181
Views
12
CrossRef citations to date
0
Altmetric
Perspective

Combining gene therapy and fetal hemoglobin induction for treatment of β-thalassemia

, , &
Pages 255-264 | Published online: 10 Jan 2014

References

  • Patrinos GP, Kollia P, Papadakis MN. Molecular diagnosis of inherited disorders: lessons from hemoglobinopathies. Hum. Mutat. 26(5), 399–412 (2005).
  • Old JM. Screening and genetic diagnosis of haemoglobin disorders. Blood Rev. 17(1), 43–53 (2003).
  • Galanello R, Origa R. β-thalassemia. Orphanet J. Rare Dis. 5, 11 (2010).
  • Colah R, Gorakshakar A, Nadkarni A. Global burden, distribution and prevention of β-thalassemias and hemoglobin E disorders. Expert Rev. Hematol. 3(1), 103–117 (2010).
  • Quek L, Thein SL. Molecular therapies in β-thalassaemia. Br. J. Haematol. 136(3), 353–365 (2007).
  • Lederer CW, Basak AN, Aydinok Y et al. An electronic infrastructure for research and treatment of the thalassemias and other hemoglobinopathies: the Euro-mediterranean ITHANET project. Hemoglobin 33(3), 163–176 (2009).
  • Gambari R, Fibach E. Medicinal chemistry of fetal hemoglobin inducers for treatment of β-thalassemia. Curr. Med. Chem. 14(2), 199–212 (2007).
  • Testa U. Fetal hemoglobin chemical inducers for treatment of hemoglobinopathies. Ann. Hematol. 88(6), 505–528 (2009).
  • Voon HP, Wardan H, Vadolas J. Co-inheritance of α- and β-thalassaemia in mice ameliorates thalassaemic phenotype. Blood Cells Mol. Dis. 39(2), 184–188 (2007).
  • Voon HP, Vadolas J. Controlling α-globin: a review of α-globin expression and its impact on β-thalassemia. Haematologica 93(12), 1868–1876 (2008).
  • Steinberg MH. Sicke cell disease and other hemoglobinopathies. In: Goldman’s Cecil Medicine. Elsevier, 1066–1075 (2011).
  • Weatherall DJ. The thalassemias: disorders of globin synthesis. In: Williams Hematology. Prchal KK, Lichtman MA, Kipps TJ, Seligsohn U (Eds). McGraw-Hill, NY, USA (2010).
  • Dong A, Rivella S, Breda L. Gene therapy for hemoglobinopathies: progress and challenges. Transl. Res. 161(4), 293–306 (2013).
  • Toumba M, Sergis A, Kanaris C, Skordis N. Endocrine complications in patients with thalassaemia major. Pediatr. Endocrinol. Rev. 5(2), 642–648 (2007).
  • Tuck SM. Fertility and pregnancy in thalassemia major. Ann. NY Acad. Sci. 1054, 300–307 (2005).
  • Skordis N, Kyriakou A. The multifactorial origin of growth failure in thalassaemia. Pediatr. Endocrinol. Rev. 8(Suppl. 2), 271–277 (2011).
  • Sanctis D. Growth and puberty and its management in thalassaemia. Horm. Res. 58(Suppl. 1), 72–79 (2002).
  • Borgna-Pignatti C, Gamberini MR. Complications of thalassemia major and their treatment. Expert Rev. Hematol. 4(3), 353–366 (2011).
  • De Sanctis V, Gamberini MR, Borgatti L, Atti G, Vullo C, Bagni B. α and β cell evaluation in patients with thalassaemia intermedia and iron overload. Postgrad. Med. J. 61(721), 963–967 (1985).
  • Di Marco V, Bronte F, Cabibi D et al. Noninvasive assessment of liver fibrosis in thalassaemia major patients by transient elastography (TE) – lack of interference by iron deposition. Br. J. Haematol. 148(3), 476–479 (2010).
  • Cunningham MJ. Update on thalassemia: clinical care and complications. Hematol. Oncol. Clin. North Am. 24(1), 215–227 (2010).
  • Bank A. On the road to gene therapy for β-thalassemia and sickle cell anemia. Pediatr. Hematol. Oncol. 25(1), 1–4 (2008).
  • Lisowski L, Sadelain M. Current status of globin gene therapy for the treatment of β-thalassaemia. Br. J. Haematol. 141(3), 335–345 (2008).
  • Breda L, Gambari R, Rivella S. Gene therapy in thalassemia and hemoglobinopathies. Mediterr. J. Hematol. Infect. Dis. 1(1), e2009008 (2009).
  • Persons DA. Gene therapy: targeting β-thalassaemia. Nature 467(7313), 277–278 (2010).
  • Bank A. Hemoglobin gene therapy for β-thalassemia. Hematol. Oncol. Clin. North Am. 24(6), 1187–1201 (2010).
  • Boulad F, Rivière I, Sadelain M. Gene therapy for homozygous β-thalassemia. Is it a reality? Hemoglobin 33(Suppl. 1), S188–S196 (2009).
  • Yannaki E, Emery DW, Stamatoyannopoulos G. Gene therapy for β-thalassaemia: the continuing challenge. Expert Rev. Mol. Med. 12, e31 (2010).
  • Maina N, Zhong L, Li X et al. Optimization of recombinant adeno-associated viral vectors for human β-globin gene transfer and transgene expression. Hum. Gene Ther. 19(4), 365–375 (2008).
  • Gelinas R, Novak U. Retroviral vectors for the β-globin gene that demonstrate improved titer and expression. Ann. NY Acad. Sci. 612, 427–441 (1990).
  • Dong WJ, Li B, Liu DP et al. Evaluation of optimal expression cassette in retrovirus vector for β-thalassemia gene therapy. Mol. Biotechnol. 24(2), 127–140 (2003).
  • Yi Y, Noh MJ, Lee KH. Current advances in retroviral gene therapy. Curr. Gene Ther. 11(3), 218–228 (2011).
  • Sadelain M, Rivella S, Lisowski L, Samakoglu S, Rivière I. Globin gene transfer for treatment of the β-thalassemias and sickle cell disease. Best Pract. Res. Clin. Haematol. 17(3), 517–534 (2004).
  • Case SS, Price MA, Jordan CT et al. Stable transduction of quiescent CD34+CD38- human hematopoietic cells by HIV-1-based lentiviral vectors. Proc. Natl Acad. Sci. USA 96(6), 2988–2993 (1999).
  • Lisowski L, Sadelain M. Locus control region elements HS1 and HS4 enhance the therapeutic efficacy of globin gene transfer in β-thalassemic mice. Blood 110(13), 4175–4178 (2007).
  • Hargrove PW, Kepes S, Hanawa H et al. Globin lentiviral vector insertions can perturb the expression of endogenous genes in β-thalassemic hematopoietic cells. Mol. Ther. 16(3), 525–533 (2008).
  • Zhou HS, Zhao N, Li L et al. Site-specific transfer of an intact β-globin gene cluster through a new targeting vector. Biochem. Biophys. Res. Commun. 356(1), 32–37 (2007).
  • Zhao S, Weinreich MA, Ihara K, Richard RE, Blau CA. In vivo selection of genetically modified erythroid cells using a jak2-based cell growth switch. Mol. Ther. 10(3), 456–468 (2004).
  • Persons DA. The challenge of obtaining therapeutic levels of genetically modified hematopoietic stem cells in β-thalassemia patients. Ann. NY Acad. Sci. 1202, 69–74 (2010).
  • Yannaki E, Psatha N, Athanasiou E et al. Mobilization of hematopoietic stem cells in a thalassemic mouse model: implications for human gene therapy of thalassemia. Hum. Gene Ther. 21(3), 299–310 (2010).
  • Yannaki E, Stamatoyannopoulos G. Hematopoietic stem cell mobilization strategies for gene therapy of β thalassemia and sickle cell disease. Ann. NY Acad. Sci. 1202, 59–63 (2010).
  • Kumar P, Woon-Khiong C. Optimization of lentiviral vectors generation for biomedical and clinical research purposes: contemporary trends in technology development and applications. Curr. Gene Ther. 11(2), 144–153 (2011).
  • Miccio A, Cesari R, Lotti F et al. In vivo selection of genetically modified erythroblastic progenitors leads to long-term correction of β-thalassemia. Proc. Natl Acad. Sci. USA 105(30), 10547–10552 (2008).
  • Negre O, Fusil F, Colomb C et al. Correction of murine β-thalassemia after minimal lentiviral gene transfer and homeostatic in vivo erythroid expansion. Blood 117(20), 5321–5331 (2011).
  • Persons DA, Allay ER, Sawai N et al. Successful treatment of murine β-thalassemia using in vivo selection of genetically modified, drug-resistant hematopoietic stem cells. Blood 102(2), 506–513 (2003).
  • Imren S, Payen E, Westerman KA et al. Permanent and panerythroid correction of murine β thalassemia by multiple lentiviral integration in hematopoietic stem cells. Proc. Natl Acad. Sci. USA 99(22), 14380–14385 (2002).
  • May C, Rivella S, Callegari J et al. Therapeutic haemoglobin synthesis in β-thalassaemic mice expressing lentivirus-encoded human β-globin. Nature 406(6791), 82–86 (2000).
  • May C, Rivella S, Chadburn A, Sadelain M. Successful treatment of murine β-thalassemia intermedia by transfer of the human β-globin gene. Blood 99(6), 1902–1908 (2002).
  • Puthenveetil G, Scholes J, Carbonell D et al. Successful correction of the human β-thalassemia major phenotype using a lentiviral vector. Blood 104(12), 3445–3453 (2004).
  • Wilber A, Hargrove PW, Kim YS et al. Therapeutic levels of fetal hemoglobin in erythroid progeny of β-thalassemic CD34+ cells after lentiviral vector-mediated gene transfer. Blood 117(10), 2817–2826 (2011).
  • Imren S, Fabry ME, Westerman KA et al. High-level β-globin expression and preferred intragenic integration after lentiviral transduction of human cord blood stem cells. J. Clin. Invest. 114(7), 953–962 (2004).
  • Tisdale J, Sadelain M. Toward gene therapy for disorders of globin synthesis. Semin. Hematol. 38(4), 382–392 (2001).
  • Kafri T. Lentivirus vectors: difficulties and hopes before clinical trials. Curr. Opin. Mol. Ther. 3(4), 316–326 (2001).
  • Arumugam PI, Urbinati F, Velu CS, Higashimoto T, Grimes HL, Malik P. The 3´ region of the chicken hypersensitive site-4 insulator has properties similar to its core and is required for full insulator activity. PLoS ONE 4(9), e6995 (2009).
  • Bank A, Dorazio R, Leboulch P. A Phase I/II clinical trial of β-globin gene therapy for β-thalassemia. Ann. NY Acad. Sci. 1054, 308–316 (2005).
  • Breda L, Kleinert DA, Casu C et al. A preclinical approach for gene therapy of β-thalassemia. Ann. NY Acad. Sci. 1202, 134–140 (2010).
  • Sadelain M, Rivière I, Wang X et al. Strategy for a multicenter Phase I clinical trial to evaluate globin gene transfer in β-thalassemia. Ann. NY Acad. Sci. 1202, 52–58 (2010).
  • Giardini C, Lucarelli G. Bone marrow transplantation in the treatment of thalassemia. Curr. Opin. Hematol. 1(2), 170–176 (1994).
  • Bender MA, Gelinas RE, Miller AD. A majority of mice show long-term expression of a human β-globin gene after retrovirus transfer into hematopoietic stem cells. Mol. Cell. Biol. 9(4), 1426–1434 (1989).
  • Dzierzak EA, Papayannopoulou T, Mulligan RC. Lineage-specific expression of a human β-globin gene in murine bone marrow transplant recipients reconstituted with retrovirus-transduced stem cells. Nature 331(6151), 35–41 (1988).
  • Karlsson S, Bodine DM, Perry L, Papayannopoulou T, Nienhuis AW. Expression of the human β-globin gene following retroviral-mediated transfer into multipotential hematopoietic progenitors of mice. Proc. Natl Acad. Sci. USA 85(16), 6062–6066 (1988).
  • Lung HY, Meeus IS, Weinberg RS, Atweh GF. In vivo silencing of the human γ-globin gene in murine erythroid cells following retroviral transduction. Blood Cells Mol. Dis. 26(6), 613–619 (2000).
  • Chang JC, Liu D, Kan YW. A 36-base-pair core sequence of locus control region enhances retrovirally transferred human β-globin gene expression. Proc. Natl Acad. Sci. USA 89(7), 3107–3110 (1992).
  • Plavec I, Papayannopoulou T, Maury C, Meyer F. A human β-globin gene fused to the human β-globin locus control region is expressed at high levels in erythroid cells of mice engrafted with retrovirus-transduced hematopoietic stem cells. Blood 81(5), 1384–1392 (1993).
  • Emery DW, Morrish F, Li Q, Stamatoyannopoulos G. Analysis of γ-globin expression cassettes in retrovirus vectors. Hum. Gene Ther. 10(6), 877–888 (1999).
  • Fragkos M, Anagnou NP, Tubb J, Emery DW. Use of the hereditary persistence of fetal hemoglobin 2 enhancer to increase the expression of oncoretrovirus vectors for human γ-globin. Gene Ther. 12(21), 1591–1600 (2005).
  • Kalberer CP, Pawliuk R, Imren S et al. Preselection of retrovirally transduced bone marrow avoids subsequent stem cell gene silencing and age-dependent extinction of expression of human β-globin in engrafted mice. Proc. Natl Acad. Sci. USA 97(10), 5411–5415 (2000).
  • Han XD, Lin C, Chang J, Sadelain M, Kan YW. Fetal gene therapy of α-thalassemia in a mouse model. Proc. Natl Acad. Sci. USA 104(21), 9007–9011 (2007).
  • Rivella S, May C, Chadburn A, Rivière I, Sadelain M. A novel murine model of Cooley anemia and its rescue by lentiviral-mediated human β-globin gene transfer. Blood 101(8), 2932–2939 (2003).
  • Pawliuk R, Westerman KA, Fabry ME et al. Correction of sickle cell disease in transgenic mouse models by gene therapy. Science 294(5550), 2368–2371 (2001).
  • Samakoglu S, Lisowski L, Budak-Alpdogan T et al. A genetic strategy to treat sickle cell anemia by coregulating globin transgene expression and RNA interference. Nat. Biotechnol. 24(1), 89–94 (2006).
  • Miccio A, Poletti V, Tiboni F et al. The GATA1-HS2 enhancer allows persistent and position-independent expression of a β-globin transgene. PLoS ONE 6(12), e27955 (2011).
  • Breda L, Casu C, Gardenghi S et al. Therapeutic hemoglobin levels after gene transfer in β-thalassemia mice and in hematopoietic cells of β-thalassemia and sickle cells disease patients. PLoS ONE 7(3), e32345 (2012).
  • Arumugam PI, Higashimoto T, Urbinati F et al. Genotoxic potential of lineage-specific lentivirus vectors carrying the β-globin locus control region. Mol. Ther. 17(11), 1929–1937 (2009).
  • Rivella S, Callegari JA, May C, Tan CW, Sadelain M. The cHS4 insulator increases the probability of retroviral expression at random chromosomal integration sites. J. Virol. 74(10), 4679–4687 (2000).
  • Arumugam P, Malik P. Genetic therapy for β-thalassemia: from the bench to the bedside. Hematology Am. Soc. Hematol. Educ. Program 2010, 445–450 (2010).
  • Cavazzana-Calvo M, Payen E, Negre O et al. Transfusion independence and HMGA2 activation after gene therapy of human β-thalassaemia. Nature 467(7313), 318–322 (2010).
  • Kaiser J. Gene therapy. β-thalassemia treatment succeeds, with a caveat. Science 326(5959), 1468–1469 (2009).
  • Ronen K, Negre O, Roth S et al. Distribution of lentiviral vector integration sites in mice following therapeutic gene transfer to treat β-thalassemia. Mol. Ther. 19(7), 1273–1286 (2011).
  • Cao A, Galanello R. β-thalassemia. Genet. Med. 12(2), 61–76 (2010).
  • Cao A, Moi P, Galanello R. Recent advances in β-thalassemias. Pediatr. Rep. 3(2), e17 (2011).
  • Gambari R. Foetal haemoglobin inducers and thalassaemia: novel achievements. Blood Transfus. 8(1), 5–7 (2010).
  • Bianchi N, Zuccato C, Lampronti I, Borgatti M, Gambari R. Fetal hemoglobin inducers from the natural world: a novel approach for identification of drugs for the treatment of β-thalassemia and sickle-cell anemia. Evid. Based. Complement. Alternat. Med. 6(2), 141–151 (2009).
  • Feriotto G, Salvatori F, Finotti A et al. A novel frameshift mutation (+A) at codon 18 of the β-globin gene associated with high persistence of fetal hemoglobin phenotype and Δβ-thalassemia. Acta Haematol. 119(1), 28–37 (2008).
  • Zhao H, Pestina TI, Nasimuzzaman M, Mehta P, Hargrove PW, Persons DA. Amelioration of murine β-thalassemia through drug selection of hematopoietic stem cells transduced with a lentiviral vector encoding both γ-globin and the MGMT drug-resistance gene. Blood 113(23), 5747–5756 (2009).
  • Cousens NE, Gaff CL, Metcalfe SA, Delatycki MB. Carrier screening for β-thalassaemia: a review of international practice. Eur. J. Hum. Genet. 18(10), 1077–1083 (2010).
  • Moutouh-De Parseval LA, Verhelle D, Glezer E et al. Pomalidomide and lenalidomide regulate erythropoiesis and fetal hemoglobin production in human CD34+ cells. J. Clin. Invest. 118(1), 248–258 (2008).
  • Boosalis MS, Castaneda SA, Trudel M et al. Novel therapeutic candidates, identified by molecular modeling, induce γ-globin gene expression in vivo. Blood Cells Mol. Dis. 47(2), 107–116 (2011).
  • Italia KY, Jijina FJ, Merchant R et al. Response to hydroxyurea in β thalassemia major and intermedia: experience in western India. Clin. Chim. Acta 407(1–2), 10–15 (2009).
  • Ehsani MA, Hedayati-Asl AA, Bagheri A, Zeinali S, Rashidi A. Hydroxyurea-induced hematological response in transfusion-independent β-thalassemia intermedia: case series and review of literature. Pediatr. Hematol. Oncol. 26(8), 560–565 (2009).
  • Masera N, Tavecchia L, Capra M et al. Optimal response to thalidomide in a patient with thalassaemia major resistant to conventional therapy. Blood Transfus. 8(1), 63–65 (2010).
  • Aguilar-Lopez LB, Delgado-Lamas JL, Rubio-Jurado B, Perea FJ, Ibarra B. Thalidomide therapy in a patient with thalassemia major. Blood Cells Mol. Dis. 41(1), 136–137 (2008).
  • Emery DW, Yannaki E, Tubb J, Nishino T, Li Q, Stamatoyannopoulos G. Development of virus vectors for gene therapy of β chain hemoglobinopathies: flanking with a chromatin insulator reduces γ-globin gene silencing in vivo. Blood 100(6), 2012–2019 (2002).
  • Hanawa H, Hargrove PW, Kepes S, Srivastava DK, Nienhuis AW, Persons DA. Extended β-globin locus control region elements promote consistent therapeutic expression of a γ-globin lentiviral vector in murine β-thalassemia. Blood 104(8), 2281–2290 (2004).
  • Persons DA, Hargrove PW, Allay ER, Hanawa H, Nienhuis AW. The degree of phenotypic correction of murine β-thalassemia intermedia following lentiviral-mediated transfer of a human γ-globin gene is influenced by chromosomal position effects and vector copy number. Blood 101(6), 2175–2183 (2003).
  • Nishino T, Tubb J, Emery DW. Partial correction of murine β-thalassemia with a γ retrovirus vector for human γ-globin. Blood Cells Mol. Dis. 37(1), 1–7 (2006).
  • Nishino T, Cao H, Stamatoyannopoulos G, Emery DW. Effects of human γ-globin in murine β-thalassaemia. Br. J. Haematol. 134(1), 100–108 (2006).
  • Thein SL, Menzel S. Discovering the genetics underlying foetal haemoglobin production in adults. Br. J. Haematol. 145(4), 455–467 (2009).
  • Forget BG. Progress in understanding the hemoglobin switch. N. Engl. J. Med. 365(9), 852–854 (2011).
  • Sankaran VG, Xu J, Byron R et al. A functional element necessary for fetal hemoglobin silencing. N. Engl. J. Med. 365(9), 807–814 (2011).
  • Galanello R. Recent advances in the molecular understanding of non-transfusion-dependent thalassemia. Blood Rev. 26(Suppl. 1), S7–S11 (2012).
  • Xu XS, Hong X, Wang G. Induction of endogenous γ-globin gene expression with decoy oligonucleotide targeting Oct-1 transcription factor consensus sequence. J. Hematol. Oncol. 2, 15 (2009).
  • Jiang J, Best S, Menzel S et al. cMYB is involved in the regulation of fetal hemoglobin production in adults. Blood 108(3), 1077–1083 (2006).
  • Sankaran VG, Menne TF, Xu J et al. Human fetal hemoglobin expression is regulated by the developmental stage-specific repressor BCL11A. Science 322(5909), 1839–1842 (2008).
  • Sankaran VG, Xu J, Orkin SH. Transcriptional silencing of fetal hemoglobin by BCL11A. Ann. NY Acad. Sci. 1202, 64–68 (2010).
  • Sankaran VG. Targeted therapeutic strategies for fetal hemoglobin induction. Hematology Am. Soc. Hematol. Educ. Program 2011, 459–465 (2011).
  • Nguyen TK, Joly P, Bardel C, Moulsma M, Bonello-Palot N, Francina A. The XmnI (G)γ polymorphism influences hemoglobin F synthesis contrary to BCL11A and HBS1L-MYB SNPs in a cohort of 57 β-thalassemia intermedia patients. Blood Cells Mol. Dis. 45(2), 124–127 (2010).
  • Bianchi NFG, Gambari R, Mischiati C. Synthetic oligonucleotides as inducers of erythroid differentiation. PCT/EP01/02804 (2001).
  • Sankaran VG, Menne TF, Šcepanovic D et al. MicroRNA-15a and -16-1 act via MYB to elevate fetal hemoglobin expression in human trisomy 13. Proc. Natl Acad. Sci. USA 108(4), 1519–1524 (2011).
  • Zhou D, Liu K, Sun CW, Pawlik KM, Townes TM. KLF1 regulates BCL11A expression and γ- to β-globin gene switching. Nat. Genet. 42(9), 742–744 (2010).
  • Gräslund T, Li X, Magnenat L, Popkov M, Barbas CF 3rd. Exploring strategies for the design of artificial transcription factors: targeting sites proximal to known regulatory regions for the induction of γ-globin expression and the treatment of sickle cell disease. J. Biol. Chem. 280(5), 3707–3714 (2005).
  • Wilber A, Tschulena U, Hargrove PW et al. A zinc-finger transcriptional activator designed to interact with the γ-globin gene promoters enhances fetal hemoglobin production in primary human adult erythroblasts. Blood 115(15), 3033–3041 (2010).
  • Zhu J, Chin K, Aerbajinai W, Trainor C, Gao P, Rodgers GP. Recombinant erythroid Kruppel-like factor fused to GATA1 up-regulates Δ- and γ-globin expression in erythroid cells. Blood 117(11), 3045–3052 (2011).
  • Musallam KM, Sankaran VG, Cappellini MD, Duca L, Nathan DG, Taher AT. Fetal hemoglobin levels and morbidity in untransfused patients with β-thalassemia intermedia. Blood 119(2), 364–367 (2012).
  • Zuccato C, Breda L, Salvatori F et al. A combined approach for β-thalassemia based on gene therapy-mediated adult hemoglobin (HbA) production and fetal hemoglobin (HbF) induction. Ann. Hematol. 91(8), 1201–1213 (2012).
  • Lampronti I, Bianchi N, Zuccato C et al. Increase in γ-globin mRNA content in human erythroid cells treated with angelicin analogs. Int. J. Hematol. 90(3), 318–327 (2009).
  • Macari ER, Lowrey CH. Induction of human fetal hemoglobin via the NRF2 antioxidant response signaling pathway. Blood 117(22), 5987–5997 (2011).
  • Olivieri NF, Saunthararajah Y, Thayalasuthan V et al.; Thalassemia Clinical Research Network. A pilot study of subcutaneous decitabine in β-thalassemia intermedia. Blood 118(10), 2708–2711 (2011).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.