206
Views
104
CrossRef citations to date
0
Altmetric
Review

Pathogenesis, classification and treatment of mastocytosis: state of the art in 2010 and future perspectives

&
Pages 497-516 | Published online: 10 Jan 2014

References

  • Chang A, Tung RC, Schlesinger T, Bergfeld WF, Dijkstra J, Kahn TA. Familial cutaneous mastocytosis. Pediatr. Dermatol.18(4), 271–276 (2001).
  • Tang X, Boxer M, Drummond A, Ogston P, Hodgins M, Burden AD. A germline mutation in KIT in familial diffuse cutaneous mastocytosis. J. Med. Genet.41(6), e88 (2004).
  • Mseddi M, Marrekchi S, Dammak A, Masmoudu A, Bouassida S, Turki H. [Familial cutaneous mastocytosis in 2 brothers]. Arch. Pediatr.14(1), 100–101 (2007).
  • Wolff K, Komar M, Petzelbauer P. Clinical and histopathological aspects of cutaneous mastocytosis. Leuk. Res.25(7), 519–528 (2001).
  • Hartmann K, Henz BM. Classification of cutaneous mastocytosis: a modified consensus proposal. Leuk. Res.26(5), 483–484 (2002).
  • Hartmann K, Henz BM. Cutaneous mastocytosis – clinical heterogeneity. Int. Arch. Allergy Immunol.127(2), 143–146 (2002).
  • Hartmann K, Hermes B, Rappersberger K, Sepp N, Mekori YA, Henz BM. Evidence for altered mast cell proliferation and apoptosis in cutaneous mastocytosis. Br. J. Dermatol.149(3), 554–559 (2003).
  • Briley LD, Phillips CM. Cutaneous mastocytosis: a review focusing on the pediatric population. Clin. Pediatr. (Phila.)47(8), 757–761 (2008).
  • Lemanske RF Jr, Atkins FM, Metcalfe DD. Gastrointestinal mast cells in health and disease. Part II. J. Pediatr.103(3), 343–351 (1983).
  • Friedman BS, Metcalfe DD. Mastocytosis. Prog. Clin. Biol. Res.297, 163–173 (1989).
  • Metcalfe DD. The liver, spleen, and lymph nodes in mastocytosis. J. Invest. Dermatol.96(3), S45–S46 (1991).
  • Brockow K, Metcalfe DD. Mastocytosis. Curr. Opin. Allergy Clin. Immunol.1(5), 449–454 (2001).
  • Metcalfe DD. Mast cells and mastocytosis. Blood112(4), 946–956 (2008).
  • Valent P. Systemic mastocytosis. Cancer Treat. Res.142, 399–419 (2008).
  • Horny HP, Parwaresch MR, Lennert K. Bone marrow findings in systemic mastocytosis. Hum. Pathol.16(8), 808–814 (1985).
  • Horny HP, Kaiserling E, Campbell M, Parwaresch MR, Lennert K. Liver findings in generalized mastocytosis. A clinicopathologic study. Cancer63(3), 532–538 (1989).
  • Horny HP, Kaiserling E, Parwaresch MR, Lennert K. Lymph node findings in generalized mastocytosis. Histopathology21(5), 439–446 (1992).
  • Valent P, Horny HP, Escribano L et al. Diagnostic criteria and classification of mastocytosis: a consensus proposal. Leuk. Res.25(7), 603–625 (2001).
  • Akin C, Metcalfe DD. Systemic mastocytosis. Annu. Rev. Med.55, 419–432 (2004).
  • Barbie DA, Deangelo DJ. Systemic mastocytosis: current classification and novel therapeutic options. Clin. Adv. Hematol. Oncol.4(10), 768–775 (2006).
  • Butterfield JH. Systemic mastocytosis: clinical manifestations and differential diagnosis. Immunol. Allergy Clin. North Am.26(3), 487–513 (2006).
  • Robyn J, Metcalfe DD. Systemic mastocytosis. Adv. Immunol.89, 169–243 (2006).
  • Escribano L, Alvarez-Twose I, Sanchez-Munoz L et al. Prognosis in adult indolent systemic mastocytosis: a long-term study of the Spanish Network on Mastocytosis in a series of 145 patients. J. Allergy Clin. Immunol.124(3), 514–521 (2009).
  • Valent P, Akin C, Sperr WR et al. Aggressive systemic mastocytosis and related mast cell disorders: current treatment options and proposed response criteria. Leuk. Res.27(7), 635–641 (2003).
  • Valent P, Akin C, Sperr WR et al. Mastocytosis: pathology, genetics, and current options for therapy. Leuk. Lymphoma46(1), 35–48 (2005).
  • Galli SJ, Tsai M. Mast cells: versatile regulators of inflammation, tissue remodeling, host defense and homeostasis. J. Dermatol. Sci.49(1), 7–19 (2008).
  • Kalesnikoff J, Galli SJ. New developments in mast cell biology. Nat. Immunol.9(11), 1215–1223 (2008).
  • Beaven MA. Our perception of the mast cell from Paul Ehrlich to now. Eur. J. Immunol.39(1), 11–25 (2009).
  • Valent P. The riddle of the mast cell: kit(CD117)-ligand as the missing link? Immunol. Today15(3), 111–114 (1994).
  • Kirshenbaum AS, Metcalfe DD. Growth of human mast cells from bone marrow and peripheral blood-derived CD34+ pluripotent progenitor cells. Methods Mol. Biol.315, 105–112 (2006).
  • Nagata H, Worobec AS, Oh CK et al. Identification of a point mutation in the catalytic domain of the protooncogene c-kit in peripheral blood mononuclear cells of patients who have mastocytosis with an associated hematologic disorder. Proc. Natl Acad. Sci. USA92(23), 10560–10564 (1995).
  • Longley BJ, Tyrrell L, Lu SZ et al. Somatic c-KIT activating mutation in urticaria pigmentosa and aggressive mastocytosis: establishment of clonality in a human mast cell neoplasm. Nat. Genet.12(3), 312–314 (1996).
  • Fritsche-Polanz R, Jordan JH, Feix A et al. Mutation analysis of C-KIT in patients with myelodysplastic syndromes without mastocytosis and cases of systemic mastocytosis. Br. J. Haematol.113(2), 357–364 (2001).
  • Orfao A, Garcia-Montero AC, Sanchez L, Escribano L. Recent advances in the understanding of mastocytosis: the role of KIT mutations. Br. J. Haematol.138(1), 12–30 (2007).
  • Sotlar K, Colak S, Bache A et al. Variable presence of KIT(D816V) in clonal haematological non-mast cell lineage diseases associated with systemic mastocytosis (SM-AHNMD). J. Pathol.220(5), 586–595 (2010).
  • Escribano L, Akin C, Castells M, Schwartz LB. Current options in the treatment of mast cell mediator-related symptoms in mastocytosis. Inflamm. Allergy Drug Targets5(1), 61–77 (2006).
  • Valent P, Akin C, Escribano L et al. Standards and standardization in mastocytosis: consensus statements on diagnostics, treatment recommendations and response criteria. Eur. J. Clin. Invest.37(6), 435–453 (2007).
  • Pusl T, Kenngott S, Bartl R, Baur A, Ludolph-Hauser D, Juengst D. A case of systemic mastocytosis associated with severe osteoporosis and pathologic fractures. Eur. J. Intern. Med.15(8), 537–539 (2004).
  • Cacace E, Salis G, Ruggiero V, Perpignano G. Systemic mast cell disease: a rare cause of osteoporosis. Clin. Exp. Rheumatol.24(2), 210 (2006).
  • Chiappetta N, Gruber B. The role of mast cells in osteoporosis. Semin. Arthritis Rheum.36(1), 32–36 (2006).
  • Stein JA, Kamino H, Walters RF, Pomeranz MK. Mastocytosis with urticaria pigmentosa and osteoporosis. Dermatol. Online J.14(10), 2 (2008).
  • Manara M, Varenna M, Cantoni S, Parafioriti A, Gallazzi MB, Sinigaglia L. Osteoporosis with vertebral fractures in young males, due to bone marrow mastocytosis: a report of two cases. Clin. Exp. Rheumatol.28(1), 97–100 (2010).
  • Horny HP, Ruck M, Wehrmann M, Kaiserling E. Blood findings in generalized mastocytosis: evidence of frequent simultaneous occurrence of myeloproliferative disorders. Br. J. Haematol.76(2), 186–193 (1990).
  • Lawrence JB, Friedman BS, Travis WD, Chinchilli VM, Metcalfe DD, Gralnick HR. Hematologic manifestations of systemic mast cell disease: a prospective study of laboratory and morphologic features and their relation to prognosis. Am. J. Med.91(6), 612–624 (1991).
  • Sperr WR, Horny HP, Valent P. Spectrum of associated clonal hematologic non-mast cell lineage disorders occurring in patients with systemic mastocytosis. Int. Arch. Allergy Immunol.127(2), 140–142 (2002).
  • Lennert K, Parwaresch MR. Mast cells and mast cell neoplasia: a review. Histopathology3(5), 349–365 (1979).
  • Horny HP, Valent P. Histopathological and immunohistochemical aspects of mastocytosis. Int. Arch. Allergy Immunol.127(2), 115–117 (2002).
  • Horny HP, Sotlar K, Valent P, Hartmann K. Mastocytosis: a disease of the hematopoietic stem cell. Dtsch Arztebl. Int.105(40), 686–692 (2008).
  • Valent P. Diagnostic evaluation and classification of mastocytosis. Immunol. Allergy Clin. North Am.26(3), 515–534 (2006).
  • Escribano L, Akin C, Castells M, Orfao A, Metcalfe DD. Mastocytosis: current concepts in diagnosis and treatment. Ann. Hematol.81(12), 677–690 (2002).
  • Nakamura R, Chakrabarti S, Akin C et al. A pilot study of nonmyeloablative allogeneic hematopoietic stem cell transplant for advanced systemic mastocytosis. Bone Marrow Transplant.37(4), 353–358 (2006).
  • Droogendijk HJ, Kluin-Nelemans HJ, van Doormaal JJ, Oranje AP, van de Loosdrecht AA, van Daele PL. Imatinib mesylate in the treatment of systemic mastocytosis: a Phase II trial. Cancer107(2), 345–351 (2006).
  • Gotlib J, Berube C, Growney JD et al. Activity of the tyrosine kinase inhibitor PKC412 in a patient with mast cell leukemia with the D816V KIT mutation. Blood106(8), 2865–2870 (2005).
  • Gotlib J. KIT mutations in mastocytosis and their potential as therapeutic targets. Immunol. Allergy Clin. North Am.26(3), 575–592 (2006).
  • Verstovsek S, Akin C, Manshouri T et al. Effects of AMN107, a novel aminopyrimidine tyrosine kinase inhibitor, on human mast cells bearing wild-type or mutated codon 816 c-kit. Leuk. Res.30(11), 1365–1370 (2006).
  • Tefferi A. Molecular drug targets in myeloproliferative neoplasms: mutant ABL1, JAK2, MPL, KIT, PDGFRA, PDGFRB and FGFR1. J. Cell Mol. Med.13(2), 215–237 (2009).
  • Stone KD, Prussin C, Metcalfe DD. IgE, mast cells, basophils, and eosinophils. J. Allergy Clin. Immunol.125(2 Suppl. 2), S73–80 (2010).
  • Arizono N, Matsuda S, Hattori T, Kojima Y, Maeda T, Galli SJ. Anatomical variation in mast cell nerve associations in the rat small intestine, heart, lung, and skin. Similarities of distances between neural processes and mast cells, eosinophils, or plasma cells in the jejunal lamina propria. Lab. Invest.62(5), 626–634 (1990).
  • Galli SJ. New insights into ‘the riddle of the mast cells’: microenvironmental regulation of mast cell development and phenotypic heterogeneity. Lab. Invest.62(1), 5–33 (1990).
  • Feger F, Varadaradjalou S, Gao Z, Abraham SN, Arock M. The role of mast cells in host defense and their subversion by bacterial pathogens. Trends Immunol.23(3), 151–158 (2002).
  • Metz M, Siebenhaar F, Maurer M. Mast cell functions in the innate skin immune system. Immunobiology213(3–4), 251–260 (2008).
  • Mayerhofer M, Aichberger KJ, Florian S, Valent P. Recognition sites for microbes and components of the immune system on human mast cells: relationship to CD antigens and implications for host defense. Int. J. Immunopathol. Pharmacol.20(3), 421–434 (2007).
  • Hofmann AM, Abraham SN. New roles for mast cells in modulating allergic reactions and immunity against pathogens. Curr. Opin. Immunol.21(6), 679–686 (2009).
  • Hofmann AM, Abraham SN. New roles for mast cells in pathogen defense and allergic disease. Discov. Med.9(45), 79–83 (2010).
  • Valent P, Bettelheim P. Cell surface structures on human basophils and mast cells: biochemical and functional characterization. Adv. Immunol.52, 333–423 (1992).
  • Rivera J, Olivera A. A current understanding of Fce RI-dependent mast cell activation. Curr. Allergy Asthma Rep.8(1), 14–20 (2008).
  • Kitamura Y, Shimada M, Hatanaka K, Miyano Y. Development of mast cells from grafted bone marrow cells in irradiated mice. Nature268(5619), 442–443 (1977).
  • Arock M, Le Nours A, Malbec O, Daeron M. Ex vivo and in vitro primary mast cells. Methods Mol. Biol.415, 241–254 (2008).
  • Okayama Y, Kawakami T. Development, migration, and survival of mast cells. Immunol. Res.34(2), 97–115 (2006).
  • Kirshenbaum AS, Goff JP, Kessler SW, Mican JM, Zsebo KM, Metcalfe DD. Effect of IL-3 and stem cell factor on the appearance of human basophils and mast cells from CD34+ pluripotent progenitor cells. J. Immunol.148(3), 772–777 (1992).
  • Valent P, Spanblochl E, Sperr WR et al. Induction of differentiation of human mast cells from bone marrow and peripheral blood mononuclear cells by recombinant human stem cell factor/kit-ligand in long-term culture. Blood80(9), 2237–2245 (1992).
  • Valent P. Cytokines involved in growth and differentiation of human basophils and mast cells. Exp. Dermatol.4(4 Pt 2), 255–259 (1995).
  • Grabbe J, Welker P, Dippel E, Czarnetzki BM. Stem cell factor, a novel cutaneous growth factor for mast cells and melanocytes. Arch. Dermatol. Res.287(1), 78–84 (1994).
  • Zsebo KM, Williams DA, Geissler EN et al. Stem cell factor is encoded at the Sl locus of the mouse and is the ligand for the c-kit tyrosine kinase receptor. Cell63(1), 213–224 (1990).
  • Miyazawa K, Williams DA, Gotoh A, Nishimaki J, Broxmeyer HE, Toyama K. Membrane-bound steel factor induces more persistent tyrosine kinase activation and longer life span of c-kit gene-encoded protein than its soluble form. Blood85(3), 641–649 (1995).
  • Stevens RL, Rothenberg ME, Levi-Schaffer F, Austen KF. Ontogeny of in vitro-differentiated mouse mast cells. Fed. Proc.46(5), 1915–1919 (1987).
  • Valent P, Schmidt G, Besemer J et al. Interleukin-3 is a differentiation factor for human basophils. Blood73(7), 1763–1769 (1989).
  • Furitsu T, Saito H, Dvorak AM et al. Development of human mast cells in vitro.Proc. Natl Acad. Sci. USA86(24), 10039–10043 (1989).
  • Agis H, Willheim M, Sperr WR et al. Monocytes do not make mast cells when cultured in the presence of SCF. Characterization of the circulating mast cell progenitor as a c-kit+, CD34+, Ly-, CD14-, CD17-, colony-forming cell. J. Immunol.151(8), 4221–4227 (1993).
  • Arinobu Y, Iwasaki H, Akashi K. Origin of basophils and mast cells. Allergol. Int.58(1), 21–28 (2009).
  • Alexander WS, Lyman SD, Wagner EF. Expression of functional c-kit receptors rescues the genetic defect of W mutant mast cells. EMBO J.10(12), 3683–3691 (1991).
  • Galli SJ. Mast cell deficient mice and rats with mutations of the c-kit protooncogene. Jpn. J. Cancer Res.84(6), inside front cover (1993).
  • Kitamura Y, Oboki K, Ito A. Molecular mechanisms of mast cell development. Immunol. Allergy Clin. North Am.26(3), 387–405; v (2006).
  • Nakano T, Sonoda T, Hayashi C et al. Fate of bone marrow-derived cultured mast cells after intracutaneous, intraperitoneal, and intravenous transfer into genetically mast cell-deficient W/Wv mice. Evidence that cultured mast cells can give rise to both connective tissue type and mucosal mast cells. J. Exp. Med.162(3), 1025–1043 (1985).
  • Wershil BK, Galli SJ. The analysis of mast cell function in vivo using mast cell-deficient mice. Adv. Exp. Med. Biol.347, 39–54 (1994).
  • Furitsu T, Tsujimura T, Tono T et al. Identification of mutations in the coding sequence of the proto-oncogene c-kit in a human mast cell leukemia cell line causing ligand-independent activation of c-kit product. J. Clin. Invest.92(4), 1736–1744 (1993).
  • Tsujimura T. Role of c-kit receptor tyrosine kinase in the development, survival and neoplastic transformation of mast cells. Pathol. Int.46(12), 933–938 (1996).
  • Longley BJ, Reguera MJ, Ma Y. Classes of c-KIT activating mutations: proposed mechanisms of action and implications for disease classification and therapy. Leuk. Res.25(7), 571–576 (2001).
  • Feger F, Ribadeau Dumas A, Leriche L, Valent P, Arock M. Kit and c-kit mutations in mastocytosis: a short overview with special reference to novel molecular and diagnostic concepts. Int. Arch. Allergy Immunol.127(2), 110–114 (2002).
  • Kitamura Y, Kasugai T, Arizono N, Matsuda H. Development of mast cells and basophils: processes and regulation mechanisms. Am. J. Med. Sci.306(3), 185–191 (1993).
  • Rodewald HR, Dessing M, Dvorak AM, Galli SJ. Identification of a committed precursor for the mast cell lineage. Science271(5250), 818–822 (1996).
  • Kirshenbaum AS, Goff JP, Semere T, Foster B, Scott LM, Metcalfe DD. Demonstration that human mast cells arise from a progenitor cell population that is CD34(+), c-kit(+), and expresses aminopeptidase N (CD13). Blood94(7), 2333–2342 (1999).
  • Sperr WR, Escribano L, Jordan JH et al. Morphologic properties of neoplastic mast cells: delineation of stages of maturation and implication for cytological grading of mastocytosis. Leuk. Res.25(7), 529–536 (2001).
  • Schwartz LB. Mediators of human mast cells and human mast cell subsets. Ann. Allergy58(4), 226–235 (1987).
  • Miller JS, Schwartz LB. Human mast cell proteases and mast cell heterogeneity. Curr. Opin. Immunol.1(4), 637–642 (1989).
  • Schwartz LB. Tryptase, a mediator of human mast cells. J. Allergy Clin. Immunol.86(4 Pt 2), 594–598 (1990).
  • Irani AM, Schwartz LB. Human mast cell heterogeneity. Allergy Proc.15(6), 303–308 (1994).
  • Welle M. Development, significance, and heterogeneity of mast cells with particular regard to the mast cell-specific proteases chymase and tryptase. J. Leukoc. Biol.61(3), 233–245 (1997).
  • Horny HP, Sillaber C, Menke D et al. Diagnostic value of immunostaining for tryptase in patients with mastocytosis. Am. J. Surg. Pathol.22(9), 1132–1140 (1998).
  • Li L, Meng XW, Krilis SA. Mast cells expressing chymase but not tryptase can be derived by culturing human progenitors in conditioned medium obtained from a human mastocytosis cell strain with c-kit ligand. J. Immunol.156(12), 4839–4844 (1996).
  • Horny HP, Greschniok A, Jordan JH, Menke DM, Valent P. Chymase expressing bone marrow mast cells in mastocytosis and myelodysplastic syndromes: an immunohistochemical and morphometric study. J. Clin. Pathol.56(2), 103–106 (2003).
  • Galli SJ, Costa JJ. Mast-cell–leukocyte cytokine cascades in allergic inflammation. Allergy50(11), 851–862 (1995).
  • Puxeddu I, Piliponsky AM, Bachelet I, Levi-Schaffer F. Mast cells in allergy and beyond. Int. J. Biochem. Cell Biol.35(12), 1601–1607 (2003).
  • Gregory GD, Brown MA. Mast cells in allergy and autoimmunity: implications for adaptive immunity. Methods Mol. Biol.315, 35–50 (2006).
  • Ryan JJ, Fernando JF. Mast cell modulation of the immune response. Curr. Allergy Asthma Rep.9(5), 353–359 (2009).
  • Minai-Fleminger Y, Levi-Schaffer F. Mast cells and eosinophils: the two key effector cells in allergic inflammation. Inflamm. Res.58(10), 631–638 (2009).
  • Chen R, Ning G, Zhao ML et al. Mast cells play a key role in neutrophil recruitment in experimental bullous pemphigoid. J. Clin. Invest.108(8), 1151–1158 (2001).
  • Zappulla JP, Arock M, Mars LT, Liblau RS. Mast cells: new targets for multiple sclerosis therapy? J. Neuroimmunol.131(1–2), 5–20 (2002).
  • Maruotti N, Crivellato E, Cantatore FP, Vacca A, Ribatti D. Mast cells in rheumatoid arthritis. Clin. Rheumatol.26(1), 1–4 (2007).
  • Sayed BA, Christy A, Quirion MR, Brown MA. The master switch: the role of mast cells in autoimmunity and tolerance. Annu. Rev. Immunol.26, 705–739 (2008).
  • Ribatti D, Crivellato E. The controversial role of mast cells in tumor growth. Int. Rev. Cell Mol. Biol.275, 89–131 (2009).
  • Maltby S, Khazaie K, McNagny KM. Mast cells in tumor growth: angiogenesis, tissue remodelling and immune-modulation. Biochim. Biophys. Acta1796(1), 19–26 (2009).
  • Echtenacher B, Mannel DN, Hultner L. Critical protective role of mast cells in a model of acute septic peritonitis. Nature381(6577), 75–77 (1996).
  • Malaviya R, Ikeda T, Ross E, Abraham SN. Mast cell modulation of neutrophil influx and bacterial clearance at sites of infection through TNF-α. Nature381(6577), 77–80 (1996).
  • Lu LF, Lind EF, Gondek DC et al. Mast cells are essential intermediaries in regulatory T-cell tolerance. Nature442(7106), 997–1002 (2006).
  • Rauter I, Krauth MT, Flicker S et al. Allergen cleavage by effector cell-derived proteases regulates allergic inflammation. FASEB J.20(7), 967–969 (2006).
  • Rauter I, Krauth MT, Westritschnig K et al. Mast cell-derived proteases control allergic inflammation through cleavage of IgE. J. Allergy Clin. Immunol.121(1), 197–202 (2008).
  • Kitamura Y, Taguchi T, Yokoyama M et al. Higher susceptibility of mast-cell-deficient W/WV mutant mice to brain thromboembolism and mortality caused by intravenous injection of India ink. Am J. Pathol.122(3), 469–480 (1986).
  • Valent P, Baghestanian M, Bankl HC et al. New aspects in thrombosis research: possible role of mast cells as profibrinolytic and antithrombotic cells. Thromb. Haemost.87(5), 786–790 (2002).
  • Rao KN, Brown MA. Mast cells: multifaceted immune cells with diverse roles in health and disease. Ann. NY Acad. Sci.1143, 83–104 (2008).
  • Parwaresch MR, Horny HP, Lennert K. Tissue mast cells in health and disease. Pathol. Res. Pract.179(4–5), 439–461 (1985).
  • Metcalfe DD. Classification and diagnosis of mastocytosis: current status. J. Invest. Dermatol.96(3 Suppl), S2–S4 (1991).
  • Horny HP, Sotlar K, Valent P. Mastocytosis: state of the art. Pathobiology74(2), 121–132 (2007).
  • Horny HP, Valent P. Diagnosis of mastocytosis: general histopathological aspects, morphological criteria, and immunohistochemical findings. Leuk. Res.25(7), 543–551 (2001).
  • Nagata H, Okada T, Worobec AS, Semere T, Metcalfe DD. c-kit mutation in a population of patients with mastocytosis. Int. Arch. Allergy Immunol.113(1–3), 184–186 (1997).
  • Longley BJ Jr, Metcalfe DD, Tharp M et al. Activating and dominant inactivating c-KIT catalytic domain mutations in distinct clinical forms of human mastocytosis. Proc. Natl Acad. Sci. USA96(4), 1609–1614 (1999).
  • Longley BJ, Metcalfe DD. A proposed classification of mastocytosis incorporating molecular genetics. Hematol. Oncol. Clin. North Am.14(3), 697–701, viii (2000).
  • Verzijl A, Heide R, Oranje AP, van Schaik RH. C-kit Asp-816-Val mutation analysis in patients with mastocytosis. Dermatology214(1), 15–20 (2007).
  • Wadleigh M, Tefferi A. Classification and diagnosis of myeloproliferative neoplasms according to the 2008 World Health Organization criteria. Int J. Hematol.91(2), 174–179 (2010).
  • Valent P, Akin C, Sperr WR, Horny HP, Metcalfe DD. Mast cell proliferative disorders: current view on variants recognized by the World Health Organization. Hematol. Oncol. Clin. North Am.17(5), 1227–1241 (2003).
  • Schwartz LB, Metcalfe DD, Miller JS, Earl H, Sullivan T. Tryptase levels as an indicator of mast-cell activation in systemic anaphylaxis and mastocytosis. N. Engl. J. Med.316(26), 1622–1626 (1987).
  • Escribano L, Orfao A, Diaz-Agustin B et al. Indolent systemic mast cell disease in adults: immunophenotypic characterization of bone marrow mast cells and its diagnostic implications. Blood91(8), 2731–2736 (1998).
  • Sotlar K, Horny HP, Simonitsch I et al. CD25 indicates the neoplastic phenotype of mast cells: a novel immunohistochemical marker for the diagnosis of systemic mastocytosis (SM) in routinely processed bone marrow biopsy specimens. Am. J. Surg. Pathol.28(10), 1319–1325 (2004).
  • Baumgartner C, Sonneck K, Krauth MT et al. Immunohistochemical assessment of CD25 is equally sensitive and diagnostic in mastocytosis compared to flow cytometry. Eur. J. Clin. Invest.38(5), 326–335 (2008).
  • Teodosio C, Garcia-Montero AC, Jara-Acevedo M et al. Mast cells from different molecular and prognostic subtypes of systemic mastocytosis display distinct immunophenotypes. J. Allergy Clin. Immunol.125(3), 719–726, 726 e711–726 e714 (2010).
  • Lim KH, Pardanani A, Tefferi A. KIT and mastocytosis. Acta Haematol.119(4), 194–198 (2008).
  • Lim KH, Pardanani A, Butterfield JH, Li CY, Tefferi A. Cytoreductive therapy in 108 adults with systemic mastocytosis: outcome analysis and response prediction during treatment with interferon-a, hydroxyurea, imatinib mesylate or 2-chlorodeoxyadenosine. Am. J. Hematol.84(12), 790–794 (2009).
  • Gleixner KV, Mayerhofer M, Rix U et al. Delineation of a KIT-independent oncogenic pathway in neoplastic mast cells that involves Lyn and Btk, and can be disrupted by the KIT/Lyn/Btk-targeting drug dasatinib. ASH Annual Meeting Abstracts110(11), 1541 (2007).
  • Valent P, Akin C, Sperr WR, Horny HP, Metcalfe DD. Smouldering mastocytosis: a novel subtype of systemic mastocytosis with slow progression. Int. Arch. Allergy Immunol.127(2), 137–139 (2002).
  • Akin C, Scott LM, Metcalfe DD. Slowly progressive systemic mastocytosis with high mast-cell burden and no evidence of a non-mast-cell hematologic disorder: an example of a smoldering case? Leuk. Res.25(7), 635–638 (2001).
  • Hauswirth AW, Sperr WR, Ghannadan M et al. A case of smouldering mastocytosis with peripheral blood eosinophilia and lymphadenopathy. Leuk. Res.26(6), 601–606 (2002).
  • Lim KH, Tefferi A, Lasho TL et al. Systemic mastocytosis in 342 consecutive adults: survival studies and prognostic factors. Blood113(23), 5727–5736 (2009).
  • Jordan JH, Fritsche-Polanz R, Sperr WR et al. A case of ‘smouldering’ mastocytosis with high mast cell burden, monoclonal myeloid cells, and C-KIT mutation Asp-816-Val. Leuk. Res.25(7), 627–634 (2001).
  • Sperr WR, Jordan JH, Fiegl M et al. Serum tryptase levels in patients with mastocytosis: correlation with mast cell burden and implication for defining the category of disease. Int. Arch. Allergy Immunol.128(2), 136–141 (2002).
  • Giebel LB, Strunk KM, Holmes SA, Spritz RA. Organization and nucleotide sequence of the human KIT (mast/stem cell growth factor receptor) proto-oncogene. Oncogene7(11), 2207–2217 (1992).
  • Huang E, Nocka K, Beier DR et al. The hematopoietic growth factor KL is encoded by the SI locus and is the ligand of the c-kit receptor, the gene product of the W locus. Cell63(1), 225–233 (1990).
  • Gokkel E, Grossman Z, Ramot B, Yarden Y, Rechavi G, Givol D. Structural organization of the murine c-kit proto-oncogene. Oncogene7(7), 1423–1429 (1992).
  • Zhang Z, Zhang R, Joachimiak A, Schlessinger J, Kong XP. Crystal structure of human stem cell factor: implication for stem cell factor receptor dimerization and activation. Proc. Natl Acad. Sci. USA97(14), 7732–7737 (2000).
  • Mol CD, Dougan DR, Schneider TR et al. Structural basis for the autoinhibition and STI-571 inhibition of c-Kit tyrosine kinase. J. Biol. Chem.279(30), 31655–31663 (2004).
  • Edling CE, Hallberg B. c-Kit – a hematopoietic cell essential receptor tyrosine kinase. Int. J. Biochem. Cell Biol.39(11), 1995–1998 (2007).
  • Miettinen M, Lasota J. KIT (CD117): a review on expression in normal and neoplastic tissues, and mutations and their clinicopathologic correlation. Appl. Immunohistochem. Mol. Morphol.13(3), 205–220 (2005).
  • Ashman LK, Ferrao P, Cole SR, Cambareri AC. Effects of mutant c-Kit in early myeloid cells. Leuk. Lymphoma34(5–6), 451–461 (1999).
  • Wehrle-Haller B. The role of Kit-ligand in melanocyte development and epidermal homeostasis. Pigment Cell Res.16(3), 287–296 (2003).
  • Roskoski R, Jr. Structure and regulation of Kit protein-tyrosine kinase – the stem cell factor receptor. Biochem. Biophys. Res. Commun.338(3), 1307–1315 (2005).
  • Roskoski R Jr. Signaling by Kit protein-tyrosine kinase – the stem cell factor receptor. Biochem. Biophys. Res. Commun.337(1), 1–13 (2005).
  • Masson K, Ronnstrand L. Oncogenic signaling from the hematopoietic growth factor receptors c-Kit and Flt3. Cell Signal.21(12), 1717–1726 (2009).
  • Voisset E, Lopez S, Dubreuil P, De Sepulveda P. The tyrosine kinase FES is an essential effector of KITD816V proliferation signal. Blood110(7), 2593–2599 (2007).
  • Columbo M, Horowitz EM, Botana LM et al. The human recombinant c-kit receptor ligand, rhSCF, induces mediator release from human cutaneous mast cells and enhances IgE-dependent mediator release from both skin mast cells and peripheral blood basophils. J. Immunol.149(2), 599–608 (1992).
  • Sperr WR, Czerwenka K, Mundigler G et al. Specific activation of human mast cells by the ligand for c-kit: comparison between lung, uterus and heart mast cells. Int. Arch. Allergy Immunol.102(2), 170–175 (1993).
  • Meininger CJ, Yano H, Rottapel R, Bernstein A, Zsebo KM, Zetter BR. The c-kit receptor ligand functions as a mast cell chemoattractant. Blood79(4), 958–963 (1992).
  • Nilsson G, Butterfield JH, Nilsson K, Siegbahn A. Stem cell factor is a chemotactic factor for human mast cells. J. Immunol.153(8), 3717–3723 (1994).
  • Kitamura Y, Go S, Hatanaka K. Decrease of mast cells in W/Wv mice and their increase by bone marrow transplantation. Blood52(2), 447–452 (1978).
  • Kitamura Y, Hirotab S. Kit as a human oncogenic tyrosine kinase. Cell Mol. Life Sci.61(23), 2924–2931 (2004).
  • Demehri S, Corbin A, Loriaux M, Druker BJ, Deininger MW. Establishment of a murine model of aggressive systemic mastocytosis/mast cell leukemia. Exp. Hematol.34(3), 284–288 (2006).
  • Tsujimura T, Morimoto M, Hashimoto K et al. Constitutive activation of c-kit in FMA3 murine mastocytoma cells caused by deletion of seven amino acids at the juxtamembrane domain. Blood87(1), 273–283 (1996).
  • Zappulla JP, Dubreuil P, Desbois S et al. Mastocytosis in mice expressing human Kit receptor with the activating Asp816Val mutation. J. Exp. Med.202(12), 1635–1641 (2005).
  • Tsujimura T, Furitsu T, Morimoto M et al. Substitution of an aspartic acid results in constitutive activation of c-kit receptor tyrosine kinase in a rat tumor mast cell line RBL-2H3. Int. Arch. Allergy Immunol.106(4), 377–385 (1995).
  • Riva F, Brizzola S, Stefanello D, Crema S, Turin L. A study of mutations in the c-kit gene of 32 dogs with mastocytoma. J. Vet. Diagn. Invest.17(4), 385–388 (2005).
  • Gleixner KV, Rebuzzi L, Mayerhofer M et al. Synergistic antiproliferative effects of KIT tyrosine kinase inhibitors on neoplastic canine mast cells. Exp. Hematol.35(10), 1510–1521 (2007).
  • Hadzijusufovic E, Peter B, Rebuzzi L et al. Growth-inhibitory effects of four tyrosine kinase inhibitors on neoplastic feline mast cells exhibiting a Kit exon 8 ITD mutation. Vet. Immunol. Immunopathol.132(2–4), 243–250 (2009).
  • Butterfield JH, Weiler D, Dewald G, Gleich GJ. Establishment of an immature mast cell line from a patient with mast cell leukemia. Leuk. Res.12(4), 345–355 (1988).
  • Akin C, Brockow K, D’Ambrosio C et al. Effects of tyrosine kinase inhibitor STI571 on human mast cells bearing wild-type or mutated c-kit. Exp. Hematol.31(8), 686–692 (2003).
  • Sundstrom M, Vliagoftis H, Karlberg P et al. Functional and phenotypic studies of two variants of a human mast cell line with a distinct set of mutations in the c-kit proto-oncogene. Immunology108(1), 89–97 (2003).
  • Gleixner KV, Mayerhofer M, Aichberger KJ et al. PKC412 inhibits in vitro growth of neoplastic human mast cells expressing the D816V-mutated variant of KIT: comparison with AMN107, imatinib, and cladribine (2CdA) and evaluation of cooperative drug effects. Blood107(2), 752–759 (2006).
  • Piao X, Bernstein A. A point mutation in the catalytic domain of c-kit induces growth factor independence, tumorigenicity, and differentiation of mast cells. Blood87(8), 3117–3123 (1996).
  • Mayerhofer M, Gleixner KV, Hoelbl A et al. Unique effects of KIT D816V in BaF3 cells: induction of cluster formation, histamine synthesis, and early mast cell differentiation antigens. J. Immunol.180(8), 5466–5476 (2008).
  • Nedoszytko B, Niedoszytko M, Lange M et al. Interleukin-13 promoter gene polymorphism -1112C/T is associated with the systemic form of mastocytosis. Allergy64(2), 287–294 (2009).
  • Daley T, Metcalfe DD, Akin C. Association of the Q576R polymorphism in the interleukin-4 receptor a chain with indolent mastocytosis limited to the skin. Blood98(3), 880–882 (2001).
  • Tefferi A, Levine RL, Lim KH et al. Frequent TET2 mutations in systemic mastocytosis: clinical, KITD816V and FIP1L1-PDGFRA correlates. Leukemia23(5), 900–904 (2009).
  • Pardanani A, Tefferi A. Systemic mastocytosis in adults: a review on prognosis and treatment based on 342 Mayo Clinic patients and current literature. Curr. Opin. Hematol.17(2), 125–132 (2010).
  • Buttner C, Henz BM, Welker P, Sepp NT, Grabbe J. Identification of activating c-kit mutations in adult-, but not in childhood-onset indolent mastocytosis: a possible explanation for divergent clinical behavior. J. Invest. Dermatol.111(6), 1227–1231 (1998).
  • Yanagihori H, Oyama N, Nakamura K, Kaneko F. c-kit mutations in patients with childhood-onset mastocytosis and genotype–phenotype correlation. J. Mol. Diagn.7(2), 252–257 (2005).
  • Bodemer C, Hermine O, Palmerini F et al. Pediatric mastocytosis is a clonal disease associated with D816V and other activating c-KIT mutations. J. Invest. Dermatol.130(3), 804–815 (2010).
  • Harir N, Boudot C, Friedbichler K et al. Oncogenic Kit controls neoplastic mast cell growth through a Stat5/PI3-kinase signaling cascade. Blood112(6), 2463–2473 (2008).
  • Gabillot-Carre M, Lepelletier Y, Humbert M et al. Rapamycin inhibits growth and survival of D816V-mutated c-kit mast cells. Blood108(3), 1065–1072 (2006).
  • Baumgartner C, Cerny-Reiterer S, Sonneck K et al. Expression of activated STAT5 in neoplastic mast cells in systemic mastocytosis: subcellular distribution and role of the transforming oncoprotein KIT D816V. Am J. Pathol.175(6), 2416–2429 (2009).
  • Tanaka A, Konno M, Muto S et al. A novel NF-κB inhibitor, IMD-0354, suppresses neoplastic proliferation of human mast cells with constitutively activated c-kit receptors. Blood105(6), 2324–2331 (2005).
  • Taylor ML, Dastych J, Sehgal D et al. The Kit-activating mutation D816V enhances stem cell factor-dependent chemotaxis. Blood98(4), 1195–1199 (2001).
  • Jordan JH, Schernthaner GH, Fritsche-Polanz R et al. Stem cell factor-induced bone marrow mast cell hyperplasia mimicking systemic mastocytosis (SM): histopathologic and morphologic evaluation with special reference to recently established SM-criteria. Leuk. Lymphoma43(3), 575–582 (2002).
  • Gilfillan AM, Peavy RD, Metcalfe DD. Amplification mechanisms for the enhancement of antigen-mediated mast cell activation. Immunol Res.43(1–3), 15–24 (2009).
  • Greenhawt M, Akin C. Mastocytosis and allergy. Curr. Opin. Allergy Clin. Immunol.7(5), 387–392 (2007).
  • Soderholm JD. Mast cells and mastocytosis. Dig. Dis.27(Suppl. 1), 129–136 (2009).
  • Gonzalez de Olano D, Alvarez-Twose I, Esteban-Lopez MI et al. Safety and effectiveness of immunotherapy in patients with indolent systemic mastocytosis presenting with Hymenoptera venom anaphylaxis. J. Allergy Clin. Immunol.121(2), 519–526 (2008).
  • Niedoszytko M, de Monchy J, van Doormaal JJ, Jassem E, Oude Elberink JN. Mastocytosis and insect venom allergy: diagnosis, safety and efficacy of venom immunotherapy. Allergy64(9), 1237–1245 (2009).
  • Shaffer HC, Parsons DJ, Peden DB, Morrell D. Recurrent syncope and anaphylaxis as presentation of systemic mastocytosis in a pediatric patient: case report and literature review. J. Am. Acad. Dermatol.54(5 Suppl.), S210–S213 (2006).
  • Lim AY, Ostor AJ, Love S, Crisp AJ. Systemic mastocytosis: a rare cause of osteoporosis and its response to bisphosphonate treatment. Ann. Rheum. Dis.64(6), 965–966 (2005).
  • Kluin-Nelemans HC, Jansen JH, Breukelman H et al. Response to interferon α-2b in a patient with systemic mastocytosis. N. Engl. J. Med.326(9), 619–623 (1992).
  • Hauswirth AW, Simonitsch-Klupp I, Uffmann M et al. Response to therapy with interferon α-2b and prednisolone in aggressive systemic mastocytosis: report of five cases and review of the literature. Leuk. Res.28(3), 249–257 (2004).
  • Kluin-Nelemans HC, Oldhoff JM, Van Doormaal JJ et al. Cladribine therapy for systemic mastocytosis. Blood102(13), 4270–4276 (2003).
  • Böhm A, Sonneck K, Gleixner KV et al.In vitro and in vivo growth-inhibitory effects of cladribine on neoplastic mast cells exhibiting the imatinib-resistant KIT mutation D816V. Exp. Hematol. DOI:10.1016/j.exphem.2010.05.006 (2010) (Epub ahead of print).
  • Schleyer V, Meyer S, Landthaler M, Szeimies RM. [‘Smoldering systemic mastocytosis. ‘Successful therapy with cladribine]. Hautarzt55(7), 658–662 (2004).
  • Lasota J. Not all c-kit mutations can be corrected by imatinib. Lab. Invest.87(4), 317 (2007).
  • Dubreuil P, Letard S, Ciufolini M et al. Masitinib (AB1010), a potent and selective tyrosine kinase inhibitor targeting KIT. PLoS ONE4(9), e7258 (2009).
  • Pan J, Quintas-Cardama A, Manshouri T, Cortes J, Kantarjian H, Verstovsek S. Sensitivity of human cells bearing oncogenic mutant kit isoforms to the novel tyrosine kinase inhibitor INNO-406. Cancer Sci.98(8), 1223–1225 (2007).
  • Aichberger KJ, Gleixner KV, Mirkina I et al. Identification of proapoptotic Bim as a tumor suppressor in neoplastic mast cells: role of KIT D816V and effects of various targeted drugs. Blood114(26), 5342–5351 (2009).
  • Shah NP, Lee FY, Luo R, Jiang Y, Donker M, Akin C. Dasatinib (BMS-354825) inhibits KITD816V, an imatinib-resistant activating mutation that triggers neoplastic growth in most patients with systemic mastocytosis. Blood108(1), 286–291 (2006).
  • Gleixner KV, Mayerhofer M, Sonneck K et al. Synergistic growth-inhibitory effects of two tyrosine kinase inhibitors, dasatinib and PKC412, on neoplastic mast cells expressing the D816V-mutated oncogenic variant of KIT. Haematologica92(11), 1451–1459 (2007).
  • Purtill D, Cooney J, Sinniah R et al. Dasatinib therapy for systemic mastocytosis: four cases. Eur. J. Haematol.80(5), 456–458 (2008).
  • Gleixner KV, Mayerhofer M, Hormann G et al. Bosutinib blocks Lyn and Btk activation and synergizes with the KIT D816V-targeting drug midostaurin in inducing apoptosis in neoplastic human mast cells. ASH Annual Meeting Abstracts114(22), 1717 (2009).
  • Florian S, Sonneck K, Hauswirth AW et al. Detection of molecular targets on the surface of CD34+/CD38- stem cells in various myeloid malignancies. Leuk. Lymphoma47(2), 207–222 (2006).
  • Krauth MT, Bohm A, Agis H et al. Effects of the CD33-targeted drug gemtuzumab ozogamicin (Mylotarg) on growth and mediator secretion in human mast cells and blood basophils. Exp. Hematol.35(1), 108–116 (2007).
  • Tanaka S. Targeting CD44 in mast cell regulation. Expert Opin. Ther. Targets14(1), 31–43 (2009).
  • Baghestanian M, Bankl H, Sillaber C et al. A case of malignant mastocytosis with circulating mast cell precursors: biologic and phenotypic characterization of the malignant clone. Leukemia10(1), 159–166 (1996).
  • Sayar D, Burstein Y, Bielorai B, Toren A, Dvir R. Upfront use of gemtuzumab ozogamicin in young children with CD33-positive AML. Pediatr. Blood Cancer55(1), 183–185 (2010).
  • Kondo R, Gleixner KV, Mayerhofer M et al. Identification of heat shock protein 32 (Hsp32) as a novel survival factor and therapeutic target in neoplastic mast cells. Blood110(2), 661–669 (2007).
  • Fumo G, Akin C, Metcalfe DD, Neckers L. 17-allylamino-17-demethoxygeldanamycin (17-AAG) is effective in down-regulating mutated, constitutively activated KIT protein in human mast cells. Blood103(3), 1078–1084 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.