48
Views
9
CrossRef citations to date
0
Altmetric
Review

Genomic polymorphisms of the innate immune system and allogeneic stem cell transplantation

, &
Pages 411-427 | Published online: 10 Jan 2014

References

  • Copelan EA. Hematopoietic stem cell transplantation. N. Engl. J. Med.354, 1813–1826 (2006).
  • Gratwohl A, Brand R, Frassoni F et al. Cause of death after allogeneic haematopoietic stem cell transplantation (HSCT) in early leukaemias: an EBMT analysis of lethal infectious complications and changes over calendar time. Bone Marrow Transplant.36, 757–769 (2005).
  • Ferrara JL, Levine JE, Reddy P, Holler E. Graft-versus-host disease. Lancet373, 1550–1561 (2009).
  • Cordonnier C. Infections after HSCT. In: The EBMT Handbook. Hematopoietic Stem Cell Transplantation. Apperley J, Carreras E, Gluckman E, Gratwohl A, Masszi T (Eds). European School of Haematology, Paris, France (2008).
  • Barron MA, Gao D, Springer KL et al. Relationship of reconstituted adaptive and innate cytomegalovirus (CMV)-specific immune responses with CMV viremia in hematopoietic stem cell transplant recipients. Clin. Infect. Dis.49, 1777–1783 (2009).
  • Mikulska M, Raiola AM, Bruno B et al. Risk factors for invasive aspergillosis and related mortality in recipients of allogeneic SCT from alternative donors: an analysis of 306 patients. Bone Marrow Transplant.44, 361–370 (2009).
  • Toubert A. Inmune reconstitution after allogenic HSCT. In: The EBMT Handbook. Haematopoietic Stem Cell Transplantation. Apperley J, Carreras E, Gluckman E, Gratwohl A, Masszi T (Eds). The European School of Haematology, Paris, France (2008).
  • Koreth J, Antin JH. Current and future approaches for control of graft-versus-host disease. Expert Rev. Hematol.1, 1–11 (2008).
  • Li MO, Wan YY, Sanjabi S, Robertson AK, Flavell RA. Transforming growth factor-β regulation of immune responses. Annu. Rev. Immunol.24, 99–146 (2006).
  • Bettelli E, Korn T, Mohamed Oukka M, Kuchroo VK. Induction and effector functions of Th 17 cells. Nature453, 1051–1057 (2008).
  • Paczesny S, Krijanovski OI, Braun TM et al. A biomarker panel for acute graft-versus-host disease. Blood113, 273–278 (2009).
  • Baron C, Somogyi R, Greller LD et al. Prediction of graft-versus-host disease in humans by donor gene-expression profiling. PLoS Med.4, e23 (2007).
  • Dickinson AM, Middleton PG, Rocha V, Gluckman E, Holler E; Eurobank Members. Genetic polymorphisms predicting the outcome of bone marrow transplants. Br. J. Haematol.147, 479–490 (2004).
  • Middleton PG, Taylor PR, Jackson G, Proctor SJ, Dickinson AM. Cytokine gene polymorphisms associating with severe acute graft-versus-host disease in HLA-identical sibling transplants. Blood92, 3943–3948 (1998).
  • Cavet J, Middleton PG, Segall M, Noreen H, Davies SM, Dickinson AM. Recipient tumor necrosis factor-α and interleukin-10 gene polymorphisms associate with early mortality and acute graft-versus-host disease severity in HLA-matched sibling bone marrow transplants. Blood94, 3941–3946 (1999).
  • Ishikawa Y, Kashiwase K, Akaza T et al. Polymorphisms in TNFA and TNFR2 affect outcome of unrelated bone marrow transplantation. Bone Marrow Transplant.29, 569–575 (2002).
  • Stark GL, Dickinson AM, Jackson GH, Taylor PR, Proctor SJ, Middleton PG. Tumour necrosis factor receptor type II 196M/R genotype correlates with circulating soluble receptor levels in normal subjects and with graft-versus-host disease after sibling allogeneic bone marrow transplantation. Transplantation76, 1742–1749 (2003).
  • Cullup H, Dickinson AM, Jackson GH, Taylor PR, Cavet J, Middleton PG. Donor interleukin 1 receptor antagonist genotype associated with acute graft-versus-host disease in human leukocyte antigen-matched sibling allogeneic transplants. Br. J. Haematol.113, 807–813 (2001).
  • Rocha V, Franco RF, Porcher R et al. Host defense and inflammatory gene polymorphisms are associated with outcomes after HLA-identical sibling bone marrow transplantation. Blood100, 3908–3918 (2002).
  • MacMillan ML, Radloff GA, Kiffmeyer WR, DeFor TE, Weisdorf DJ, Davies SM. High-producer interleukin-2 genotype increases risk for acute graft-versus-host disease after unrelated donor bone marrow transplantation. Transplantation76, 1758–1762 (2003).
  • Hattori H, Matsuzaki A, Suminoe A et al. Polymorphisms of transforming growth factor-β1 and transforming growth factor-β1 type II receptor genes are associated with acute graft-versus-host disease in children with HLA-matched sibling bone marrow transplantation. Bone Marrow Transplant.30, 665–671 (2002).
  • Noori-Daloii MR, Rashidi-Nezhad A, Izadi P et al. Transforming growth factor-β1 codon 10 polymorphism is associated with acute GVHD after allogenic BMT in Iranian population. Ann. Transplant.12, 5–10 (2007).
  • Jaskula E, Dlubek D, Duda D, Bogunia-Kubik K, Mlynarczewska A, Lange A. Interferon g 13-CA-repeat homozygous genotype and a low proportion of CD4+ lymphocytes are independent risk factors for cytomegalovirus reactivation with a high number of copies in hematopoietic stem cell transplantation recipients. Biol. Blood Marrow Transplant.15, 1296–1305 (2009).
  • Ambruzova Z, Mrazek F, Raida L et al. Association of IL6 and CCL2 gene polymorphisms with the outcome of allogeneic haematopoietic stem cell transplantation. Bone Marrow Transplant.44(4), 227–235 (2009).
  • Cavet J, Dickinson AM, Norden J, Taylor PR, Jackson GH, Middleton PG. Interferon-γ and interleukin-6 gene polymorphisms associate with graft-versus-host disease in HLA-matched sibling bone marrow transplantation. Blood98, 1594–1600 (2001).
  • Bogunia-Kubik K, Mlynarczewska A, Wysoczanska B, Lange A. Recipient Interferon-γ 3/3 genotype contributes to the development of chronic graft-versus-host disease after allogeneic hematopoietic stem cell transplantation. Haematologica90, 425–426 (2005).
  • Bogunia-Kubik K, Mlynarczewska A, Jaskula E, Lange A. The presence of IFNG 3/3 genotype in the recipient associates with increased risk for Epstein–Barr virus reactivation after allogeneic haematopoietic stem cell transplantation. Br. J. Haematol.132, 326–332 (2006).
  • Mlynarczewska A, Wysoczanska B, Karabon L, Bogunia-Kubik K, Lange A. Lack of IFN-γ 2/2 homozygous genotype independently of recipient age and intensity of conditioning regimen influences the risk of a GVHD manifestation after HLA-matched sibling haematopoietic stem cell transplantation. Bone Marrow Transplant.34, 339–344 (2004).
  • Elmaagacli AH, Koldehoff M, Landt O, Beelen DW. Relation of an interleukin-23 receptor gene polymorphism to graft-versus-host disease after hematopoietic-cell transplantation. Bone Marrow Transplant.41, 821–826 (2008).
  • Gruhn B, Intek J, Pfaffendorf N et al. Polymorphism of interleukin-23 receptor gene but not of NOD2/CARD15 is associated with graft-versus-host disease after hematopoietic stem cell transplantation in children. Biol. Blood Marrow Transplant.15, 1571–1577 (2009).
  • Lin MT, Storer B, Martin PJ et al. Relation of an interleukin-10 promoter polymorphism to graft-versus-host disease and survival after hematopoietic-cell transplantation. N. Engl. J. Med.349, 2201–2210 (2003).
  • Lin MT, Storer B, Martin PJ et al. Genetic variation in the IL-10 pathway modulates severity of acute graft-versus-host disease following hematopoietic cell transplantation: synergism between IL-10 genotype of patient and IL-10 receptor β genotype of donor. Blood106, 3995–4001 (2005).
  • Tseng LH, Storer B, Petersdorf E et al. IL10 and IL10 receptor gene variation and outcomes after unrelated and related hematopoietic cell transplantation. Transplantation87, 704–710 (2009).
  • Ottinger HD, Ferencik S, Beelen DW et al. Hematopoietic stem cell transplantation: contrasting the outcome of transplantations from HLA-identical siblings, partially HLA-mismatched related donors, and HLA-matched unrelated donors. Blood102, 1131–1137 (2003).
  • Rendon BE, Willer SS, Zundel W, Mitchell RA. Mechanisms of macrophage migration inhibitory factor (MIF)-dependent tumor microenvironmental adaptation. Exp. Mol. Pathol.86, 180–185 (2009).
  • Calandra T, Roger T. Macrophage migration inhibitory factor: a regulator of innate immunity. Nat. Rev. Immunol.3, 791–800 (2003).
  • Amin MA, Volpert OV, Woods JM, Kumar P, Harlow LA, Koch AE. Migration inhibitory factor mediates angiogenesis via mitogen-activated protein kinase and phosphatidylinositol kinase. Circ. Res.93, 321–329 (2003).
  • Chesney J, Metz C, Bacher M, Peng T, Meinhardt A, Bucala R. An essential role for macrophage migration inhibitory factor (MIF) in angiogenesis and the growth of a murine lymphoma. Mol. Med.5, 181–199 (1999).
  • Weber C, Kraemer S, Drechsler M et al. Structural determinants of MIF functions in CXCR2-mediated inflammatory and atherogenic leukocyte recruitment. Proc. Natl Acad. Sci. USA105, 16278–16283 (2008).
  • Toubai T, Shono Y, Nishihira J et al. Serum macrophage migration inhibitory factor (MIF) levels after allogeneic hematopoietic stem cell transplantation. Int. J. Lab. Hematol.2, 161–168 (2009).
  • Lehmann LE, Book M, Hartmann W et al. A MIF haplotype is associated with the outcome of patients with severe sepsis: a case control study. J. Transl. Med.26, 100 (2009).
  • Chang YY, Greinix HT, Dickinson AM et al. G to C transition at position 173 of MIF gene of the recipient is associated with reduced relapse rates after allogeneic stem cell transplantation. Cytokine48, 218–225 (2009).
  • Neth O, Jack DL, Dodds AW, Holzel H, Klein NJ, Turner MW. Mannose-binding lectin binds to a range of clinically relevant microorganisms and promotes complement deposition. Infect. Immun.68, 688–693 (2000).
  • Worthley DL, Bardy PG, Mullighan CG. Mannose-binding lectin: biology and clinical implications. Intern. Med. J.35, 548–555 (2005).
  • Granell M, Urbano-Ispizua A, Suarez B et al. Mannan-binding lectin pathway deficiencies and invasive fungal infections following allogeneic stem cell transplantation. Exp. Hematol.34, 1435–1441 (2006).
  • Mullighan CG, Heatley SL, Danner S et al. Mannose-binding lectin status is associated with risk of major infection following myeloablative sibling allogeneic hematopoietic stem cell transplantation. Blood112, 2120–2128 (2008).
  • Mullighan CG, Heatley S, Doherty K et al. Mannose-binding lectin gene polymorphisms are associated with major infection following allogeneic hemopoietic stem cell transplantation. Blood99, 3524–3529 (2002).
  • Bottazzi B, Garlanda C, Cotena A et al. The long pentraxin PTX3 as a prototypic humoral pattern recognition receptor: interplay with cellular innate immunity. Immunol. Rev.227, 9–18 (2009).
  • Fuji S, Kim SW, Fukuda T et al. Preengraftment serum C-reactive protein (CRP) value may predict acute graft-versus-host disease and nonrelapse mortality after allogeneic hematopoietic stem cell transplantation. Biol. Blood Marrow Transplant.14, 510–517 (2008).
  • Min CK, Kim SY, Eom KS. Patterns of C-reactive protein release following allogeneic stem cell transplantation are correlated with leukemic relapse. Bone Marrow Transplant.37, 493–498 (2006).
  • McNeer JL, Kletzel M, Rademaker A et al. Early elevation of C-reactive protein correlates with severe infection and nonrelapse mortality in children undergoing allogeneic stem cell transplantation. Biol. Blood Marrow Transplant.16, 350–357 (2010).
  • Allin KH, Bojesen SE, Nordestgaard BG. Baseline C-reactive protein is associated with incident cancer and survival in patients with cancer. J. Clin. Oncol.27, 2217–2224 (2009).
  • Allin KH, Nordestgaard BG, Zacho J, Tybjaerg-Hansen A, Bojesen SE. C-reactive protein and the risk of cancer: a mendelian randomization study. J. Natl Cancer Inst.102, 202–206 (2010).
  • Bozza S, Bistoni F, Gaziano R et al. Pentraxin 3 protects from MCMV infection and reactivation through TLR sensing pathways leading to IRF3 activation. Blood108, 3387–3396 (2006).
  • May L, Kuningas M, van Bodegom D et al. Genetic variation in pentraxin (PTX) 3 gene associates with PTX3 production and fertility in women. Biol. Reprod.82, 299–304 (2010).
  • Martín-Antonio B, Álvarez I, Márquez-Malaver F et al.Constitutional variability in genes involved in innate immunity (IRF-3, HAMP, PTX3) and in cell proliferation (ATBF1 and NFAT5) influences disease free survival after allogeneic stem cell transplantation (allo-SCT). Nature Publishing Group, Vienna, Austria S69 (2010).
  • Napolitani G, Rinaldi A, Bertoni F, Sallusto F, Lanzavecchia A. Selected Toll-like receptor agonist combinations synergistically trigger a T helper type 1-polarizing program in dendritic cells. Nat. Immunol.6, 769–776 (2005).
  • Uematsu S, Akira S. Toll-like receptors and type I interferons. J. Biol. Chem.282, 15319–15323 (2007).
  • Takeda K, Akira S. Toll-like receptors in innate immunity. Int. Immunol.17, 1–14 (2005).
  • Iwasaki A, Medzhitov R. Regulation of adaptive immunity by the innate immune system. Science327, 291–295 (2010).
  • Tsan MF, Gao B. Endogenous ligands of Toll-like receptors. J. Leukoc. Biol.76, 514–519 (2004).
  • Tapping RI, Omueti KO, Johnson CM. Genetic polymorphisms within the human Toll-like receptor 2 subfamily. Biochem. Soc. Trans.35, 1445–1448 (2007).
  • Jelavic TB, Barisic M, Hofman ID et al. Microsatelite GT polymorphism in the Toll-like receptor 2 is associated with colorectal cancer. Clin. Genet.70, 156–160 (2006).
  • Tahara T, Arisawa T, Wang F et al. Toll-like receptor 2–196 to 174del polymorphism influences the susceptibility of Japanese people to gastric cancer. Cancer Sci.98, 1790–1794 (2007).
  • Stevens VL, Hsing AW, Talbot JT et al. Genetic variation in the toll-like receptor gene cluster (TLR10–TLR1–TLR6) and prostate cancer risk. Epidemiology123, 2644–2650 (2008).
  • Kesh S, Mensah NY, Peterlongo P et al. TLR1 and TLR6 polymorphisms are associated with susceptibility to invasive aspergillosis after allogeneic stem cell transplantation. Ann. NY Acad. Sci.1062, 95–103 (2005).
  • Nieters A, Beckmann L, Deeg E, Becker N. Gene polymorphisms in toll-like receptors, interleukin-10 and interleukin-10 receptor and lymphoma risk. Genes Immun.7, 615–622 (2006).
  • Bochud PY, Chien JW, Marr KA et al. Toll-like receptor 4 polymorphisms and aspergillosis in stem-cell transplantation. N. Engl. J. Med.359, 1766–1777 (2008).
  • Elmaagacli AH, Koldehoff M, Hindahl H et al. Mutations in innate immune system NOD2/CARD 15 and TLR-4 (Thr399Ile) genes influence the risk for severe acute graft-versus-host disease in patients who underwent an allogeneic transplantation. Transplantation81, 247–254 (2006).
  • Elmaagacli AH, Koldehoff M, Beelen DW. Improved outcome of hematopoietic SCT in patients with homozygous gene variant of Toll-like receptor 9. Bone Marrow Transplant.44, 295–302 (2009).
  • Purdue MP, Lan Q, Wang SS et al. A pooled investigation of Toll-like receptor gene variants and risk of non-Hodgkin lymphoma. Carcinogenesis30, 275–281 (2009).
  • Palm NW, Medzhitov R. Pattern recognition receptors and control of adaptive immunity. Immunol. Rev.1, 221–233 (2009).
  • Tschopp J, Martinon F, Burns K. NALPs: a novel protein family involved in inflammation. Nat. Rev. Mol. Cell Biol.4, 95–104 (2003).
  • Granell M, Urbano-Ispizua A, Pons A et al. Common variants in NLRP2 and NLRP3 genes are strong prognostic factors for the outcome of HLA-identical sibling allogeneic stem cell transplantation. Blood15, 4337–4342 (2008).
  • Watanabe T, Kitani A, Murray PJ, Strober W. NOD2 is a negative regulator of Toll-like receptor 2-mediated T helper type 1 responses. Nat. Immunol.5, 800–808 (2004).
  • Holler E, Rogler G, Brenmoehl J et al. Prognostic significance of NOD2/CARD15 variants in HLA-identical sibling hematopoietic stem cell transplantation: effect on long-term outcome is confirmed in 2 independent cohorts and may be modulated by the type of gastrointestinal decontamination. Blood107, 89–93 (2006).
  • Holler E, Rogler G, Herfarth H et al. Both donor and recipient NOD2/CARD15 mutations associate with transplant-related mortality and GvHD following allogeneic stem cell transplantation. Blood104, 889–894 (2004).
  • Holler E, Rogler G, Brenmoehl J. The role of genetic variants of NOD2/CARD15, a receptor of the innate immune system, in GvHD and complications following related and unrelated donor haematopoietic stem cell transplantation. Int. J. Immunogenet.35, 381–384 (2008).
  • Granell M, Urbano-Ispizua A, Arostegui JI et al. Effect of NOD2/CARD15 variants in T-cell depleted allogeneic stem cell transplantation. Haematologica91, 1372–1376 (2006).
  • Mayor NP, Shaw BE, Hughes DA et al. Single nucleotide polymorphisms in the NOD2/CARD15 gene are associated with an increased risk of relapse and death for patients with acute leukemia after hematopoietic stem-cell transplantation with unrelated donors. J. Clin. Oncol.25, 4262–4269 (2007).
  • van der Velden WJ, Blijlevens NM, Maas FM et al. NOD2 polymorphisms predict severe acute graft-versus-host and treatment-related mortality in T-cell-depleted haematopoietic stem cell transplantation. Bone Marrow Transplant.44, 243–248 (2009).
  • Kamysz W, Okrój M, Lukasiak J. Novel properties of antimicrobial peptides. Acta Biochimica Polonica50, 461–469 (2003).
  • Bulet P, Stöcklin R, Menin L. Anti-microbial peptides: from invertebrates to vertebrates. Immunol. Rev.198, 169–184 (2004).
  • De Smet K, Contreras R. Human antimicrobial peptides: defensins, cathelicidins and histatins. Biotechnol. Lett.27, 1337–1347 (2005).
  • Ramasundara M, Leach ST, Lemberg DA, Day AS. Defensins and inflammation: the role of defensins in inflammatory bowel disease. J. Gastroenterol. Hepatol.24, 202–208 (2009).
  • Droin N, Hendra JB, Ducoroy P, Solary E. Human defensins as cancer biomarkers and antitumour molecules. J. Proteomics72, 918–927 (2009).
  • Kocsis AK, Kiss ZF, Tiszlavicz L, Tiszlavicz Z, Mándi Y. Potential role of human β-defensin 1 in Helicobacter pylori-induced gastritis. Scand. J. Gastroenterol.44, 289–295 (2009).
  • Prado-Montes de Oca E, Velarde-Félix JS, Ríos-Tostado JJ, Picos-Cárdenas VJ, Figuera LE. SNP 668C (-44) alters a NF-κB1 putative binding site in non-coding strand of human β-defensin 1 (DEFB1) and is associated with lepromatous leprosy. Infect. Genet. Evol.9, 617–625 (2009).
  • Kocsis AK, Lakatos PL, Somogyvári F et al. Association of β-defensin 1 single nucleotide polymorphisms with Crohn’s disease. Scand. J. Gastroenterol.43, 299–307 (2008).
  • Hollox EJ, Huffmeier U, Zeeuwen PL et al. Psoriasis is associated with increased β-defensin genomic copy number. Nat. Genet.40, 23–25 (2008).
  • Fellermann K, Stange DE, Schaeffeler E et al. A chromosome 8 gene-cluster polymorphism with low human β-defensin 2 gene copy number predisposes to Crohn disease of the colon. Am. J. Hum. Genet.79, 439–448 (2006).
  • Boss E, Wehkamp J, Wehkamp K, Stange EF, Schroder JM, Harder J. NOD2/CARD15 mediates induction of the antimicrobial peptide human β-defensin-2. J. Biol. Chem.281, 2005–2011 (2006).
  • Wehkamp J, Harder J, Weichenthal M et al. NOD2 (CARD15) mutations in Crohn’s disease are associated with diminished mucosal α-defensin expression. Gut53, 1658–1664 (2004).
  • Verga Falzacappa MV, Muckenthaler MU. Hepcidin: iron-hormone and anti-microbial peptide. Gene364, 37–44 (2005).
  • Andreani M, Radio FC, Testi M et al. Association of hepcidin promoter c.-582 A>G variant and iron overload in thalassemia major. Haematologica94, 1293–1296 (2009).
  • Fitzgerald-Bocarsly P, Feng D. The role of type I interferon production by dendritic cells in host defense. Biochimie89, 843–855 (2007).
  • Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell124, 783–801 (2006).
  • Génin P, Vaccaro A, Civas A. The role of differential expression of human interferon-a genes in antiviral immunity. Cytokine Growth Factor Rev.20, 283–295 (2009).
  • DeFilippis VR, Robinson B, Keck TM, Hansen SG, Nelson JA, Früh K. Interferon regulatory factor 3 is necessary for induction of antiviral genes during human cytomegalovirus infection. J. Virol.80, 1032–1037 (2006).
  • Kim TK, Lee JS, Oh SY et al. Direct transcriptional activation of promyelocytic leukemia protein by IFN regulatory factor 3 induces the p53-dependent growth inhibition of cancer cells. Cancer Res.67, 11133–11140 (2007).
  • Salloum R, Franek BS, Kariuki SN et al. Genetic variation at the IRF7/PHRF1 locus is associated with autoantibody profile and serum interferon-α activity in lupus patients. Arthritis Rheum.62, 553–561 (2010).
  • Graham RR, Kyogoku C, Sigurdsson S et al. Three functional variants of IFN regulatory factor 5 (IRF5) define risk and protective haplotypes for human lupus. Proc. Natl Acad. Sci. USA104, 6758–6763 (2007).
  • Bouker KB, Skaar TC, Harburger DS et al. The A4396G polymorphism in interferon regulatory factor 1 is frequently expressed in breast cancer cell lines. Cancer Genet. Cytogenet.175, 61–64 (2007).
  • Caligiuri MA. Human natural killer cells. Blood112, 461–469 (2008).
  • Bertaina A, Locatelli F, Moretta L. Transplantation and innate immunity: the lesson of natural killer cells. Ital. J. Pediatr.35, 1–5 (2009).
  • Ruggeri L, Aversa F, Martelli MF, Velardi A. Allogeneic hematopoietic transplantation and natural killer cell recognition of missing self. Immunol. Rev.214, 202–218 (2006).
  • Ruggeri L, Mancusi A, Capanni M et al. Donor natural killer cell allorecognition of missing self in haploidentical hematopoietic transplantation for acute myeloid leukemia: challenging its predictive value. Blood110, 433–440 (2007).
  • Moretta L, Moretta A. Unravelling natural killer cell function: triggering and inhibitory human NK receptors. EMBO J.23, 255–259 (2004 ).
  • Long EO. Regulation of immune responses through inhibitory receptors. Annu. Rev. Immunol.17, 875–904 (1999).
  • Leung W, Iyengar R, Turner V et al. Determinants of antileukemia effects of allogeneic NK cells. J. Immunol.172, 644–650 (2004).
  • Hsu KC, Keever-Taylor CA, Wilton A et al. Improved outcome in HLA-identical sibling hematopoietic stem-cell transplantation for acute myelogenous leukemia predicted by KIR and HLA genotypes. Blood105, 4878–4884 (2005).
  • Hsu KC, Gooley T, Malkki M et al. KIR ligands and prediction of relapse after unrelated donor hematopoietic cell transplantation for hematologic malignancy. Biol. Blood Marrow Transplant.12, 828–836 (2006).
  • Pende D, Marcenaro S, Falco M et al. Anti-leukemia activity of alloreactive NK cells in KIR ligand-mismatched haploidentical HSCT for pediatric patients: evaluation of the functional role of activating KIR and redefinition of inhibitory KIR specificity. Blood113, 119–129 (2009).
  • Ruggeri L, Capanni M, Urbani E, Perruccio K, Shlomchik WD, Tosti A. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science295, 2097–2100 (2002).
  • Bottino C, Castriconi R, Moretta L, Moretta A. Cellular ligands for activating NK receptors. Trends Immunol.26, 221–226 (2005).
  • Espinoza JL, Takami A, Onizuka M et al. NKG2D gene polymorphism has a significant impact on transplant outcomes after HLA-fully-matched unrelated bone marrow transplantation for standard risk hematologic malignancies. Haematologica94, 1427–1434 (2009).
  • Yawata M, Yawata N, Draghi M, Little AM, Partheniou F, Parham P. Roles for HLA and KIR polymorphisms in natural killer cell repertoire selection and modulation of effector function. J. Exp. Med.203, 633–645 (2006).
  • Moesta AK, Norman PJ, Yawata M et al. Synergistic polymorphism at two positions distal to the ligand-binding site makes KIR2DL2 a stronger receptor for HLA-C than KIR2DL3. J. Immunol.180, 3969–3979 (2008).
  • Du Z, Gjertson DW, Reed EF, Rajalingam R. Receptor–ligand analyses define minimal killer cell Ig-like receptor (KIR) in humans. Immunogenetics59(1), 1–15 (2007).
  • Hollenbach JA, Ladner MB, Saeteurn K et al. Susceptibility to Crohn’s disease is mediated by KIR2DL2/KIR2DL3 heterozygosity and the HLA-C ligand. Immunogenetics61, 663–671 (2009).
  • Montes-Cano MA, Caro-Oleas JL, Romero-Gómez M et al. HLA-C and KIR genes in hepatitis C virus infection. Hum. Immunol.66(11), 1106–1109 (2005).
  • Shastry A, Sedimbi SK, Rajalingam R et al. Combination of KIR 2DL2 and HLA-C1 (Asn 80) confers susceptibility to Type 1 diabetes in Latvians. Int. J. Immunogenet.35, 439–446 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.