173
Views
6
CrossRef citations to date
0
Altmetric
Review

Genetic biomarkers in acute myeloid leukemia: will the promise of improving treatment outcomes be realized?

&
Pages 395-407 | Published online: 10 Jan 2014

References

  • Gilliland DG. Molecular genetics of human leukemias: new insights into therapy. Semin. in hematol. 39(4 Suppl. 3), 6–11 (2002).
  • Burnett A, Wetzler M, Löwenberg B. Therapeutic advances in acute myeloid leukemia. J. Clin. Oncol. 29(5), 487–494 (2011).
  • Appelbaum FR, Gundacker H, Head DR et al. Age and acute myeloid leukemia. Blood 107(9), 3481–3485 (2006).
  • Kantarjian H, O’Brien S, Cortes J et al. Results of intensive chemotherapy in 998 patients age 65 years or older with acute myeloid leukemia or high-risk myelodysplastic syndrome: predictive prognostic models for outcome. Cancer 106(5), 1090–1098 (2006).
  • Löwenberg B, Ossenkoppele GJ, van Putten W et al.; Dutch-Belgian Cooperative Trial Group for Hemato-Oncology (HOVON); German AML Study Group (AMLSG); Swiss Group for Clinical Cancer Research (SAKK) Collaborative Group. High-dose daunorubicin in older patients with acute myeloid leukemia. N. Engl. J. Med. 361(13), 1235–1248 (2009).
  • Schiffer CA. ‘I am older, not elderly,’ said the patient with acute myeloid leukemia. J. Clin. Oncol. 28(4), 521–523 (2010).
  • Walter RB, Othus M, Borthakur G et al. Prediction of early death after induction therapy for newly diagnosed acute myeloid leukemia with pretreatment risk scores: a novel paradigm for treatment assignment. J. Clin. Oncol. 29(33), 4417–4423 (2011).
  • Sorror ML, Maris MB, Storb R et al. Hematopoietic cell transplantation (HCT)-specific comorbidity index: a new tool for risk assessment before allogeneic HCT. Blood 106(8), 2912–2919 (2005).
  • Schiffer CA, Lee EJ, Tomiyasu T, Wiernik PH, Testa JR. Prognostic impact of cytogenetic abnormalities in patients with de novo acute nonlymphocytic leukemia. Blood 73(1), 263–270 (1989).
  • Keating MJ, Smith TL, Kantarjian H et al. Cytogenetic pattern in acute myelogenous leukemia: a major reproducible determinant of outcome. Leukemia 2(7), 403–412 (1988).
  • Breems DA, Van Putten WL, De Greef GE et al. Monosomal karyotype in acute myeloid leukemia: a better indicator of poor prognosis than a complex karyotype. J. Clin. Oncol. 26(29), 4791–4797 (2008).
  • Kayser S, Zucknick M, Döhner K et al.; German–Austrian AML Study Group. Monosomal karyotype in adult acute myeloid leukemia: prognostic impact and outcome after different treatment strategies. Blood 119(2), 551–558 (2012).
  • Grimwade D, Hills RK, Moorman AV et al.; National Cancer Research Institute Adult Leukaemia Working Group. Refinement of cytogenetic classification in acute myeloid leukemia: determination of prognostic significance of rare recurring chromosomal abnormalities among 5876 younger adult patients treated in the United Kingdom Medical Research Council trials. Blood 116(3), 354–365 (2010).
  • Byrd JC, Mrózek K, Dodge RK et al.; Cancer and Leukemia Group B (CALGB 8461). Pretreatment cytogenetic abnormalities are predictive of induction success, cumulative incidence of relapse, and overall survival in adult patients with de novo acute myeloid leukemia: results from Cancer and Leukemia Group B (CALGB 8461). Blood 100(13), 4325–4336 (2002).
  • Slovak ML, Kopecky KJ, Cassileth PA et al. Karyotypic analysis predicts outcome of preremission and postremission therapy in adult acute myeloid leukemia: a Southwest Oncology Group/Eastern Cooperative Oncology Group Study. Blood 96(13), 4075–4083 (2000).
  • Rowe JM, Kim HT, Cassileth PA et al. Adult patients with acute myeloid leukemia who achieve complete remission after 1 or 2 cycles of induction have a similar prognosis: a report on 1980 patients registered to 6 studies conducted by the Eastern Cooperative Oncology Group. Cancer 116(21), 5012–5021 (2010).
  • Balleisen S, Kuendgen A, Hildebrandt B, Haas R, Germing U. Prognostic relevance of achieving cytogenetic remission in patients with acute myelogenous leukemia or high-risk myelodysplastic syndrome following induction chemotherapy. Leuk. Res. 33(9), 1189–1193 (2009).
  • Marcucci G, Mrózek K, Ruppert AS et al. Abnormal cytogenetics at date of morphologic complete remission predicts short overall and disease-free survival, and higher relapse rate in adult acute myeloid leukemia: results from cancer and leukemia group B study 8461. J. Clin. Oncol. 22(12), 2410–2418 (2004).
  • Walter RB, Kantarjian HM, Huang X et al. Effect of complete remission and responses less than complete remission on survival in acute myeloid leukemia: a combined Eastern Cooperative Oncology Group, Southwest Oncology Group, and MD Anderson Cancer Center Study. J. Clin. Oncol. 28(10), 1766–1771 (2010).
  • Buccisano F, Maurillo L, Del Principe MI et al. Prognostic and therapeutic implications of minimal residual disease detection in acute myeloid leukemia. Blood 119(2), 332–341 (2012).
  • Diverio D, Rossi V, Avvisati G et al. Early detection of relapse by prospective reverse transcriptase-polymerase chain reaction analysis of the PML/RARα fusion gene in patients with acute promyelocytic leukemia enrolled in the GIMEMA–AIEOP multicenter ‘AIDA’ trial. GIMEMA–AIEOP Multicenter ‘AIDA’ Trial. Blood 92(3), 784–789 (1998).
  • Sanz MA, Grimwade D, Tallman MS et al. Management of acute promyelocytic leukemia: recommendations from an expert panel on behalf of the European LeukemiaNet. Blood 113(9), 1875–1891 (2009).
  • Perea G, Lasa A, Aventín A et al.; Grupo Cooperativo para el Estudio y Tratamiento de las Leucemias Agudas y Miel. Prognostic value of minimal residual disease (MRD) in acute myeloid leukemia (AML) with favorable cytogenetics [t(8;21) and inv(16)]. Leukemia 20(1), 87–94 (2006).
  • Schnittger S, Kern W, Tschulik C et al. Minimal residual disease levels assessed by NPM1 mutation-specific RQ-PCR provide important prognostic information in AML. Blood 114(11), 2220–2231 (2009).
  • Walter RB, Gooley TA, Wood BL et al. Impact of pretransplantation minimal residual disease, as detected by multiparametric flow cytometry, on outcome of myeloablative hematopoietic cell transplantation for acute myeloid leukemia. J. Clin. Oncol. 29(9), 1190–1197 (2011).
  • Koschmieder S, Halmos B, Levantini E, Tenen DG. Dysregulation of the C/EBPα differentiation pathway in human cancer. J. Clin. Oncol. 27(4), 619–628 (2009).
  • Vardiman JW, Thiele J, Arber DA et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood 114(5), 937–951 (2009).
  • Fröhling S, Schlenk RF, Breitruck J et al.; AML Study Group Ulm. Acute myeloid leukemia. Prognostic significance of activating FLT3 mutations in younger adults (16 to 60 years) with acute myeloid leukemia and normal cytogenetics: a study of the AML Study Group Ulm. Blood 100(13), 4372–4380 (2002).
  • Dufour A, Schneider F, Metzeler KH et al. Acute myeloid leukemia with biallelic CEBPA gene mutations and normal karyotype represents a distinct genetic entity associated with a favorable clinical outcome. J. Clin. Oncol. 28(4), 570–577 (2010).
  • Pabst T, Mueller BU. Transcriptional dysregulation during myeloid transformation in AML. Oncogene 26(47), 6829–6837 (2007).
  • Wouters BJ, Löwenberg B, Erpelinck-Verschueren CA, van Putten WL, Valk PJ, Delwel R. Double CEBPA mutations, but not single CEBPA mutations, define a subgroup of acute myeloid leukemia with a distinctive gene expression profile that is uniquely associated with a favorable outcome. Blood 113(13), 3088–3091 (2009).
  • Taskesen E, Bullinger L, Corbacioglu A et al. Prognostic impact, concurrent genetic mutations, and gene expression features of AML with CEBPA mutations in a cohort of 1182 cytogenetically normal AML patients: further evidence for CEBPA double mutant AML as a distinctive disease entity. Blood 117(8), 2469–2475 (2011).
  • Falini B, Mecucci C, Tiacci E et al.; GIMEMA Acute Leukemia Working Party. Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. N. Engl. J. Med. 352(3), 254–266 (2005).
  • Döhner K, Schlenk RF, Habdank M et al. Mutant nucleophosmin (NPM1) predicts favorable prognosis in younger adults with acute myeloid leukemia and normal cytogenetics: interaction with other gene mutations. Blood 106(12), 3740–3746 (2005).
  • Falini B, Martelli MP, Bolli N et al. Acute myeloid leukemia with mutated nucleophosmin (NPM1): is it a distinct entity? Blood 117(4), 1109–1120 (2011).
  • Jan M, Snyder TM, Corces-Zimmerman MR, Weissman IL, Quake SR, Majeti R. Clonal evolution of pre-leukemic hematopoietic stem cells precedes human acute myeloid leukemia. ASH Ann. Meet. Abstr. 118(21), 4 (2011).
  • Becker H, Marcucci G, Maharry K et al. Favorable prognostic impact of NPM1 mutations in older patients with cytogenetically normal de novo acute myeloid leukemia and associated gene- and microRNA-expression signatures: a Cancer and Leukemia Group B study. J. Clin. Oncol. 28(4), 596–604 (2010).
  • Gilliland DG, Griffin JD. The roles of FLT3 in hematopoiesis and leukemia. Blood 100(5), 1532–1542 (2002).
  • Gale RE, Hills R, Kottaridis PD et al. No evidence that FLT3 status should be considered as an indicator for transplantation in acute myeloid leukemia (AML): an analysis of 1135 patients, excluding acute promyelocytic leukemia, from the UK MRC AML10 and 12 trials. Blood 106(10), 3658–3665 (2005).
  • Small D. FLT3 mutations: biology and treatment. In:, Hematology 2006: American Society of Hematology Education Program Book.Berliner N, Linker C, Schiffer CA (Eds). Hematology Am. Soc. Hematol. Educ. Program. Washington, DC, USA, 178–184 (2006).
  • Gale RE, Green C, Allen C et al.; Medical Research Council Adult Leukaemia Working Party. The impact of FLT3 internal tandem duplication mutant level, number, size, and interaction with NPM1 mutations in a large cohort of young adult patients with acute myeloid leukemia. Blood 111(5), 2776–2784 (2008).
  • Kayser S, Schlenk RF, Londono MC et al.; German–Austrian AML Study Group (AMLSG). Insertion of FLT3 internal tandem duplication in the tyrosine kinase domain-1 is associated with resistance to chemotherapy and inferior outcome. Blood 114(12), 2386–2392 (2009).
  • Breitenbuecher F, Schnittger S, Grundler R et al. Identification of a novel type of ITD mutations located in nonjuxtamembrane domains of the FLT3 tyrosine kinase receptor. Blood 113(17), 4074–4077 (2009).
  • Bacher U, Haferlach C, Kern W, Haferlach T, Schnittger S. Prognostic relevance of FLT3-TKD mutations in AML: the combination matters – an analysis of 3082 patients. Blood 111(5), 2527–2537 (2008).
  • Mead AJ, Linch DC, Hills RK, Wheatley K, Burnett AK, Gale RE. FLT3 tyrosine kinase domain mutations are biologically distinct from and have a significantly more favorable prognosis than FLT3 internal tandem duplications in patients with acute myeloid leukemia. Blood 110(4), 1262–1270 (2007).
  • Whitman SP, Ruppert AS, Radmacher MD et al. FLT3 D835/I836 mutations are associated with poor disease-free survival and a distinct gene-expression signature among younger adults with de novo cytogenetically normal acute myeloid leukemia lacking FLT3 internal tandem duplications. Blood 111(3), 1552–1559 (2008).
  • Mead AJ, Gale RE, Hills RK et al. Conflicting data on the prognostic significance of FLT3/TKD mutations in acute myeloid leukemia might be related to the incidence of biallelic disease. Blood 112(2), 444–445; author reply 445 (2008).
  • Paschka P, Marcucci G, Ruppert AS et al.; Cancer and Leukemia Group B. Adverse prognostic significance of KIT mutations in adult acute myeloid leukemia with inv(16) and t(8;21): a Cancer and Leukemia Group B study. J. Clin. Oncol. 24(24), 3904–3911 (2006).
  • Schnittger S, Kohl TM, Haferlach T et al. KIT-D816 mutations in AML1-ETO-positive AML are associated with impaired event-free and overall survival. Blood 107(5), 1791–1799 (2006).
  • Nick HJ, Kim HG, Chang CW, Harris KW, Reddy V, Klug CA. Distinct classes of c-Kit-activating mutations differ in their ability to promote RUNX1-ETO-associated acute myeloid leukemia. Blood 119(6), 1522–1531 (2012).
  • Metzeler KH, Becker H, Maharry K et al. ASXL1 mutations identify a high-risk subgroup of older patients with primary cytogenetically normal AML within the ELN favorable genetic category. Blood 118(26), 6920–6929 (2011).
  • Tyner JW, Erickson H, Deininger MW et al. High-throughput sequencing screen reveals novel, transforming RAS mutations in myeloid leukemia patients. Blood 113(8), 1749–1755 (2009).
  • Bowen D, Groves MJ, Burnett AK et al. TP53 gene mutation is frequent in patients with acute myeloid leukemia and complex karyotype, and is associated with very poor prognosis. Leukemia 23(1), 203–206 (2009).
  • Whitman SP, Ruppert AS, Marcucci G et al. Long-term disease-free survivors with cytogenetically normal acute myeloid leukemia and MLL partial tandem duplication: a Cancer and Leukemia Group B study. Blood 109(12), 5164–5167 (2007).
  • Virappane P, Gale R, Hills R et al. Mutation of the Wilms’ tumor 1 gene is a poor prognostic factor associated with chemotherapy resistance in normal karyotype acute myeloid leukemia: the United Kingdom Medical Research Council Adult Leukaemia Working Party. J. Clin. Oncol. 26(33), 5429–5435 (2008).
  • Heuser M, Beutel G, Krauter J et al. High meningioma 1 (MN1) expression as a predictor for poor outcome in acute myeloid leukemia with normal cytogenetics. Blood 108(12), 3898–3905 (2006).
  • Langer C, Radmacher MD, Ruppert AS et al.; Cancer and Leukemia Group B (CALGB). High BAALC expression associates with other molecular prognostic markers, poor outcome, and a distinct gene-expression signature in cytogenetically normal patients younger than 60 years with acute myeloid leukemia: a Cancer and Leukemia Group B (CALGB) study. Blood 111(11), 5371–5379 (2008).
  • Gröschel S, Lugthart S, Schlenk RF et al. High EVI1 expression predicts outcome in younger adult patients with acute myeloid leukemia and is associated with distinct cytogenetic abnormalities. J. Clin. Oncol. 28(12), 2101–2107 (2010).
  • Santamaría CM, Chillón MC, García-Sanz R et al. Molecular stratification model for prognosis in cytogenetically normal acute myeloid leukemia. Blood 114(1), 148–152 (2009).
  • Ley TJ, Mardis ER, Ding L et al. DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome. Nature 456(7218), 66–72 (2008).
  • Delhommeau F, Dupont S, Della Valle V et al. Mutation in TET2 in myeloid cancers. N. Engl. J. Med. 360(22), 2289–2301 (2009).
  • Abdel-Wahab O, Mullally A, Hedvat C et al. Genetic characterization of TET1, TET2, and TET3 alterations in myeloid malignancies. Blood 114(1), 144–147 (2009).
  • Chou WC, Chou SC, Liu CY et al. TET2 mutation is an unfavorable prognostic factor in acute myeloid leukemia patients with intermediate-risk cytogenetics. Blood 118(14), 3803–3810 (2011).
  • Gaidzik VI, Paschka P, Späth D et al. TET2 mutations in acute myeloid leukemia (AML): results from a comprehensive genetic and clinical analysis of the AML study group. J. Clin. Oncol. 30(12), 1350–1357 (2012).
  • Metzeler KH, Maharry K, Radmacher MD et al. TET2 mutations improve the new European LeukemiaNet risk classification of acute myeloid leukemia: a Cancer and Leukemia Group B study. J. Clin. Oncol. 29(10), 1373–1381 (2011).
  • Nibourel O, Kosmider O, Cheok M et al. Incidence and prognostic value of TET2 alterations in de novo acute myeloid leukemia achieving complete remission. Blood 116(7), 1132–1135 (2010).
  • Ley TJ, Ding L, Walter MJ et al. DNMT3A mutations in acute myeloid leukemia. N. Engl. J. Med. 363(25), 2424–2433 (2010).
  • Hou HA, Kuo YY, Liu CY et al. DNMT3A mutations in acute myeloid leukemia: stability during disease evolution and clinical implications. Blood 119(2), 559–568 (2012).
  • Thol F, Damm F, Lüdeking A et al. Incidence and prognostic influence of DNMT3A mutations in acute myeloid leukemia. J. Clin. Oncol. 29(21), 2889–2896 (2011).
  • Mardis ER, Ding L, Dooling DJ et al. Recurring mutations found by sequencing an acute myeloid leukemia genome. N. Engl. J. Med. 361(11), 1058–1066 (2009).
  • Marcucci G, Maharry K, Wu YZ et al. IDH1 and IDH2 gene mutations identify novel molecular subsets within de novo cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study. J. Clin. Oncol. 28(14), 2348–2355 (2010).
  • Green CL, Evans CM, Hills RK, Burnett AK, Linch DC, Gale RE. The prognostic significance of IDH1 mutations in younger adult patients with acute myeloid leukemia is dependent on FLT3/ITD status. Blood 116(15), 2779–2782 (2010).
  • Schnittger S, Haferlach C, Ulke M, Alpermann T, Kern W, Haferlach T. IDH1 mutations are detected in 6.6% of 1414 AML patients and are associated with intermediate risk karyotype and unfavorable prognosis in adults younger than 60 years and unmutated NPM1 status. Blood 116(25), 5486–5496 (2010).
  • Paschka P, Schlenk RF, Gaidzik VI et al. IDH1 and IDH2 mutations are frequent genetic alterations in acute myeloid leukemia and confer adverse prognosis in cytogenetically normal acute myeloid leukemia with NPM1 mutation without FLT3 internal tandem duplication. J. Clin. Oncol. 28(22), 3636–3643 (2010).
  • Patel JP, Gönen M, Figueroa ME et al. Prognostic relevance of integrated genetic profiling in acute myeloid leukemia. N. Engl. J. Med. 366(12), 1079–1089 (2012).
  • Bullinger L, Döhner K, Bair E et al. Use of gene-expression profiling to identify prognostic subclasses in adult acute myeloid leukemia. N. Engl. J. Med. 350(16), 1605–1616 (2004).
  • Haferlach T, Kohlmann A, Wieczorek L et al. Clinical utility of microarray-based gene expression profiling in the diagnosis and subclassification of leukemia: report from the International Microarray Innovations in Leukemia Study Group. J. Clin. Oncol. 28(15), 2529–2537 (2010).
  • Valk PJ, Verhaak RG, Beijen MA et al. Prognostically useful gene-expression profiles in acute myeloid leukemia. N. Engl. J. Med. 350(16), 1617–1628 (2004).
  • Kornblau SM, Tibes R, Qiu YH et al. Functional proteomic profiling of AML predicts response and survival. Blood 113(1), 154–164 (2009).
  • Tiu RV, Gondek LP, O’Keefe CL et al. New lesions detected by single-nucleotide polymorphism array-based chromosomal analysis have important clinical impact in acute myeloid leukemia. J. Clin. Oncol. 27(31), 5219–5226 (2009).
  • Marcucci G, Maharry K, Radmacher MD et al. Prognostic significance of, and gene and microRNA expression signatures associated with, CEBPA mutations in cytogenetically normal acute myeloid leukemia with high-risk molecular features: a Cancer and Leukemia Group B Study. J. Clin. Oncol. 26(31), 5078–5087 (2008).
  • Marcucci G, Mrózek K, Radmacher MD, Garzon R, Bloomfield CD. The prognostic and functional role of microRNAs in acute myeloid leukemia. Blood 117(4), 1121–1129 (2011).
  • Figueroa ME, Lugthart S, Li Y et al. DNA methylation signatures identify biologically distinct subtypes in acute myeloid leukemia. Cancer Cell 17(1), 13–27 (2010).
  • Koreth J, Schlenk R, Kopecky KJ et al. Allogeneic stem cell transplantation for acute myeloid leukemia in first complete remission: systematic review and meta-analysis of prospective clinical trials. JAMA 301(22), 2349–2361 (2009).
  • Cornelissen JJ, van Putten WL, Verdonck LF et al. Results of a HOVON/SAKK donor versus no-donor analysis of myeloablative HLA-identical sibling stem cell transplantation in first remission acute myeloid leukemia in young and middle-aged adults: benefits for whom? Blood 109(9), 3658–3666 (2007).
  • Fang M, Storer B, Estey E et al. Outcome of patients with acute myeloid leukemia with monosomal karyotype who undergo hematopoietic cell transplantation. Blood 118(6), 1490–1494 (2011).
  • Döhner H, Estey EH, Amadori S et al.; European LeukemiaNet. Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood 115(3), 453–474 (2010).
  • Damm F, Heuser M, Morgan M et al. Integrative prognostic risk score in acute myeloid leukemia with normal karyotype. Blood 117(17), 4561–4568 (2011).
  • Röllig C, Bornhäuser M, Thiede C et al. Long-term prognosis of acute myeloid leukemia according to the new genetic risk classification of the European LeukemiaNet recommendations: evaluation of the proposed reporting system. J. Clin. Oncol. 29(20), 2758–2765 (2011).
  • Schlenk RF, Döhner K, Krauter J et al.; German-Austrian Acute Myeloid Leukemia Study Group. Mutations and treatment outcome in cytogenetically normal acute myeloid leukemia. N. Engl. J. Med. 358(18), 1909–1918 (2008).
  • Brunet S, Labopin M, Esteve J et al. Impact of FLT3 internal tandem duplication on the outcome of related and unrelated hematopoietic transplantation for adult acute myeloid leukemia in first remission: a retrospective analysis. J. Clin. Oncol. 30(7), 735–741 (2012).
  • Byrd JC, Dodge RK, Carroll A et al. Patients with t(8;21)(q22;q22) and acute myeloid leukemia have superior failure-free and overall survival when repetitive cycles of high-dose cytarabine are administered. J. Clin. Oncol. 17(12), 3767–3775 (1999).
  • Byrd JC, Ruppert AS, Mrózek K et al. Repetitive cycles of high-dose cytarabine benefit patients with acute myeloid leukemia and inv(16)(p13q22) or t(16;16)(p13;q22): results from CALGB 8461. J. Clin. Oncol. 22(6), 1087–1094 (2004).
  • Bloomfield CD, Lawrence D, Byrd JC et al. Frequency of prolonged remission duration after high-dose cytarabine intensification in acute myeloid leukemia varies by cytogenetic subtype. Cancer Res. 58(18), 4173–4179 (1998).
  • Fernandez HF, Sun Z, Yao X et al. Anthracycline dose intensification in acute myeloid leukemia. N. Engl. J. Med. 361(13), 1249–1259 (2009).
  • Patel J, Gonen M, Figueroa ME et al. Prognostic relevance of integrated genetic profiling in acute myeloid leukemia. N. Eng. J. Med. 366, 1079–1089 (2012).
  • Burnett AK, Hills RK, Milligan D et al. Identification of patients with acute myeloblastic leukemia who benefit from the addition of gemtuzumab ozogamicin: results of the MRC AML15 trial. J. Clin. Oncol. 29(4), 369–377 (2011).
  • Castaigne S, Pautas C, Terre C et al. Fractionated doses of gemtuzumab ozogamicin (GO) combined to standard chemotherapy (CT) improve event-free and overall survival in newly diagnosed de novo AML patients aged 50–70 years old: a prospective randomized Phase 3 trial from the Acute Leukemia French Association (ALFA). ASH Annu. Meet. Abstr. 118(21), 6 (2011).
  • Schlenk RF, Döhner K, Kneba M et al.; German-Austrian AML Study Group (AMLSG). Gene mutations and response to treatment with all-trans retinoic acid in elderly patients with acute myeloid leukemia. Results from the AMLSG Trial AML HD98B. Haematologica 94(1), 54–60 (2009).
  • Burnett AK, Hills RK, Green C et al. The impact on outcome of the addition of all-trans retinoic acid to intensive chemotherapy in younger patients with nonacute promyelocytic acute myeloid leukemia: overall results and results in genotypic subgroups defined by mutations in NPM1, FLT3, and CEBPA. Blood 115(5), 948–956 (2010).
  • Haferlach C, Mecucci C, Schnittger S et al. AML with mutated NPM1 carrying a normal or aberrant karyotype show overlapping biologic, pathologic, immunophenotypic, and prognostic features. Blood 114(14), 3024–3032 (2009).
  • Figueroa ME, Abdel-Wahab O, Lu C et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 18(6), 553–567 (2010).
  • Smith BD, Levis M, Beran M et al. Single-agent CEP-701, a novel FLT3 inhibitor, shows biologic and clinical activity in patients with relapsed or refractory acute myeloid leukemia. Blood 103(10), 3669–3676 (2004).
  • Metzelder S, Wang Y, Wollmer E et al. Compassionate use of sorafenib in FLT3-ITD-positive acute myeloid leukemia: sustained regression before and after allogeneic stem cell transplantation. Blood 113(26), 6567–6571 (2009).
  • Stone RM, DeAngelo DJ, Klimek V et al. Patients with acute myeloid leukemia and an activating mutation in FLT3 respond to a small-molecule FLT3 tyrosine kinase inhibitor, PKC412. Blood 105(1), 54–60 (2005).
  • Levis M, Ravandi F, Wang ES et al. Results from a randomized trial of salvage chemotherapy followed by lestaurtinib for patients with FLT3 mutant AML in first relapse. Blood 117(12), 3294–3301 (2011).
  • Sato T, Yang X, Knapper S et al. FLT3 ligand impedes the efficacy of FLT3 inhibitors in vitro and in vivo. Blood 117(12), 3286–3293 (2011).
  • Kindler T, Lipka DB, Fischer T. FLT3 as a therapeutic target in AML: still challenging after all these years. Blood 116(24), 5089–5102 (2010).
  • Guerrouahen BS, Futami M, Vaklavas C et al. Dasatinib inhibits the growth of molecularly heterogeneous myeloid leukemias. Clin. Cancer Res. 16(4), 1149–1158 (2010).
  • Kindler T, Breitenbuecher F, Marx A et al. Efficacy and safety of imatinib in adult patients with c-kit-positive acute myeloid leukemia. Blood 103(10), 3644–3654 (2004).
  • Fenaux P, Mufti GJ, Hellstrom-Lindberg E et al.; International Vidaza High-Risk MDS Survival Study Group. Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomised, open-label, Phase III study. Lancet Oncol. 10(3), 223–232 (2009).
  • Cashen AF, Schiller GJ, O’Donnell MR, DiPersio JF. Multicenter, Phase II study of decitabine for the first-line treatment of older patients with acute myeloid leukemia. J. Clin. Oncol. 28(4), 556–561 (2010).
  • Traina F, Jankowska AM, Visconte V et al. Impact of molecular mutations on treatment response to hypomethylating agents in MDS. ASH Annu. Meet. Abstr. 118(21), 461 (2011).
  • Hills RK, Burnett AK. Applicability of a ‘Pick a Winner’ trial design to acute myeloid leukemia. Blood 118(9), 2389–2394 (2011).
  • Welch JS, Link DC. Genomics of AML: clinical applications of next-generation sequencing. Hematology Am. Soc. Hematol. Educ. Program 2011, 30–35 (2011).
  • Welch JS, Westervelt P, Ding L et al. Use of whole-genome sequencing to diagnose a cryptic fusion oncogene. JAMA 305(15), 1577–1584 (2011).
  • Ding L, Ley TJ, Larson DE et al. Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature 481(7382), 506–510 (2012).
  • Walter MJ, Shen D, Ding L et al. Clonal architecture of secondary acute myeloid leukemia. N. Engl. J. Med. 366(12), 1090–1098 (2012).
  • Gerlinger M, Rowan AJ, Horswell S et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 366(10), 883–892 (2012).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.