121
Views
13
CrossRef citations to date
0
Altmetric
Review

Understanding the molecular biology of myeloma and its therapeutic implications

, , &
Pages 603-617 | Published online: 10 Jan 2014

References

  • Kyle RA, Therneau TM, Rajkumar SV et al. Prevalence of monoclonal gammopathy of undetermined significance. N. Engl. J. Med. 354(13), 1362–1369 (2006).
  • Kyle RA, Therneau TM, Rajkumar SV et al. A long-term study of prognosis in monoclonal gammopathy of undetermined significance. N. Engl. J. Med. 346(8), 564–569 (2002).
  • Boyd KD, Ross FM, Chiecchio L et al. Gender disparities in the tumor genetics and clinical outcome of multiple myeloma. Cancer Epidemiol. Biomarkers Prev. 20(8), 1703–1707 (2011).
  • Walker BA, Leone PE, Jenner MW et al. Integration of global SNP-based mapping and expression arrays reveals key regions, mechanisms, and genes important in the pathogenesis of multiple myeloma. Blood 108(5), 1733–1743 (2006).
  • Walker BA, Leone PE, Chiecchio L et al. A compendium of myeloma-associated chromosomal copy number abnormalities and their prognostic value. Blood 116(15), e56–e65 (2010).
  • Avet-Loiseau H, Li C, Magrangeas F et al. Prognostic significance of copy-number alterations in multiple myeloma. J. Clin. Oncol. 27(27), 4585–4590 (2009).
  • Bergsagel PL, Nardini E, Brents L, Chesi M, Kuehl WM. IgH translocations in multiple myeloma: a nearly universal event that rarely involves c-myc. Curr. Top. Microbiol. Immunol. 224, 283–287 (1997).
  • Richelda R, Ronchetti D, Baldini L et al. A novel chromosomal translocation t(4; 14)(p16.3; q32) in multiple myeloma involves the fibroblast growth-factor receptor 3 gene. Blood 90(10), 4062–4070 (1997).
  • Keats JJ, Reiman T, Maxwell CA et al. In multiple myeloma, t(4;14)(p16;q32) is an adverse prognostic factor irrespective of FGFR3 expression. Blood 101(4), 1520–1529 (2003).
  • Fonseca R, Blood E, Rue M et al. Clinical and biologic implications of recurrent genomic aberrations in myeloma. Blood 101(11), 4569–4575 (2003).
  • Chang H, Sloan S, Li D et al. The t(4;14) is associated with poor prognosis in myeloma patients undergoing autologous stem cell transplant. Br. J. Haematol. 125(1), 64–68 (2004).
  • Gertz MA, Lacy MQ, Dispenzieri A et al. Clinical implication of the t(11;14)(q13;q32), t(4;14)(p16.3;q32) and -17p13 in myeloma patients treated with high dose therapy. Blood 106(8), 2837–2840 (2005).
  • Zhan F, Huang Y, Colla S et al. The molecular classification of multiple myeloma. Blood 108(6), 2020–2028 (2006).
  • Avet-Loiseau H, Attal M, Moreau P et al. Genetic abnormalities and survival in multiple myeloma: the experience of the Intergroupe Francophone du Myélome. Blood 109(8), 3489–3495 (2007).
  • Neben K, Jauch A, Bertsch U et al. Combining information regarding chromosomal aberrations t(4;14) and del(17p13) with the International Staging System classification allows stratification of myeloma patients undergoing autologous stem cell transplantation. Haematologica 95(7), 1150–1157 (2010).
  • San Miguel JF, Schlag R, Khuageva NK et al.; VISTA Trial Investigators. Bortezomib plus melphalan and prednisone for initial treatment of multiple myeloma. N. Engl. J. Med. 359(9), 906–917 (2008).
  • Avet-Loiseau H, Leleu X, Roussel M et al. Bortezomib plus dexamethasone induction improves outcome of patients with t(4;14) myeloma but not outcome of patients with del(17p). J. Clin. Oncol. 28(30), 4630–4634 (2010).
  • Trudel S, Stewart AK, Rom E et al. The inhibitory anti-FGFR3 antibody, PRO-001, is cytotoxic to t(4;14) multiple myeloma cells. Blood 107(10), 4039–4046 (2006).
  • Xin X, Abrams TJ, Hollenbach PW et al. CHIR-258 is efficacious in a newly developed fibroblast growth factor receptor 3-expressing orthotopic multiple myeloma model in mice. Clin. Cancer Res. 12(16), 4908–4915 (2006).
  • Chen J, Lee BH, Williams IR et al. FGFR3 as a therapeutic target of the small molecule inhibitor PKC412 in hematopoietic malignancies. Oncogene 24(56), 8259–8267 (2005).
  • Keats JJ, Maxwell CA, Taylor BJ et al. Overexpression of transcripts originating from the MMSET locus characterizes all t(4;14)(p16;q32)-positive multiple myeloma patients. Blood 105(10), 4060–4069 (2005).
  • Lauring J, Abukhdeir AM, Konishi H et al. The multiple myeloma associated MMSET gene contributes to cellular adhesion, clonogenic growth, and tumorigenicity. Blood 111(2), 856–864 (2008).
  • Martinez-Garcia E, Popovic R, Min DJ et al. The MMSET histone methyl transferase switches global histone methylation and alters gene expression in t(4;14) multiple myeloma cells. Blood 117(1), 211–220 (2011).
  • Pei H, Zhang L, Luo K et al. MMSET regulates histone H4K20 methylation and 53BP1 accumulation at DNA damage sites. Nature 470(7332), 124–128 (2011).
  • ChuL, SuMY, MaggiLB Jr et al. Multiple myeloma-associated chromosomal translocation activates orphan snoRNA ACA11 to suppress oxidative stress. J. Clin. Invest. 122(8), 2793–2806 (2012).
  • Bergsagel PL, Kuehl WM. Molecular pathogenesis and a consequent classification of multiple myeloma. J. Clin. Oncol. 23(26), 6333–6338 (2005).
  • Munshi NC, Anderson KC, Bergsagel PL et al.; International Myeloma Workshop Consensus Panel 2. Consensus recommendations for risk stratification in multiple myeloma: report of the International Myeloma Workshop Consensus Panel 2. Blood 117(18), 4696–4700 (2011).
  • Avet-Loiseau H. Role of genetics in prognostication in myeloma. Best Pract. Res. Clin. Haematol. 20(4), 625–635 (2007).
  • Ross FM, Ibrahim AH, Vilain-Holmes A et al.; UK Myeloma Forum. Age has a profound effect on the incidence and significance of chromosome abnormalities in myeloma. Leukemia 19(9), 1634–1642 (2005).
  • Avet-Loiseau H, Malard F, Campion L et al.; Intergroupe Francophone du Myélome. Translocation t(14;16) and multiple myeloma: is it really an independent prognostic factor? Blood 117(6), 2009–2011 (2011).
  • Ross FM, Chiecchio L, Dagrada G et al.; UK Myeloma Forum. The t(14;20) is a poor prognostic factor in myeloma but is associated with long-term stable disease in monoclonal gammopathies of undetermined significance. Haematologica 95(7), 1221–1225 (2010).
  • Popovic R, Licht JD. MEK and MAF in myeloma therapy. Blood 117(8), 2300–2302 (2011).
  • BergsagelPL, KuehlWM, ZhanF, SawyerJ, BarlogieB, ShaughnessyJ Jr. Cyclin D dysregulation: an early and unifying pathogenic event in multiple myeloma. Blood 106(1), 296–303 (2005).
  • Avet-Loiseau H, Gerson F, Magrangeas F, Minvielle S, Harousseau JL, Bataille R; Intergroupe Francophone du Myélome. Rearrangements of the c-myc oncogene are present in 15% of primary human multiple myeloma tumors. Blood 98(10), 3082–3086 (2001).
  • Dib A, Gabrea A, Glebov OK, Bergsagel PL, Kuehl WM. Characterization of MYC translocations in multiple myeloma cell lines. J. Natl Cancer Inst. Monographs 39, 25–31 (2008).
  • Delmore JE, Issa GC, Lemieux ME et al. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell 146(6), 904–917 (2011).
  • Boyd KD, Ross FM, Chiecchio L et al.; NCRI Haematology Oncology Studies Group. A novel prognostic model in myeloma based on co-segregating adverse FISH lesions and the ISS: analysis of patients treated in the MRC Myeloma IX trial. Leukemia 26(2), 349–355 (2012).
  • Shaughnessy JD Jr, Zhan F, Burington BE et al. A validated gene expression model of high-risk multiple myeloma is defined by deregulated expression of genes mapping to chromosome 1. Blood 109(6), 2276–2284 (2007).
  • Hanamura I, Stewart JP, Huang Y et al. Frequent gain of chromosome band 1q21 in plasma-cell dyscrasias detected by fluorescence in situ hybridization: incidence increases from MGUS to relapsed myeloma and is related to prognosis and disease progression following tandem stem-cell transplantation. Blood 108(5), 1724–1732 (2006).
  • Inoue J, Otsuki T, Hirasawa A et al. Overexpression of PDZK1 within the 1q12-q22 amplicon is likely to be associated with drug-resistance phenotype in multiple myeloma. Am. J. Pathol. 165(1), 71–81 (2004).
  • Shaughnessy J. Amplification and overexpression of CKS1B at chromosome band 1q21 is associated with reduced levels of p27Kip1 and an aggressive clinical course in multiple myeloma. Hematology 10(Suppl. 1), 117–126 (2005).
  • Shi L, Wang S, Zangari M et al. Over-expression of CKS1B activates both MEK/ERK and JAK/STAT3 signaling pathways and promotes myeloma cell drug-resistance. Oncotarget 1(1), 22–33 (2010).
  • Leone PE, Walker BA, Jenner MW et al. Deletions of CDKN2C in multiple myeloma: biological and clinical implications. Clin. Cancer Res. 14(19), 6033–6041 (2008).
  • Boyd KD, Ross FM, Walker BA et al.; NCRI Haematology Oncology Studies Group. Mapping of chromosome 1p deletions in myeloma identifies FAM46C at 1p12 and CDKN2C at 1p32.3 as being genes in regions associated with adverse survival. Clin. Cancer Res. 17(24), 7776–7784 (2011).
  • Chang H, Qi X, Jiang A, Xu W, Young T, Reece D. 1p21 deletions are strongly associated with 1q21 gains and are an independent adverse prognostic factor for the outcome of high-dose chemotherapy in patients with multiple myeloma. Bone Marrow Transplant. 45(1), 117–121 (2010).
  • Chang H, Jiang A, Qi C, Trieu Y, Chen C, Reece D. Impact of genomic aberrations including chromosome 1 abnormalities on the outcome of patients with relapsed or refractory multiple myeloma treated with lenalidomide and dexamethasone. Leuk. Lymphoma 51(11), 2084–2091 (2010).
  • Chapman MA, Lawrence MS, Keats JJ et al. Initial genome sequencing and analysis of multiple myeloma. Nature 471(7339), 467–472 (2011).
  • Chiecchio L, Protheroe RK, Ibrahim AH et al. Deletion of chromosome 13 detected by conventional cytogenetics is a critical prognostic factor in myeloma. Leukemia 20(9), 1610–1617 (2006).
  • Tricot G, Barlogie B, Jagannath S et al. Poor prognosis in multiple myeloma is associated only with partial or complete deletions of chromosome 13 or abnormalities involving 11q and not with other karyotype abnormalities. Blood 86(11), 4250–4256 (1995).
  • Pérez-Simón JA, García-Sanz R, Tabernero MD et al. Prognostic value of numerical chromosome aberrations in multiple myeloma: a FISH analysis of 15 different chromosomes. Blood 91(9), 3366–3371 (1998).
  • Zojer N, Königsberg R, Ackermann J et al. Deletion of 13q14 remains an independent adverse prognostic variable in multiple myeloma despite its frequent detection by interphase fluorescence in situ hybridization. Blood 95(6), 1925–1930 (2000).
  • Fassas AB, Spencer T, Sawyer J et al. Both hypodiploidy and deletion of chromosome 13 independently confer poor prognosis in multiple myeloma. Br. J. Haematol. 118(4), 1041–1047 (2002).
  • Boyd KD, Ross FM, Tapper WJ et al. The clinical impact and molecular biology of del(17p) in multiple myeloma treated with conventional or thalidomide-based therapy. Genes. Chromosomes Cancer 50(10), 765–774 (2011).
  • Chang H, Qi C, Yi QL, Reece D, Stewart AK. p53 gene deletion detected by fluorescence in situ hybridization is an adverse prognostic factor for patients with multiple myeloma following autologous stem cell transplantation. Blood 105(1), 358–360 (2005).
  • Lodé L, Eveillard M, Trichet V et al. Mutations in TP53 are exclusively associated with del(17p) in multiple myeloma. Haematologica 95(11), 1973–1976 (2010).
  • Owen RG, Davis SA, Randerson J et al. p53 gene mutations in multiple myeloma. MP, Mol. Pathol. 50(1), 18–20 (1997).
  • Bourdon JC. p53 and its isoforms in cancer. Br. J. Cancer 97(3), 277–282 (2007).
  • Drach J, Ackermann J, Fritz E et al. Presence of a p53 gene deletion in patients with multiple myeloma predicts for short survival after conventional-dose chemotherapy. Blood 92(3), 802–809 (1998).
  • Reece D, Song KW, Fu T et al. Influence of cytogenetics in patients with relapsed or refractory multiple myeloma treated with lenalidomide plus dexamethasone: adverse effect of deletion 17p13. Blood 114(3), 522–525 (2009).
  • Knop S, Gerecke C, Liebisch P et al. Lenalidomide, adriamycin, and dexamethasone (RAD) in patients with relapsed and refractory multiple myeloma: a report from the German Myeloma Study Group DSMM (Deutsche Studiengruppe Multiples Myelom). Blood 113(18), 4137–4143 (2009).
  • Xiong W, Wu X, Starnes S et al. An analysis of the clinical and biological significance of TP53 loss and the identification of potential novel transcriptional targets of TP53 in multiple myeloma. Blood 112(10), 4235–4246 (2008).
  • Shaughnessy JD, Zhou Y, Haessler J et al. TP53 deletion is not an adverse feature in multiple myeloma treated with total therapy 3. Br. J. Haematol. 147(3), 347–351 (2009).
  • Neben K, Lokhorst HM, Jauch A et al. Administration of bortezomib before and after autologous stem cell transplantation improves outcome in multiple myeloma patients with deletion 17p. Blood 119(4), 940–948 (2012).
  • Saha MN, Jiang H, Jayakar J, Reece D, Branch DR, Chang H. MDM2 antagonist nutlin plus proteasome inhibitor velcade combination displays a synergistic anti-myeloma activity. Cancer Biol. Ther. 9(11), 936–944 (2010).
  • Ooi MG, Hayden PJ, Kotoula V et al. Interactions of the Hdm2/p53 and proteasome pathways may enhance the antitumor activity of bortezomib. Clin. Cancer Res. 15(23), 7153–7160 (2009).
  • Shaheen M, Allen C, Nickoloff JA, Hromas R. Synthetic lethality: exploiting the addiction of cancer to DNA repair. Blood 117(23), 6074–6082 (2011).
  • Greipp PR, Katzmann JA, O’Fallon WM, Kyle RA. Value of β2-microglobulin level and plasma cell labeling indices as prognostic factors in patients with newly diagnosed myeloma. Blood 72(1), 219–223 (1988).
  • Greipp PR, Lust JA, O’Fallon WM, Katzmann JA, Witzig TE, Kyle RA. Plasma cell labeling index and β2-microglobulin predict survival independent of thymidine kinase and C-reactive protein in multiple myeloma. Blood 81(12), 3382–3387 (1993).
  • San Miguel JF, García-Sanz R, González M et al. A new staging system for multiple myeloma based on the number of S-phase plasma cells. Blood 85(2), 448–455 (1995).
  • Greipp PR, Raymond NM, Kyle RA, O’Fallon WM. Multiple myeloma: significance of plasmablastic subtype in morphological classification. Blood 65(2), 305–310 (1985).
  • Hose D, Rème T, Meissner T et al. Inhibition of aurora kinases for tailored risk-adapted treatment of multiple myeloma. Blood 113(18), 4331–4340 (2009).
  • Hose D, Rème T, Hielscher T et al. Proliferation is a central independent prognostic factor and target for personalized and risk-adapted treatment in multiple myeloma. Haematologica 96(1), 87–95 (2011).
  • Walker BA, Wardell CP, Melchor L, et al. Intraclonal heterogeneity and distinct molecular mechanisms characterize the development of t(4;14) and t(11;14) myeloma. Blood 120, 1077–1086 (2012).
  • Egan JB, Shi CX, Tembe W et al. Whole-genome sequencing of multiple myeloma from diagnosis to plasma cell leukemia reveals genomic initiating events, evolution, and clonal tides. Blood 120(5), 1060–1066 (2012).
  • Chauhan D, Uchiyama H, Akbarali Y et al. Multiple myeloma cell adhesion-induced interleukin-6 expression in bone marrow stromal cells involves activation of NF-κB. Blood 87(3), 1104–1112 (1996).
  • Tai YT, Li XF, Breitkreutz I et al. Role of B-cell-activating factor in adhesion and growth of human multiple myeloma cells in the bone marrow microenvironment. Cancer Res. 66(13), 6675–6682 (2006).
  • Annunziata CM, Davis RE, Demchenko Y et al. Frequent engagement of the classical and alternative NF-κB pathways by diverse genetic abnormalities in multiple myeloma. Cancer Cell 12(2), 115–130 (2007).
  • Keats JJ, Fonseca R, Chesi M et al. Promiscuous mutations activate the noncanonical NF-κB pathway in multiple myeloma. Cancer Cell 12(2), 131–144 (2007).
  • Demchenko YN, Glebov OK, Zingone A, Keats JJ, Bergsagel PL, Kuehl WM. Classical and/or alternative NF-κB pathway activation in multiple myeloma. Blood 115(17), 3541–3552 (2010).
  • Demchenko YN, Kuehl WM. A critical role for the NFκB pathway in multiple myeloma. Oncotarget 1(1), 59–68 (2010).
  • Hideshima T, Neri P, Tassone P et al. MLN120B, a novel IκB kinase β inhibitor, blocks multiple myeloma cell growth in vitro and in vivo. Clin. Cancer Res. 12(19), 5887–5894 (2006).
  • Hideshima T, Chauhan D, Kiziltepe T et al. Biologic sequelae of I{κ}B kinase (IKK) inhibition in multiple myeloma: therapeutic implications. Blood 113(21), 5228–5236 (2009).
  • Roberts PJ, Der CJ. Targeting the Raf–MEK–ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene 26(22), 3291–3310 (2007).
  • Liu P, Leong T, Quam L et al. Activating mutations of N- and K-ras in multiple myeloma show different clinical associations: analysis of the Eastern Cooperative Oncology Group Phase III Trial. Blood 88(7), 2699–2706 (1996).
  • Chng WJ, Gonzalez-Paz N, Price-Troska T et al. Clinical and biological significance of RAS mutations in multiple myeloma. Leukemia 22(12), 2280–2284 (2008).
  • Rasmussen T, Kuehl M, Lodahl M, Johnsen HE, Dahl IM. Possible roles for activating RAS mutations in the MGUS to MM transition and in the intramedullary to extramedullary transition in some plasma cell tumors. Blood 105(1), 317–323 (2005).
  • Beaupre DM, Cepero E, Obeng EA, Boise LH, Lichtenheld MG. R115777 induces Ras-independent apoptosis of myeloma cells via multiple intrinsic pathways. Mol. Cancer Ther. 3(2), 179–186 (2004).
  • Bolick SC, Landowski TH, Boulware D et al. The farnesyl transferase inhibitor, FTI-277, inhibits growth and induces apoptosis in drug-resistant myeloma tumor cells. Leukemia 17(2), 451–457 (2003).
  • Yanamandra N, Buzzeo RW, Gabriel M et al. Tipifarnib-induced apoptosis in acute myeloid leukemia and multiple myeloma cells depends on Ca2+ influx through plasma membrane Ca2+ channels. J. Pharmacol. Exp. Ther. 337(3), 636–643 (2011).
  • Kim K, Kong SY, Fulciniti M et al. Blockade of the MEK/ERK signalling cascade by AS703026, a novel selective MEK1/2 inhibitor, induces pleiotropic anti-myeloma activity in vitro and in vivo. Br. J. Haematol. 149(4), 537–549 (2010).
  • Tsitoura DC, Rothman PB. Enhancement of MEK/ERK signaling promotes glucocorticoid resistance in CD4+ T cells. J. Clin. Invest. 113(4), 619–627 (2004).
  • Tai YT, Fulciniti M, Hideshima T et al. Targeting MEK induces myeloma-cell cytotoxicity and inhibits osteoclastogenesis. Blood 110(5), 1656–1663 (2007).
  • Hideshima T, Nakamura N, Chauhan D, Anderson KC. Biologic sequelae of interleukin-6 induced PI3-K/Akt signaling in multiple myeloma. Oncogene 20(42), 5991–6000 (2001).
  • Harvey RD, Lonial S. PI3 kinase/AKT pathway as a therapeutic target in multiple myeloma. Future Oncol. 3(6), 639–647 (2007).
  • Ikeda H, Hideshima T, Fulciniti M et al. PI3K/p110{d} is a novel therapeutic target in multiple myeloma. Blood 116(9), 1460–1468 (2010).
  • Gajate C, Mollinedo F. Edelfosine and perifosine induce selective apoptosis in multiple myeloma by recruitment of death receptors and downstream signaling molecules into lipid rafts. Blood 109(2), 711–719 (2007).
  • Strömberg T, Dimberg A, Hammarberg A et al. Rapamycin sensitizes multiple myeloma cells to apoptosis induced by dexamethasone. Blood 103(8), 3138–3147 (2004).
  • LoPiccolo J, Blumenthal GM, Bernstein WB, Dennis PA. Targeting the PI3K/Akt/mTOR pathway: effective combinations and clinical considerations. Drug Resist. Updat. 11(1–2), 32–50 (2008).
  • Farag SS, Zhang S, Jansak BS et al. Phase II trial of temsirolimus in patients with relapsed or refractory multiple myeloma. Leuk. Res. 33(11), 1475–1480 (2009).
  • Ghobrial IM, Weller E, Vij R et al. Weekly bortezomib in combination with temsirolimus in relapsed or relapsed and refractory multiple myeloma: a multicentre, phase ½, open-label, dose-escalation study. Lancet Oncol. 12(3), 263–272 (2011).
  • Cirstea D, Hideshima T, Rodig S et al. Dual inhibition of akt/mammalian target of rapamycin pathway by nanoparticle albumin-bound-rapamycin and perifosine induces antitumor activity in multiple myeloma. Mol. Cancer Ther. 9(4), 963–975 (2010).
  • McMillin DW, Ooi M, Delmore J et al. Antimyeloma activity of the orally bioavailable dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor NVP-BEZ235. Cancer Res. 69(14), 5835–5842 (2009).
  • Bharti AC, Donato N, Aggarwal BB. Curcumin (diferuloylmethane) inhibits constitutive and IL-6-inducible STAT3 phosphorylation in human multiple myeloma cells. J. Immunol. 171(7), 3863–3871 (2003).
  • Hamasaki M, Hideshima T, Tassone P et al. Azaspirane (N-N-diethyl-8,8-dipropyl-2-azaspiro [4.5] decane-2-propanamine) inhibits human multiple myeloma cell growth in the bone marrow milieu in vitro and in vivo. Blood 105(11), 4470–4476 (2005).
  • Scuto A, Krejci P, Popplewell L et al. The novel JAK inhibitor AZD1480 blocks STAT3 and FGFR3 signaling, resulting in suppression of human myeloma cell growth and survival. Leukemia 25(3), 538–550 (2011).
  • Neri P, Tassone P, Shammas M et al. Biological pathways and in vivo antitumor activity induced by Atiprimod in myeloma. Leukemia 21(12), 2519–2526 (2007).
  • Bagratuni T, Wu P, Gonzalez de Castro D et al. XBP1s levels are implicated in the biology and outcome of myeloma mediating different clinical outcomes to thalidomide-based treatments. Blood 116(2), 250–253 (2010).
  • Obeng EA, Carlson LM, Gutman DM, Harrington WJ Jr, Lee KP, Boise LH. Proteasome inhibitors induce a terminal unfolded protein response in multiple myeloma cells. Blood 107(12), 4907–4916 (2006).
  • Volkmann K, Lucas JL, Vuga D et al. Potent and selective inhibitors of the inositol-requiring enzyme 1 endoribonuclease. J. Biol. Chem. 286(14), 12743–12755 (2011).
  • Walker BA, Wardell CP, Chiecchio L et al. Aberrant global methylation patterns affect the molecular pathogenesis and prognosis of multiple myeloma. Blood 117(2), 553–562 (2011).
  • Salhia B, Baker A, Ahmann G, Auclair D, Fonseca R, Carpten J. DNA methylation analysis determines the high frequency of genic hypomethylation and low frequency of hypermethylation events in plasma cell tumors. Cancer Res. 70(17), 6934–6944 (2010).
  • Kiziltepe T, Hideshima T, Catley L et al. 5-Azacytidine, a DNA methyltransferase inhibitor, induces ATR-mediated DNA double-strand break responses, apoptosis, and synergistic cytotoxicity with doxorubicin and bortezomib against multiple myeloma cells. Mol. Cancer Ther. 6(6), 1718–1727 (2007).
  • Santo L, Hideshima T, Kung AL et al. Preclinical activity, pharmacodynamic, and pharmacokinetic properties of a selective HDAC6 inhibitor, ACY-1215, in combination with bortezomib in multiple myeloma. Blood 119(11), 2579–2589 (2012).
  • Mitsiades CS, Mitsiades NS, McMullan CJ et al. Transcriptional signature of histone deacetylase inhibition in multiple myeloma: biological and clinical implications. Proc. Natl Acad. Sci. USA 101(2), 540–545 (2004).
  • Catley L, Weisberg E, Tai YT et al. NVP-LAQ824 is a potent novel histone deacetylase inhibitor with significant activity against multiple myeloma. Blood 102(7), 2615–2622 (2003).
  • Rouhi A, Mager DL, Humphries RK, Kuchenbauer F. MiRNAs, epigenetics, and cancer. Mamm. Genome 19(7–8), 517–525 (2008).
  • Pichiorri F, Suh SS, Ladetto M et al. MicroRNAs regulate critical genes associated with multiple myeloma pathogenesis. Proc. Natl Acad. Sci. USA 105(35), 12885–12890 (2008).
  • Chesi M, Robbiani DF, Sebag M et al. AID-dependent activation of a MYC transgene induces multiple myeloma in a conditional mouse model of post-germinal center malignancies. Cancer Cell 13(2), 167–180 (2008).
  • Zhou Y, Chen L, Barlogie B et al. High-risk myeloma is associated with global elevation of miRNAs and overexpression of EIF2C2/AGO2. Proc. Natl Acad. Sci. USA 107(17), 7904–7909 (2010).
  • Lionetti M, Biasiolo M, Agnelli L et al. Identification of microRNA expression patterns and definition of a microRNA/mRNA regulatory network in distinct molecular groups of multiple myeloma. Blood 114(25), e20–e26 (2009).
  • Gutiérrez NC, Sarasquete ME, Misiewicz-Krzeminska I et al. Deregulation of microRNA expression in the different genetic subtypes of multiple myeloma and correlation with gene expression profiling. Leukemia 24(3), 629–637 (2010).
  • Pichiorri F, Suh SS, Rocci A et al. Downregulation of p53-inducible microRNAs 192, 194, and 215 impairs the p53/MDM2 autoregulatory loop in multiple myeloma development. Cancer Cell 18(4), 367–381 (2010).
  • Munshi NC, Li C, Minvielle S. Alternate splicing is a frequent event and impacts clinical outcome in myeloma: a high-density exon array analysis of uniformly treated newly-diagnosed myeloma patients (abstract). Blood 112, Abstract 498 (2008).
  • Greipp PR, San Miguel J, Durie BG et al. International Staging System for multiple myeloma. J. Clin. Oncol. 23(15), 3412–3420 (2005).
  • Fonseca R, Bergsagel PL, Drach J et al.; International Myeloma Working Group. International Myeloma Working Group molecular classification of multiple myeloma: spotlight review. Leukemia 23(12), 2210–2221 (2009).
  • Decaux O, Lodé L, Magrangeas F et al.; Intergroupe Francophone du Myélome. Prediction of survival in multiple myeloma based on gene expression profiles reveals cell cycle and chromosomal instability signatures in high-risk patients and hyperdiploid signatures in low-risk patients: a study of the Intergroupe Francophone du Myélome. J. Clin. Oncol. 26(29), 4798–4805 (2008).
  • Dickens NJ, Walker BA, Leone PE et al. Homozygous deletion mapping in myeloma samples identifies genes and an expression signature relevant to pathogenesis and outcome. Clin. Cancer Res. 16(6), 1856–1864 (2010).
  • Moreau P, Garban F, Attal M et al.; IFM Group. Long-term follow-up results of IFM99-03 and IFM99-04 trials comparing nonmyeloablative allotransplantation with autologous transplantation in high-risk de novo multiple myeloma. Blood 112(9), 3914–3915 (2008).
  • Pineda-Roman M, Zangari M, Haessler J et al. Sustained complete remissions in multiple myeloma linked to bortezomib in total therapy 3: comparison with total therapy 2. Br. J. Haematol. 140(6), 625–634 (2008).
  • Annunziata CM, Hernandez L, Davis RE et al. A mechanistic rationale for MEK inhibitor therapy in myeloma based on blockade of MAF oncogene expression. Blood 117(8), 2396–2404 (2011).
  • Greaves M, Maley CC. Clonal evolution in cancer. Nature 481(7381), 306–313 (2012).
  • Morgan GJ, Walker BA, Davies FE. The genetic architecture of multiple myeloma. Nat. Rev. Cancer 12(5), 335–348 (2012).
  • Keats JJ, Chesi M, Egan JB et al. Clonal competition with alternating dominance in multiple myeloma. Blood 120(5), 1067–1076 (2012).
  • Morgan GJ, Gregory WM, Davies FE et al.; National Cancer Research Institute Haematological Oncology Clinical Studies Group. The role of maintenance thalidomide therapy in multiple myeloma: MRC Myeloma IX results and meta-analysis. Blood 119(1), 7–15 (2012).
  • Barlogie B, Attal M, Crowley J et al. Long-term follow-up of autotransplantation trials for multiple myeloma: update of protocols conducted by the intergroupe francophone du myelome, southwest oncology group, and university of arkansas for medical sciences. J. Clin. Oncol. 28(7), 1209–1214 (2010).
  • Lokhorst HM, van der Holt B, Zweegman S et al.; Dutch-Belgian Hemato-Oncology Group (HOVON). A randomized Phase 3 study on the effect of thalidomide combined with adriamycin, dexamethasone, and high-dose melphalan, followed by thalidomide maintenance in patients with multiple myeloma. Blood 115(6), 1113–1120 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.