitors in murine hemophilia A. Blood95(4), 1324–1329 (2000).
  • Wu H, Reding M, Qian J et al. Mechanism of the immune response to human Factor VIII in murine hemophilia A. Thromb. Haemost.85(1), 125–133 (2001).
  • Hausl C, Ahmad RU, Sasgary M et al. High-dose Factor VIII inhibits Factor VIII-specific memory B cells in hemophilia A with Factor VIII inhibitors. Blood106(10), 3415–3422 (2005).
  • Berntorp E, Astermark J, Carlborg E. Immune tolerance induction and the treatment of hemophilia. Malmo protocol update. Haematologica85(10 Suppl.), 48–50; discussion 50–51 (2000).
  • Carlborg E, Astermark J, Lethagen S, Ljung R, Berntorp E. The Malmo model for immune tolerance induction: impact of previous treatment on outcome. Haemophilia6(6), 639–642 (2000).
  • Ephrem A, Chamat S, Miquel C et al. Expansion of CD4+CD25+ regulatory T cells by intravenous immunoglobulin: a critical factor in controlling experimental autoimmune encephalomyelitis. Blood111(2), 715–722 (2008).
  • De Groot AS, Moise L, McMurry JA et al. Activation of natural regulatory T cells by IgG Fc-derived peptide “Tregitopes”. Blood112(8), 3303–3311 (2008).
  • Rawle FE, Pratt KP, Labelle A et al. Induction of partial immune tolerance to Factor VIII through prior mucosal exposure to the Factor VIII C2 domain. J. Thromb. Haemost.4(10), 2172–2179 (2006).
  • Lei TC, Scott DW. Induction of tolerance to Factor VIII inhibitors by gene therapy with immunodominant A2 and C2 domains presented by B cells as Ig fusion proteins. Blood105(12), 4865–4870 (2005).
  • Qadura M, Othman M, Waters B et al. Reduction of the immune response to Factor VIII mediated through tolerogenic Factor VIII presentation by immature dendritic cells. J. Thromb. Haemost.6(12), 2095–2104 (2008).
  • Ragni MV, Wu W, Liang X et al. Factor VIII-pulsed dendritic cells reduce anti-Factor VIII antibody formation in the hemophilia A mouse model. Exp. Hematol.37(6), 744–754 (2009).
  • Su RJ, Epp A, Latchman Y et al. Suppression of FVIII inhibitor formation in hemophilic mice by delivery of transgene modified apoptotic fibroblasts. Mol. Ther.18(1), 214–222 (2008).
  • Goudemand J, Rothschild C, Demiguel V et al. Influence of the type of Factor VIII concentrate on the incidence of Factor VIII inhibitors in previously untreated patients with severe hemophilia A. Blood107(1), 46–51 (2006).
  • Waters B, Lillicrap D. The molecular mechanisms of immunomodulation and tolerance induction to Factor VIII. J. Thromb. Haemost.7(9), 1446–1456 (2009).
  • Saenko EL, Pipe SW. Strategies towards a longer acting Factor VIII. Haemophilia12(Suppl. 3), 42–51 (2006).
  • Pipe SW. Functional roles of the Factor VIII B domain. Haemophilia15(6), 1187–1196 (2009).
  • Cerullo V, Seiler MP, Mane V et al. Correction of murine hemophilia A and immunological differences of Factor VIII variants delivered by helper-dependent adenoviral vectors. Mol. Ther.15(12), 2080–2087 (2007).
  • Jirovska D, Ye P, Pipe SW, Miao CH. Reduction of inhibitory anti-FVIII actor antibody titer by using a domain variant FVIII/N6 cDNA for nonviral gene therapy in hemophilia A mice. Presented at: 50th Annual Meeting of American Society of Hematology. San Francisco, CA, USA, 6–10 December 2008.
  • Ettinger RA, Lieverman JA, Boigiano DC, Thompson AR, Pratt KP. Reduced immunogenicity of FVIII peptides by rational modifications of an immunodominant T cell epitope. Presented at: 51st Annual Meeting of American Society of Hematology. New Orleans, LA, USA, 4–7 December 2009.
  • Mingozzi F, Liu YL, Dobrzynski E et al. Induction of immune tolerance to coagulation factor IX antigen by In vivo hepatic gene transfer. J. Clin. Invest.111(9), 1347–1356 (2003).
  • Sarkar R, Mucci M, Addya S et al. Long-term efficacy of adeno-associated virus serotypes 8 and 9 in hemophilia A dogs and mice. Hum. Gene Ther.17(4), 427–439 (2006).
  • Liu L, Mah C, Fletcher BS. Sustained FVIII expression and phenotypic correction of hemophilia A in neonatal mice using an endothelial-targeted sleeping beauty transposon. Mol. Ther.13(5), 1006–1015 (2006).
  • Matsui H, Shibata M, Brown B et al. A murine model for induction of long-term immunologic tolerance to Factor VIII does not require persistent detectable levels of plasma Factor VIII and involves contributions from Foxp3+ T regulatory cells. Blood114(3), 677–685 (2009).
  • Evans GL, Morgan RA. Genetic induction of immune tolerance to human clotting Factor VIII in a mouse model for hemophilia A. Proc. Natl Acad. Sci. USA95(10), 5734–5739 (1998).
  • Moayeri M, Hawley TS, Hawley RG. Correction of murine hemophilia A by hematopoietic stem cell gene therapy. Mol. Ther.12(6), 1034–1042 (2005).
  • Ide LM, Gangadharan B, Chiang KY, Doering CB, Spencer HT. Hematopoietic stem-cell gene therapy of hemophilia A incorporating a porcine Factor VIII transgene and nonmyeloablative conditioning regimens. Blood110(8), 2855–2863 (2007).
  • Doering CB, Gangadharan B, Dukart HZ, Spencer HT. Hematopoietic stem cells encoding porcine Factor VIII induce pro-coagulant activity in hemophilia A mice with pre-existing Factor VIII immunity. Mol. Ther.15(6), 1093–1099 (2007).
  • Uprichard J, Dazzi F, Apperley JF, Laffan MA. Haemopoietic stem cell transplantation induces tolerance to donor antigens but not to foreign FVIII peptides. Haemophilia16(1) 143–147 (2010).
  • Shi Q, Wilcox DA, Fahs SA et al. Factor VIII ectopically targeted to platelets is therapeutic in hemophilia A with high-titer inhibitory antibodies. J. Clin. Invest.116(7), 1974–1982 (2006).
  • Shi Q, Wilcox DA, Fahs SA et al. Lentivirus-mediated platelet-derived Factor VIII gene therapy in murine haemophilia A. J. Thromb. Haemost.5(2), 352–361 (2007).
  • Matsui H, Shibata M, Brown B et al. Ex vivo gene therapy for hemophilia A that enhances safe delivery and sustained In vivo Factor VIII expression from lentivirally engineered endothelial progenitors. Stem Cells25(10), 2660–2669 (2007).
  • Kren BT, Unger GM, Sjeklocha L et al. Nanocapsule-delivered Sleeping Beauty mediates therapeutic Factor VIII expression in liver sinusoidal endothelial cells of hemophilia A mice. J. Clin. Invest.119(7), 2086–2099 (2009).
  • Xu D, Alipio Z, Fink LM et al. Phenotypic correction of murine hemophilia A using an iPS cell-based therapy. Proc. Natl Acad. Sci. USA106(3), 808–813 (2009).
  • Yadav N, Kanjirakkuzhiyil S, Kumar S et al. The therapeutic effect of bone marrow-derived liver cells in the phenotypic correction of murine hemophilia A. Blood114(20), 4552–4561 (2009).
  • Brown BD, Venneri MA, Zingale A, Sergi Sergi L, Naldini L. Endogenous microRNA regulation suppresses transgene expression in hematopoietic lineages and enables stable gene transfer. Nat. Med.12(5), 585–591 (2006).
  • Miao CH, Ye P, Thompson AR, Rawlings DJ, Ochs HD. Immunomodulation of transgene responses following naked DNA transfer of human Factor VIII into hemophilia A mice. Blood108(1), 19–27 (2006).
  • Qian J, Burkly LC, Smith EP et al. Role of CD154 in the secondary immune response: the reduction of pre- existing splenic germinal centers and anti-Factor VIII inhibitor titer. Eur. J. Immunol.30(9), 2548–2554 (2000).
  • Hausl C, Ahmad RU, Schwarz HP et al. Preventing restimulation of memory B cells in hemophilia A: a potential new strategy for the treatment of antibody-dependent immune disorders. Blood104(1), 115–122 (2004).
  • Liu L, Liu H, Mah C, Fletcher BS. Indoleamine 2,3-dioxygenase attenuates inhibitor development in gene-therapy-treated hemophilia A mice. Gene Ther.16(6), 724–733 (2009).
  • Yu G, Dai H, Chen J et al. Gene delivery of indoleamine 2,3-dioxygenase prolongs cardiac allograft survival by shaping the types of T-cell responses. J. Gene Med.10(7), 754–761 (2008).
  • Reipert BM, Sasgary M, Ahmad RU et al. Blockade of CD40/CD40 ligand interactions prevents induction of Factor VIII inhibitors in hemophilic mice but does not induce lasting immune tolerance. Thromb. Haemost.86(6), 1345–1352 (2001).
  • Rossi G, Sarkar J, Scandella D. Long-term induction of immune tolerance after blockade of CD40–CD40L interaction in a mouse model of hemophilia A. Blood97(9), 2750–2757 (2001).
  • Abrams JR, Lebwohl MG, Guzzo CA et al. CTLA4Ig-mediated blockade of T-cell costimulation in patients with psoriasis vulgaris. J. Clin. Invest.103(9), 1243–1252 (1999).
  • Boumpas DT, Furie R, Manzi S et al. A short course of BG9588 (anti-CD40 ligand antibody) improves serologic activity and decreases hematuria in patients with proliferative lupus glomerulonephritis. Arthritis Rheum.48(3), 719–727 (2003).
  • Kawai T. Thromboembolic complications after treatment with monoclonal antibody against CD40 ligand. Nat. Med.6, 114 (2000).
  • Davis JC Jr, Totoritis MC, Rosenberg J, Sklenar TA, Wofsy D. Phase I clinical trial of a monoclonal antibody against CD40-ligand (IDEC-131) in patients with systemic lupus erythematosus. J. Rheumatol.28(1), 95–101 (2001).
  • Peng B, Ye P, Blazar BR et al. Transient blockade of the inducible costimulator pathway generates long-term tolerance to Factor VIII after nonviral gene transfer into hemophilia A mice. Blood112(5), 1662–1672 (2008).
  • Scott D. The Nature of Immunologic Tolerance. RG Landes Co., TX, USA (1994).
  • Smith R. Immunologic tolerance in non-living antignes. Adv. Immunol.1, 67 (1961).
  • Heath AW, Chang R, Harada N et al. Antibodies to murine CD40 stimulate normal B lymphocytes but inhibit proliferation of B lymphoma cells. Cell Immunol.152(2), 468–480 (1993).
  • Woodle ES, Xu D, Zivin RA et al. Phase I trial of a humanized, Fc receptor nonbinding OKT3 antibody, huOKT3g1(Ala-Ala) in the treatment of acute renal allograft rejection. Transplantation68(5), 608–616 (1999).
  • Friend PJ, Hale G, Chatenoud L et al. Phase I study of an engineered aglycosylated humanized CD3 antibody in renal transplant rejection. Transplantation68(11), 1632–1637 (1999).
  • Peng B, Ye P, Rawlings DJ, Ochs HD, Miao CH. Anti-CD3 antibodies modulate anti-Factor VIII immune responses in hemophilia A mice after Factor VIII plasmid-mediated gene therapy. Blood114(20), 4373–4382 (2009).
  • Waters B, Qadura M, Burnett E et al. Anti-CD3 prevents Factor VIII inhibitor development in hemophilia A mice by a regulatory CD4+CD25+-dependent mechanism and by shifting cytokine production to favor a Th1 response. Blood113(1), 193–203 (2009).
  • Wood KJ, Sakaguchi S. Regulatory T cells in transplantation tolerance. Nat. Rev. Immunol.3(3), 199–210 (2003).
  • Tang Q, Bluestone JA. The Foxp3+ regulatory T cell: a jack of all trades, master of regulation. Nat. Immunol.9(3), 239–244 (2008).
  • Sakaguchi S, Yamaguchi T, Nomura T, Ono M. Regulatory T cells and immune tolerance. Cell133(5), 775–787 (2008).
  • Salomon B, Lenschow DJ, Rhee L et al. B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity12(4), 431–440 (2000).
  • Read S, Malmstrom V, Powrie F. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25(+)CD4(+) regulatory cells that control intestinal inflammation. J. Exp. Med.192(2), 295–302 (2000).
  • Taylor PA, Lees CJ, Blazar BR. The infusion of ex vivo activated and expanded CD4(+)CD25(+) immune regulatory cells inhibits graft-versus-host disease lethality. Blood99(10), 3493–3499 (2002).
  • Edinger M, Hoffmann P, Ermann J et al. CD4+CD25+ regulatory T cells preserve graft-versus-tumor activity while inhibiting graft-versus-host disease after bone marrow transplantation. Nat. Med.9(9), 1144–1150 (2003).
  • Hoffmann P, Ermann J, Edinger M, Fathman CG, Strober S. Donor-type CD4(+)CD25(+) regulatory T cells suppress lethal acute graft-versus-host disease after allogeneic bone marrow transplantation. J. Exp. Med.196(3), 389–399 (2002).
  • Malek TR, Yu A, Vincek V, Scibelli P, Kong L. CD4 regulatory T cells prevent lethal autoimmunity in IL-2Rβ-deficient mice. Implications for the nonredundant function of IL-2. Immunity17(2), 167–178 (2002).
  • Vigouroux S, Yvon E, Biagi E, Brenner MK. Antigen-induced regulatory T cells. Blood104(1), 26–33 (2004).
  • Taylor PA, Panoskaltsis-Mortari A, Swedin JM et al. L-Selectin(hi) but not the L-selectin(lo) CD4+25+ T-regulatory cells are potent inhibitors of GVHD and BM graft rejection. Blood104(12), 3804–3812 (2004).
  • Rifle G, Herve P. Regulatory (suppressor) T cells in peripheral allograft tolerance and graft-versus-host reaction. Transplantation77(1 Suppl.), S5 (2004).
  • Clark FJ, Gregg R, Piper K et al. Chronic graft-versus-host disease is associated with increased numbers of peripheral blood CD4+CD25high regulatory T cells. Blood103(6), 2410–2416 (2004).
  • Jaeckel E, von Boehmer H, Manns MP. Antigen-specific FoxP3-transduced T-cells can control established type 1 diabetes. Diabetes54(2), 306–310 (2005).
  • Kasprowicz DJ, Smallwood PS, Tyznik AJ, Ziegler SF. Scurfin (FoxP3) controls T-dependent immune responses In vivo through regulation of CD4+ T cell effector function. J. Immunol.171(3), 1216–1223 (2003).
  • Miao CH, Harmeling BR, Ziegler SF et al. CD4+FOXP3+ regulatory T cells confer long-term regulation of Factor VIII-specific immune responses in plasmid-mediated gene therapy-treated hemophilia mice. Blood114(19), 4034–4044 (2009).
  • Tran CA, Burton L, Russom D et al. Manufacturing of large numbers of patient-specific T cells for adoptive immunotherapy: an approach to improving product safety, composition, and production capacity. J. Immunother.30(6), 644–654 (2007).
  • Guillot-Delost M, Cherai M, Hamel Y et al. Clinical-grade preparation of human natural regulatory T-cells encoding the thymidine kinase suicide gene as a safety gene. J. Gene Med.10(8), 834–846 (2008).
  • Cao O, Loduca PA, Herzog RW. Role of regulatory T cells in tolerance to coagulation factors. J. Thromb. Haemost.7(Suppl. 1), 88–91 (2009).
  • Chai JG, Coe D, Chen D et al.In vitro expansion improves In vivo regulation by CD4+CD25+ regulatory T cells. J. Immunol.180(2), 858–869 (2008).
  • Liu CL, Ye P, B. Y, Peng B, Miao CH. In vivo expansion of Treg cells with IL2–mAb complexes prevents and modulates anti-Factor VIII immune responses in hemophilia A mice after Factor VIII plasmid-mediated gene therapy. Presented at: 13th Annual Meeting of American Society of Gene and Cell Therapy. Washington, DC, USA, 19–22 May 2010.
  • Su Y, Carey G, Maric M, Scott DW. B cells induce tolerance by presenting endogenous peptide-IgG on MHC class II molecules via an IFN-γ-inducible lysosomal thiol reductase-dependent pathway. J. Immunol.181(2), 1153–1160 (2008).
  • El-Amine M, Melo M, Kang Y et al. Mechanisms of tolerance induction by a gene-transferred peptide-IgG fusion protein expressed in B lineage cells. J. Immunol.165(10), 5631–5636 (2000).
  • Litzinger MT, Su Y, Lei TC, Soukhareva N, Scott DW. Mechanisms of gene therapy for tolerance: B7 signaling is required for peptide–IgG gene-transferred tolerance induction. J. Immunol.175(2), 780–787 (2005).
  • Skupsky J, Su Y, Scott DW. Tolerance induced by B-cell gene therapy: expansion and increased activity of antigen-specific Tregs. Presented at: 51st Annual Meeting of American Society of Hematology. New Orleans, LA, USA, 4–7 December 2009.
  • Mathias M, Khair K, Hann I, Liesner R. Rituximab in the treatment of alloimmune Factor VIII and IX antibodies in two children with severe haemophilia. Br. J. Haematol.125(3), 366–368 (2004).
  • Carcao M, St Louis J, Poon MC et al. Rituximab for congenital haemophiliacs with inhibitors: a Canadian experience. Haemophilia12(1), 7–18 (2006).
  • Curtin J, Misra A, Teo J, Webster B, Lammi A. Use of Rituximab as an laternarative strategy for the management of difficult high titre inhibitors in children with haemophilia A. Haemophilia10(Suppl. 3), 12 PO 30 (2004).
  • Krause M, Betz C, Scharrer I, Krause M. Rituximab – a challenge for the therapy of inhibitors to Factor VIII. J. Throm. Haemost.1(Suppl. 1), P1615 (2003).
  • Pruthi RK, Schmidt KA, Slaby JA, Hook CC, Nchols WL. Rituximab treatment of FVIII inhibitors in congenital haemophilia A (cHA). J. Thromb. Haemost.3(Suppl. 1), P0652 (2005).
  • Dunkley S, Lindeman R. Successful treatment of a high titre Factor VIII inhibitor with rituximab alone. J. Thromb. Haemost.3(Suppl. 1), P0631 (2005).
  • Wiestner A, Cho HJ, Asch AS et al. Rituximab in the treatment of acquired Factor VIII inhibitors. Blood100(9), 3426–3428 (2002).
  • Biss TT, Velangi MR, Hanley JP. Failure of rituximab to induce immune tolerance in a boy with severe haemophilia A and an alloimmune Factor VIII antibody: a case report and review of the literature. Haemophilia12(3), 280–284 (2006).
  • Fox RA, Neufeld EJ, Bennett CM. Rituximab for adolescents with haemophilia and high titre inhibitors. Haemophilia12(3), 218–222 (2006).
  • Giulino LB, Bussel JB, Neufeld EJ. Treatment with rituximab in benign and malignant hematologic disorders in children. J. Pediatr.150(4), 338–344, 344 e1 (2007).
  • Zhang AA, Skupsky J, Scott DW. Affect of B-cell depletion on inhibitor antibody formation and immune tolerance injction of human Factor VIII in hemophilia A mice. Presented at: 51st Annual Meeting of American Society of Hematology. New Orleans, LA, USA, 4–7 December 2009.
  • Ye P, Peng B, Kehry M, Rawlings DJ, Miao CH. Depletion of B cells by anti-CD20 partially regulates anti-FVIII antibody production in the nonviral gene therapy model. Presented at: 13th Annual Meeting of American Society of Gene and Cell Therapy. Washington, DC, USA, 19–22 May 2010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.