146
Views
61
CrossRef citations to date
0
Altmetric
Review

Oxidative stress in oncohematologic diseases: an update

, , , , , & show all
Pages 317-325 | Published online: 10 Jan 2014

References

  • Gerschman R, Gilbert DL, Nye SW, Dwyer P, Fenn WO. Oxygen poisoning and x-irradiation: a mechanism in common. Science 119(3097), 623–626 (1954).
  • Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem. Biol. Interact. 160(1), 1–40 (2006).
  • Kovacic P, Jacintho JD. Mechanisms of carcinogenesis: focus on oxidative stress and electron transfer. Curr. Med. Chem. 8(7), 773–796 (2001).
  • Ridnour LA, Isenberg JS, Espey MG, Thomas DD, Roberts DD, Wink DA. Nitric oxide regulates angiogenesis through a functional switch involving thrombospondin-1. Proc. Natl Acad. Sci. USA 102(37), 13147–13152 (2005).
  • Valko M, Morris H, Mazúr M, Rapta P, Bilton RF. Oxygen free radical generating mechanisms in the colon: do the semiquinones of vitamin K play a role in the aetiology of colon cancer? Biochim. Biophys. Acta 1527(3), 161–166 (2001).
  • Galli F, Piroddi M, Annetti C, Aisa C, Floridi E, Floridi A. Oxidative stress and reactive oxygen species. Contrib. Nephrol. 149, 240–260 (2005).
  • England K, O’Driscoll C, Cotter TG. Carbonylation of glycolytic proteins is a key response to drug-induced oxidative stress and apoptosis. Cell Death Differ. 11(3), 252–260 (2004).
  • Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 39(1), 44–84 (2007).
  • Singh RK, Tripathi AK, Tripathi P, Singh S, Singh R, Ahmad R. Studies on biomarkers for oxidative stress in patients with chronic myeloid leukemia. Hematol. Oncol. Stem Cell Ther. 2(1), 285–288 (2009).
  • Carr AC, McCall MR, Frei B. Oxidation of LDL by myeloperoxidase and reactive nitrogen species: reaction pathways and antioxidant protection. Arterioscler. Thromb. Vasc. Biol. 20(7), 1716–1723 (2000).
  • Ng JY, Boelen L, Wong JW. Bioinformatics analysis reveals biophysical and evolutionary insights into the 3-nitrotyrosine post-translational modification in the human proteome. Open Biol. 3(2), 120148 (2013).
  • Maciag AE, Chakrapani H, Saavedra JE et al. The nitric oxide prodrug JS-K is effective against non-small-cell lung cancer cells in vitro and in vivo: involvement of reactive oxygen species. J. Pharmacol. Exp. Ther. 336(2), 313–320 (2011).
  • Pandey KB, Rizvi SI. Markers of oxidative stress in erythrocytes and plasma during aging in humans. Oxid. Med. Cell. Longev. 3(1), 2–12 (2010).
  • Lee R, Margaritis M, Channon KM, Antoniades C. Evaluating oxidative stress in human cardiovascular disease: methodological aspects and considerations. Curr. Med. Chem. 19(16), 2504–2520 (2012).
  • Gopalakrishna R, Jaken S. Protein kinase C signaling and oxidative stress. Free Radic. Biol. Med. 28(9), 1349–1361 (2000).
  • De Marco F, Bucaj E, Foppoli C et al. Oxidative stress in HPV-driven viral carcinogenesis: redox proteomics analysis of HPV-16 dysplastic and neoplastic tissues. PLoS ONE 7(3), e34366 (2012).
  • Dizdaroglu M. Oxidatively induced DNA damage: mechanisms, repair and disease. Cancer Lett. 327(1–2), 26–47 (2012).
  • Ma N, Thanan R, Kobayashi H et al. Nitrative DNA damage and Oct3/4 expression in urinary bladder cancer with Schistosoma haematobium infection. Biochem. Biophys. Res. Commun. 414(2), 344–349 (2011).
  • Marnett LJ. Oxyradicals and DNA damage. Carcinogenesis 21(3), 361–370 (2000).
  • Liao D, Corle C, Seagroves TN, Johnson RS. Hypoxia-inducible factor-1α is a key regulator of metastasis in a transgenic model of cancer initiation and progression. Cancer Res. 67(2), 563–572 (2007).
  • Lisanti MP, Martinez-Outschoorn UE, Chiavarina B et al. Understanding the ‘lethal’ drivers of tumor-stroma co-evolution: emerging role(s) for hypoxia, oxidative stress and autophagy/mitophagy in the tumor micro-environment. Cancer Biol. Ther. 10(6), 537–542 (2010).
  • Gangemi S, Allegra A, Alonci A et al. Increase of novel biomarkers for oxidative stress in patients with plasma cell disorders and in multiple myeloma patients with bone lesions. Inflamm. Res. 61(10), 1063–1067 (2012).
  • Poli G, Leonarduzzi G, Biasi F, Chiarpotto E. Oxidative stress and cell signalling. Curr. Med. Chem. 11(9), 1163–1182 (2004).
  • Storz P. Reactive oxygen species in tumor progression. Front. Biosci. 10, 1881–1896 (2005).
  • Gangemi S, Allegra A, Aguennouz M et al. Relationship between advanced oxidation protein products, advanced glycation end products, and S-nitrosylated proteins with biological risk and MDR-1 polymorphisms in patients affected by B-chronic lymphocytic leukemia. Cancer Invest. 30(1), 20–26 (2012).
  • Kyriakis JM, Avruch J. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol. Rev. 81(2), 807–869 (2001).
  • Gupta A, Rosenberger SF, Bowden GT. Increased ROS levels contribute to elevated transcription factor and MAP kinase activities in malignantly progressed mouse keratinocyte cell lines. Carcinogenesis 20(11), 2063–2073 (1999).
  • Schafer FQ, Buettner GR. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic. Biol. Med. 30(11), 1191–1212 (2001).
  • Bellavia M, Gioviale MC, Damiano G et al. Dissecting the different biological effects of oncogenic Ras isoforms in cancer cell lines: could stimulation of oxidative stress be the one more weapon of H-Ras? Regulation of oxidative stress and Ras biological effects. Med. Hypotheses 79(6), 731–734 (2012).
  • Meuleman N, Stamatopoulos B, Dejeneffe M, El Housni H, Lagneaux L, Bron D. Doubling time of soluble CD23: a powerful prognostic factor for newly diagnosed and untreated stage A chronic lymphocytic leukemia patients. Leukemia 22(10), 1882–1890 (2008).
  • Drabko K, Bojarska-Junak A, Kowalczyk J. Activity of superoxide dismutase and glutathione peroxidase and concentrations of malonyldialdehyde, vitamin E, total antioxidant status and extracellular cytokines concentrations in children with acute lymphoblastic leukaemia (ALL). Med. Wieku Rozwoj. 10(3 Pt 1), 861–868 (2006).
  • Battisti V, Maders LD, Bagatini MD et al. Measurement of oxidative stress and antioxidant status in acute lymphoblastic leukemia patients. Clin. Biochem. 41(7–8), 511–518 (2008).
  • Djurdjevic P, Zelen I, Ristic P et al. Oxidative stress accelerates spontaneous apoptosis of B-chronic lymphocytic leukemia lymphocytes. J. Buon. 14(2), 281–287 (2009).
  • Ito K, Hirao A, Arai F et al. Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells. Nature 431(7011), 997–1002 (2004).
  • Morabito F, Cristani M, Saija A et al. Lipid peroxidation and protein oxidation in patients affected by Hodgkin’s lymphoma. Mediators Inflamm. 13(5–6), 381–383 (2004).
  • Lanasa MC. Novel insights into the biology of CLL. Hematology Am. Soc. Hematol. Educ. Program 2010, 70–76 (2010).
  • Al-Gayyar MM, Eissa LA, Rabie AM, El-Gayar AM. Measurements of oxidative stress status and antioxidant activity in chronic leukaemia patients. J. Pharm. Pharmacol. 59(3), 409–417 (2007).
  • Zelen I, Djurdjevic P, Popovic S et al. Antioxidant enzymes activities and plasma levels of oxidative stress markers in B-chronic lymphocytic leukemia patients. J. Buon. 15(2), 330–336 (2010).
  • Schulz A, Toedt G, Zenz T, Stilgenbauer S, Lichter P, Seiffert M. Inflammatory cytokines and signaling pathways are associated with survival of primary chronic lymphocytic leukemia cells in vitro: a dominant role of CCL2. Haematologica 96(3), 408–416 (2011).
  • Rund D, Azar I, Shperling O. A mutation in the promoter of the multidrug resistance gene (MDR1) in human hematological malignancies may contribute to the pathogenesis of resistant disease. Adv. Exp. Med. Biol. 457, 71–75 (1999).
  • Gollapud S, Gupta S. Anti-P-glycoprotein antibody-induced apoptosis of activated peripheral blood lymphocytes: a possible role of P-glycoprotein in lymphocyte survival. J. Clin. Immunol. 21(6), 420–430 (2001).
  • Güven M, Oztürk B, Sayal A, Ozet A. Lipid peroxidation and antioxidant system in the blood of patients with Hodgkin’s disease. Clin. Biochem. 33(3), 209–212 (2000).
  • Goswami K, Koner BC. Level of sialic acid residues in platelet proteins in diabetes, aging, and Hodgkin’s lymphoma: a potential role of free radicals in desialylation. Biochem. Biophys. Res. Commun. 297(3), 502–505 (2002).
  • Barzilai A, Rotman G, Shiloh Y. ATM deficiency and oxidative stress: a new dimension of defective response to DNA damage. DNA Repair (Amst.) 1(1), 3–25 (2002).
  • Pasanen AK, Kuitunen H, Haapasaari KM et al. Expression and prognostic evaluation of oxidative stress markers in an immunohistochemical study of B-cell derived lymphomas. Leuk. Lymphoma 53(4), 624–631 (2012).
  • Nojima J, Motoki Y, Tsuneoka H et al. ‘Oxidation stress index’ as a possible clinical marker for the evaluation of non-Hodgkin lymphoma. Br. J. Haematol. 155(4), 528–530 (2011).
  • Trotti R, Carratelli M, Barbieri M. Performance and clinical application of a new, fast method for the detection of hydroperoxides in serum. Panminerva Med. 44(1), 37–40 (2002).
  • Kakita H, Hussein MH, Daoud GA et al. Total hydroperoxide and biological antioxidant potentials in a neonatal sepsis model. Pediatr. Res. 60(6), 675–679 (2006).
  • Peroja P, Pasanen AK, Haapasaari KM et al. Oxidative stress and redox state-regulating enzymes have prognostic relevance in diffuse large B-cell lymphoma. Exp. Hematol. Oncol. 1(1), 2 (2012).
  • Sharma A, Tripathi M, Satyam A, Kumar L. Study of antioxidant levels in patients with multiple myeloma. Leuk. Lymphoma 50(5), 809–815 (2009).
  • Kuku I, Aydogdu I, Bayraktar N, Kaya E, Akyol O, Erkurt MA. Oxidant/antioxidant parameters and their relationship with medical treatment in multiple myeloma. Cell Biochem. Funct. 23(1), 47–50 (2005).
  • Brown CO, Salem K, Wagner BA et al. Interleukin-6 counteracts therapy-induced cellular oxidative stress in multiple myeloma by up-regulating manganese superoxide dismutase. Biochem. J. 444(3), 515–527 (2012).
  • Bodet L, Ménoret E, Descamps G et al. BH3-only protein Bik is involved in both apoptosis induction and sensitivity to oxidative stress in multiple myeloma. Br. J. Cancer 103(12), 1808–1814 (2010).
  • Zeng R, Chen Y, Zhao S, Cui GH. Autophagy counteracts apoptosis in human multiple myeloma cells exposed to oridonin in vitro via regulating intracellular ROS and SIRT1. Acta Pharmacol. Sin. 33(1), 91–100 (2012).
  • Yin L, Kosugi M, Kufe D. Inhibition of the MUC1-C oncoprotein induces multiple myeloma cell death by down-regulating TIGAR expression and depleting NADPH. Blood 119(3), 810–816 (2012).
  • Azad N, Iyer A, Vallyathan V et al. Role of oxidative/nitrosative stress-mediated Bcl-2 regulation in apoptosis and malignant transformation. Ann. NY Acad. Sci. 1203, 1–6 (2010).
  • Wei W, Li B, Hanes MA, Kakar S, Chen X, Liu L. S-nitrosylation from GSNOR deficiency impairs DNA repair and promotes hepatocarcinogenesis. Sci. Transl. Med. 2(19), 19ra13 (2010).
  • Franke S, Rüster C, Pester J, Hofmann G, Oelzner P, Wolf G. Advanced glycation end products affect growth and function of osteoblasts. Clin. Exp. Rheumatol. 29(4), 650–660 (2011).
  • Musolino C, Alonci A, Allegra A et al. Increase in serum protein carbonyl groups is associated with more advanced stage of disease in multiple myeloma patients. Biomarkers 16(8), 718–719 (2011).
  • Ahmad R, Tripathi AK, Tripathi P, Singh R, Singh S, Singh RK. Studies on lipid peroxidation and non-enzymatic antioxidant status as indices of oxidative stress in patients with chronic myeloid leukaemia. Singapore Med. J. 51(2), 110–115 (2010).
  • Singh RK, Tripathi AK, Tripathi P, Singh S, Singh R, Ahmad R. Studies on biomarkers for oxidative stress in patients with chronic myeloid leukemia. Hematol. Oncol. Stem Cell Ther. 2(1), 285–288 (2009).
  • Kim JH, Chu SC, Gramlich JL et al. Activation of the PI3K/mTOR pathway by BCR-ABL contributes to increased production of reactive oxygen species. Blood 105(4), 1717–1723 (2005).
  • Vener C, Novembrino C, Catena FB et al. Oxidative stress is increased in primary and post-polycythemia vera myelofibrosis. Exp. Hematol. 38(11), 1058–1065 (2010).
  • Musolino C, Allegra A, Saija A et al. Changes in advanced oxidation protein products, advanced glycation end products, and s-nitrosylated proteins, in patients affected by polycythemia vera and essential thrombocythemia. Clin. Biochem. 45(16–17), 1439–1443 (2012).
  • Förstermann U. Nitric oxide and oxidative stress in vascular disease. Pflugers Arch. 459(6), 923–939 (2010).
  • Cottler-Fox MH, Lapidot T, Petit I et al. Stem cell mobilization. Hematology Am. Soc. Hematol. Educ. Program 2003, 419–437 (2003).
  • Aicher A, Heeschen C, Dimmeler S. The role of NOS3 in stem cell mobilization. Trends Mol. Med. 10(9), 421–425 (2004).
  • Lévesque JP, Takamatsu Y, Nilsson SK, Haylock DN, Simmons PJ. Vascular cell adhesion molecule-1 (CD106) is cleaved by neutrophil proteases in the bone marrow following hematopoietic progenitor cell mobilization by granulocyte colony-stimulating factor. Blood 98(5), 1289–1297 (2001).
  • Barth E, Fischer G, Schneider EM, Moldawer LL, Georgieff M, Weiss M. Peaks of endogenous G-CSF serum concentrations are followed by an increase in respiratory burst activity of granulocytes in patients with septic shock. Cytokine 17(5), 275–284 (2002).
  • Hawkins CL, Pattison DI, Davies MJ. Hypochlorite-induced oxidation of amino acids, peptides and proteins. Amino Acids 25(3–4), 259–274 (2003).
  • Morabito F, Tomaino A, Cristani M et al. ‘In vivo’ time course of plasma myeloperoxidase levels after granulocyte colony-stimulating factor-induced stem cell mobilization. Transfus. Med. 15(5), 425–428 (2005).
  • Yuan X, Cong Y, Hao J et al. Regulation of LIP level and ROS formation through interaction of H-ferritin with G-CSF receptor. J. Mol. Biol. 339(1), 131–144 (2004).
  • Morabito F, Tomaino A, Cristani M et al. Modification of the content of plasma protein carbonyl groups in donors after granulocyte colony stimulating factor-induced stem cell mobilization. Transfus. Apher. Sci. 33(2), 141–146 (2005).
  • Fraser GE. Vegetarian diets: what do we know of their effects on common chronic diseases? Am. J. Clin. Nutr. 89(5), 1607S–1612S (2009).
  • Kazimírová A, Barancoková M, Volkovová K et al. Does a vegetarian diet influence genomic stability? Eur. J. Nutr. 43(1), 32–38 (2004).
  • Spychalowicz A, Wilk G, Sliwa T, Ludew D, Guzik TJ. Novel therapeutic approaches in limiting oxidative stress and inflammation. Curr. Pharm. Biotechnol. 13(13), 2456–2466 (2012).
  • Goodson AG, Cotter MA, Cassidy P et al. Use of oral N-acetylcysteine for protection of melanocytic nevi against UV-induced oxidative stress: towards a novel paradigm for melanoma chemoprevention. Clin. Cancer Res. 15(23), 7434–7440 (2009).
  • Bosco JL, Antonsen S, Sørensen HT, Pedersen L, Lash TL. Metformin and incident breast cancer among diabetic women: a population-based case–control study in Denmark. Cancer Epidemiol. Biomarkers Prev. 20(1), 101–111 (2011).
  • Decensi A, Puntoni M, Goodwin P et al. Metformin and cancer risk in diabetic patients: a systematic review and meta-analysis. Cancer Prev. Res. (Phila). 3(11), 1451–1461 (2010).
  • Goh J, Enns L, Fatemie S et al. Mitochondrial targeted catalase suppresses invasive breast cancer in mice. BMC Cancer 11, 191 (2011).
  • Hewish M, Martin SA, Elliott R, Cunningham D, Lord CJ, Ashworth A. Cytosine-based nucleoside analogs are selectively lethal to DNA mismatch repair-deficient tumour cells by enhancing levels of intracellular oxidative stress. Br. J. Cancer 108(4), 983–992 (2013).
  • Sotgia F, Martinez-Outschoorn UE, Lisanti MP. Mitochondrial oxidative stress drives tumor progression and metastasis: should we use antioxidants as a key component of cancer treatment and prevention? BMC Med. 9, 62 (2011).
  • Ghaffari S. Oxidative stress in the regulation of normal and neoplastic hematopoiesis. Antioxid. Redox Signal. 10(11), 1923–1940 (2008).
  • Tanno T, Matsui W. Development and maintenance of cancer stem cells under chronic inflammation. J. Nippon Med. Sch. 78(3), 138–145 (2011).
  • Allegra A, Coppolino G, Bolignano D et al. Endothelial progenitor cells: pathogenetic role and therapeutic perspectives. J. Nephrol. 22(4), 463–475 (2009).
  • Sosa V, Moliné T, Somoza R, Paciucci R, Kondoh H, LLeonart ME. Oxidative stress and cancer: an overview. Ageing Res. Rev. 12(1), 376–390 (2013).
  • Goel A, Spitz DR, Weiner GJ. Manipulation of cellular redox parameters for improving therapeutic responses in B-cell lymphoma and multiple myeloma. J. Cell. Biochem. 113(2), 419–425 (2012).
  • Kapoor P, Greipp PT, Morice WG, Rajkumar SV, Witzig TE, Greipp PR. Anti-CD20 monoclonal antibody therapy in multiple myeloma. Br. J. Haematol. 141(2), 135–148 (2008).
  • Han SS, Kim K, Hahm ER et al. Arsenic trioxide represses constitutive activation of NF-κB and COX-2 expression in human acute myeloid leukemia, HL-60. J. Cell. Biochem. 94(4), 695–707 (2005).
  • Hussein MA. Trials of arsenic trioxide in multiple myeloma. Cancer Control 10(5), 370–374 (2003).
  • Diaz Z, Laurenzana A, Mann KK, Bismar TA, Schipper HM, Miller WH Jr. Trolox enhances the anti-lymphoma effects of arsenic trioxide, while protecting against liver toxicity. Leukemia 21(10), 2117–2127 (2007).
  • Bera S, Greiner S, Choudhury A et al. Dexamethasone-induced oxidative stress enhances myeloma cell radiosensitization while sparing normal bone marrow hematopoiesis. Neoplasia 12(12), 980–992 (2010).
  • Allegra A, Penna G, Alonci A, Rizzo V, Russo S, Musolino C. Nanoparticles in oncology: the new theragnostic molecules. Anticancer. Agents Med. Chem. 11(7), 669–686 (2011).
  • Chen Z, Ma L, Liu Y, Chen C. Applications of functionalized fullerenes in tumor theranostics. Theranostics 2(3), 238–250 (2012).
  • Magaye R, Zhao J, Bowman L, Ding M. Genotoxicity and carcinogenicity of cobalt-, nickel- and copper-based nanoparticles. Exp. Ther. Med. 4(4), 551–561 (2012).
  • Ali D, Alarifi S, Kumar S, Ahamed M, Siddiqui MA. Oxidative stress and genotoxic effect of zinc oxide nanoparticles in freshwater snail Lymnaea luteola L. Aquat. Toxicol. 124–125, 83–90 (2012).
  • Ahamed M. Silica nanoparticles-induced cytotoxicity, oxidative stress and apoptosis in cultured A431 and A549 cells. Hum. Exp. Toxicol. 32(2), 186–195 (2013).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.