133
Views
10
CrossRef citations to date
0
Altmetric
Review

Chromosomal aberrations and fusion genes in myeloid malignancies

, &
Pages 381-393 | Published online: 10 Jan 2014

References

  • Druker BJ. Translation of the Philadelphia chromosome into therapy for CML. Blood 112(13), 4808–4817 (2008).
  • De Keersmaecker K, Cools J. Chronic myeloproliferative disorders: a tyrosine kinase tale. Leukemia 20(2), 200–205 (2006).
  • Lierman E, Cools J. Recent breakthroughs in the understanding and management of chronic eosinophilic leukemia. Expert Rev. Anticancer Ther. 9(9), 1295–1304 (2009).
  • Bain BJ. Myeloid and lymphoid neoplasms with eosinophilia and abnormalities of PDGFRA, PDGFRB or FGFR1. Haematologica 95(5), 696–698 (2010).
  • Scandura JM, Boccuni P, Cammenga J, Nimer SD. Transcription factor fusions in acute leukemia: variations on a theme. Oncogene 21(21), 3422–3444 (2002).
  • Quintás-Cardama A, Cortes J. Molecular biology of BCR–ABL1-positive chronic myeloid leukemia. Blood 113(8), 1619–1630 (2009).
  • Petzer AL, Wolf D, Fong D et al. High-dose imatinib improves cytogenetic and molecular remissions in patients with pretreated Philadelphia-positive, BCR–ABL-positive chronic phase chronic myeloid leukemia: first results from the randomized CELSG Phase III CML 11 ‘ISTAHIT’ study. Haematologica 95(6), 908–913 (2010).
  • Shah NP, Kim DW, Kantarjian H et al. Potent, transient inhibition of BCR–ABL with dasatinib 100 mg daily achieves rapid and durable cytogenetic responses and high transformation-free survival rates in chronic phase chronic myeloid leukemia patients with resistance, suboptimal response or intolerance to imatinib. Haematologica 95(2), 232–240 (2010).
  • Wasag B, Lierman E, Meeus P, Cools J, Vandenberghe P. The kinase inhibitor TKI258 is active against the novel CUX1-FGFR1 fusion detected in a patient with T-lymphoblastic leukemia/lymphoma and t(7;8)(q22;p11). Haematologica 96(6), 922–926 (2011).
  • Lierman E, Folens C, Stover EH et al. Sorafenib is a potent inhibitor of FIP1L1-PDGFR-α and the imatinib-resistant FIP1L1-PDGFR-α T674I mutant. Blood 108(4), 1374–1376 (2006).
  • Lierman E, Michaux L, Beullens E et al. FIP1L1-PDGFR-α D842V, a novel panresistant mutant, emerging after treatment of FIP1L1-PDGFR-α T674I eosinophilic leukemia with single agent sorafenib. Leukemia 23(5), 845–851 (2009).
  • Deschler B, Lübbert M. Acute myeloid leukemia: epidemiology and etiology. Cancer 107(9), 2099–2107 (2006).
  • Bennett JM, Catovsky D, Daniel MT et al. Proposed revised criteria for the classification of acute myeloid leukemia. A report of the French–American–British Cooperative Group. Ann. Intern. Med. 103(4), 620–625 (1985).
  • Swerdlow SH; Cancer IAFRO, WHO. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. WHO, Geneva, Switzerland (2008).
  • van Dongen JJ, Macintyre EA, Gabert JA et al. Standardized RT-PCR analysis of fusion gene transcripts from chromosome aberrations in acute leukemia for detection of minimal residual disease. Report of the BIOMED-1 Concerted Action: investigation of minimal residual disease in acute leukemia. Leukemia 13(12), 1901–1928 (1999).
  • Beillard E, Pallisgaard N, van der Velden VH et al. Evaluation of candidate control genes for diagnosis and residual disease detection in leukemic patients using ‘real-time’ quantitative reverse-transcriptase polymerase chain reaction (RQ-PCR) – a Europe against cancer program. Leukemia 17(12), 2474–2486 (2003).
  • Grimwade D, Walker H, Oliver F et al. The importance of diagnostic cytogenetics on outcome in AML: analysis of 1,612 patients entered into the MRC AML 10 trial. The Medical Research Council Adult and Children’s Leukaemia Working Parties. Blood 92(7), 2322–2333 (1998).
  • Slovak ML, Kopecky KJ, Cassileth PA et al. Karyotypic analysis predicts outcome of preremission and postremission therapy in adult acute myeloid leukemia: a Southwest Oncology Group/Eastern Cooperative Oncology Group Study. Blood 96(13), 4075–4083 (2000).
  • Byrd JC, Mrózek K, Dodge RK et al.; Cancer and Leukemia Group B (CALGB 8461). Pretreatment cytogenetic abnormalities are predictive of induction success, cumulative incidence of relapse, and overall survival in adult patients with de novo acute myeloid leukemia: results from Cancer and Leukemia Group B (CALGB 8461). Blood 100(13), 4325–4336 (2002).
  • Döhner H, Estey EH, Amadori S et al.; European LeukemiaNet. Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood 115(3), 453–474 (2010).
  • Lo-Coco F, Cuneo A, Pane F et al.; Acute Leukemia Working Party of the GIMEMA group. Prognostic impact of genetic characterization in the GIMEMA LAM99P multicenter study for newly diagnosed acute myeloid leukemia. Haematologica 93(7), 1017–1024 (2008).
  • Döhner H, Gaidzik VI. Impact of genetic features on treatment decisions in AML. Hematology, Am. Soc. Hematol. Educ. Program 2011(1), 36–42 (2011).
  • Patel JP, Gönen M, Figueroa ME et al. Prognostic relevance of integrated genetic profiling in acute myeloid leukemia. N. Engl. J. Med. 366(12), 1079–1089 (2012).
  • Grimwade D, Hills RK, Moorman AV et al.; National Cancer Research Institute Adult Leukaemia Working Group. Refinement of cytogenetic classification in acute myeloid leukemia: determination of prognostic significance of rare recurring chromosomal abnormalities among 5876 younger adult patients treated in the United Kingdom Medical Research Council trials. Blood 116(3), 354–365 (2010).
  • Haferlach C, Alpermann T, Schnittger S et al. Prognostic value of monosomal karyotype in comparison to complex aberrant karyotype in acute myeloid leukemia: a study on 824 cases with aberrant karyotype. Blood 119(9), 2122–2125 (2012).
  • Haferlach C, Dicker F, Herholz H, Schnittger S, Kern W, Haferlach T. Mutations of the TP53 gene in acute myeloid leukemia are strongly associated with a complex aberrant karyotype. Leukemia 22(8), 1539–1541 (2008).
  • Halazonetis TD, Gorgoulis VG, Bartek J. An oncogene-induced DNA damage model for cancer development. Science 319(5868), 1352–1355 (2008).
  • Cavelier C, Didier C, Prade N et al. Constitutive activation of the DNA damage signaling pathway in acute myeloid leukemia with complex karyotype: potential importance for checkpoint targeting therapy. Cancer Res. 69(22), 8652–8661 (2009).
  • Melnick A, Licht JD. Deconstructing a disease: RAR-α, its fusion partners, and their roles in the pathogenesis of acute promyelocytic leukemia. Blood 93(10), 3167–3215 (1999).
  • Dilworth FJ, Chambon P. Nuclear receptors coordinate the activities of chromatin remodeling complexes and coactivators to facilitate initiation of transcription. Oncogene 20(24), 3047–3054 (2001).
  • Lo-Coco F, Ammatuna E. The biology of acute promyelocytic leukemia and its impact on diagnosis and treatment. Hematol. Am Soc. Hematol. Educ. Program. 514, 156–161 (2006).
  • Ablain J, de The H. Revisiting the differentiation paradigm in acute promyelocytic leukemia. Blood 117(22), 5795–5802 (2011).
  • Sanz MA, Lo-Coco F. Modern approaches to treating acute promyelocytic leukemia. J. Clin. Oncol. 29(5), 495–503 (2011).
  • Avvisati G, Lo-Coco F, Paoloni FP et al.; GIMEMA, AIEOP, and EORTC Cooperative Groups. AIDA 0493 protocol for newly diagnosed acute promyelocytic leukemia: very long-term results and role of maintenance. Blood 117(18), 4716–4725 (2011).
  • Breccia M, Cicconi L, Minotti C, Latagliata R, Giannì L, Lo-Coco F. Efficacy of prolonged therapy with combined arsenic trioxide and ATRA for relapse of acute promyelocytic leukemia. Haematologica 96(9), 1390–1391 (2011).
  • Shen ZX, Shi ZZ, Fang J et al. All-trans retinoic acid/As2O3 combination yields a high quality remission and survival in newly diagnosed acute promyelocytic leukemia. Proc. Natl Acad. Sci. USA 101(15), 5328–5335 (2004).
  • Okuda T, van Deursen J, Hiebert SW, Grosveld G, Downing JR. AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell 84(2), 321–330 (1996).
  • Sasaki K, Yagi H, Bronson RT et al. Absence of fetal liver hematopoiesis in mice deficient in transcriptional coactivator core binding factor b. Proc. Natl Acad. Sci. USA 93(22), 12359–12363 (1996).
  • Lichtinger M, Hoogenkamp M, Krysinska H, Ingram R, Bonifer C. Chromatin regulation by RUNX1. Blood Cells Mol. Dis. 44(4), 287–290 (2010).
  • Bakshi R, Hassan MQ, Pratap J et al. The human SWI/SNF complex associates with RUNX1 to control transcription of hematopoietic target genes. J. Cell. Physiol. 225(2), 569–576 (2010).
  • Reikvam H, Hatfield KJ, Kittang AO, Hovland R, Bruserud Ø. Acute myeloid leukemia with the t(8;21) translocation: clinical consequences and biological implications. J. Biomed. Biotechnol. 2011, 104631 (2011).
  • Miyoshi H, Shimizu K, Kozu T, Maseki N, Kaneko Y, Ohki M. t(8;21) breakpoints on chromosome 21 in acute myeloid leukemia are clustered within a limited region of a single gene, AML1. Proc. Natl Acad. Sci. USA 88(23), 10431–10434 (1991).
  • Hug BA, Lazar MA. ETO interacting proteins. Oncogene 23(24), 4270–4274 (2004).
  • Rhoades KL, Hetherington CJ, Rowley JD et al. Synergistic up-regulation of the myeloid-specific promoter for the macrophage colony-stimulating factor receptor by AML1 and the t(8;21) fusion protein may contribute to leukemogenesis. Proc. Natl Acad. Sci. USA 93(21), 11895–11900 (1996).
  • Tonks A, Pearn L, Musson M et al. Transcriptional dysregulation mediated by RUNX1-RUNX1T1 in normal human progenitor cells and in acute myeloid leukaemia. Leukemia 21(12), 2495–2505 (2007).
  • Roudaia L, Cheney MD, Manuylova E et al. CBF-b is critical for AML1-ETO and TEL-AML1 activity. Blood 113(13), 3070–3079 (2009).
  • Yan M, Ahn EY, Hiebert SW, Zhang DE. RUNX1/AML1 DNA-binding domain and ETO/MTG8 NHR2-dimerization domain are critical to AML1-ETO9a leukemogenesis. Blood 113(4), 883–886 (2009).
  • Kwok C, Zeisig BB, Qiu J, Dong S, So CW. Transforming activity of AML1-ETO is independent of CBFb and ETO interaction but requires formation of homo-oligomeric complexes. Proc. Natl Acad. Sci. USA 106(8), 2853–2858 (2009).
  • Lukasik SM, Zhang L, Corpora T et al. Altered affinity of CBFβ-SMMHC for Runx1 explains its role in leukemogenesis. Nat. Struct. Biol. 9(9), 674–679 (2002).
  • Marcucci G, Mrózek K, Ruppert AS et al. Prognostic factors and outcome of core binding factor acute myeloid leukemia patients with t(8;21) differ from those of patients with inv(16): a Cancer and Leukemia Group B study. J. Clin. Oncol. 23(24), 5705–5717 (2005).
  • Corsello SM, Roti G, Ross KN et al. Identification of AML1-ETO modulators by chemical genomics. Blood 113(24), 6193–6205 (2009).
  • Klisovic MI, Maghraby EA, Parthun MR et al. Depsipeptide (FR 901228) promotes histone acetylation, gene transcription, apoptosis and its activity is enhanced by DNA methyltransferase inhibitors in AML1/ETO-positive leukemic cells. Leukemia 17(2), 350–358 (2003).
  • Gozzini A, Santini V. Butyrates and decitabine cooperate to induce histone acetylation and granulocytic maturation of t(8;21) acute myeloid leukemia blasts. Ann. Hematol. 84(Suppl. 1), 54–60 (2005).
  • Tabe Y, Jin L, Contractor R et al. Novel role of HDAC inhibitors in AML1/ETO AML cells: activation of apoptosis and phagocytosis through induction of annexin A1. Cell Death Differ. 14(8), 1443–1456 (2007).
  • Liu S, Klisovic RB, Vukosavljevic T et al. Targeting AML1/ETO-histone deacetylase repressor complex: a novel mechanism for valproic acid-mediated gene expression and cellular differentiation in AML1/ETO-positive acute myeloid leukemia cells. J. Pharmacol. Exp. Ther. 321(3), 953–960 (2007).
  • Duque-Afonso J, Yalcin A, Berg T, Abdelkarim M, Heidenreich O, Lübbert M. The HDAC class I-specific inhibitor entinostat (MS-275) effectively relieves epigenetic silencing of the LAT2 gene mediated by AML1/ETO. Oncogene 30(27), 3062–3072 (2011).
  • Garcia-Manero G, Kantarjian HM, Sanchez-Gonzalez B et al. Phase 1/2 study of the combination of 5-aza-2´-deoxycytidine with valproic acid in patients with leukemia. Blood 108(10), 3271–3279 (2006).
  • Gojo I, Jiemjit A, Trepel JB et al. Phase 1 and pharmacologic study of MS-275, a histone deacetylase inhibitor, in adults with refractory and relapsed acute leukemias. Blood 109(7), 2781–2790 (2007).
  • Odenike OM, Alkan S, Sher D et al. Histone deacetylase inhibitor romidepsin has differential activity in core binding factor acute myeloid leukemia. Clin. Cancer Res. 14(21), 7095–7101 (2008).
  • Gorczynski MJ, Grembecka J, Zhou Y et al. Allosteric inhibition of the protein-protein interaction between the leukemia-associated proteins Runx1 and CBfFb. Chem. Biol. 14(10), 1186–1197 (2007).
  • Racanicchi S, Maccherani C, Liberatore C et al. Targeting fusion protein/corepressor contact restores differentiation response in leukemia cells. EMBO J. 24(6), 1232–1242 (2005).
  • Wichmann C, Chen L, Heinrich M et al. Targeting the oligomerization domain of ETO interferes with RUNX1/ETO oncogenic activity in t(8;21)-positive leukemic cells. Cancer Res. 67(5), 2280–2289 (2007).
  • Heidenreich O, Krauter J, Riehle H et al. AML1/MTG8 oncogene suppression by small interfering RNAs supports myeloid differentiation of t(8;21)-positive leukemic cells. Blood 101(8), 3157–3163 (2003).
  • Kasashima K, Sakota E, Kozu T. Discrimination of target by siRNA: designing of AML1-MTG8 fusion mRNA-specific siRNA sequences. Biochimie 86(9–10), 713–721 (2004).
  • Dunne J, Cullmann C, Ritter M et al. siRNA-mediated AML1/MTG8 depletion affects differentiation and proliferation-associated gene expression in t(8;21)-positive cell lines and primary AML blasts. Oncogene 25(45), 6067–6078 (2006).
  • Zeleznik-Le NJ, Harden AM, Rowley JD. 11q23 translocations split the ‘AT-hook’ cruciform DNA-binding region and the transcriptional repression domain from the activation domain of the mixed-lineage leukemia (MLL) gene. Proc. Natl Acad. Sci. USA 91(22), 10610–10614 (1994).
  • Krivtsov AV, Armstrong SA. MLL translocations, histone modifications and leukaemia stem-cell development. Nat. Rev. Cancer 7(11), 823–833 (2007).
  • Tamai H, Inokuchi K. 11q23/MLL acute leukemia: update of clinical aspects. J. Clin. Exp. Hematop. 50(2), 91–98 (2010).
  • Yokoyama A, Kitabayashi I, Ayton PM, Cleary ML, Ohki M. Leukemia proto-oncoprotein MLL is proteolytically processed into 2 fragments with opposite transcriptional properties. Blood 100(10), 3710–3718 (2002).
  • Grembecka J, Belcher AM, Hartley T, Cierpicki T. Molecular basis of the mixed lineage leukemia-menin interaction: implications for targeting mixed lineage leukemias. J. Biol. Chem. 285(52), 40690–40698 (2010).
  • Liedtke M, Cleary ML. Therapeutic targeting of MLL. Blood 113(24), 6061–6068 (2009).
  • Daigle SR, Olhava EJ, Therkelsen CA et al. Selective killing of mixed lineage leukemia cells by a potent small-molecule DOT1L inhibitor. Cancer Cell 20(1), 53–65 (2011).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.