68
Views
16
CrossRef citations to date
0
Altmetric
Review

Ocular rigidity

, , , &
Pages 343-351 | Published online: 09 Jan 2014

References

  • Srodka W, Iskander DR. Optically inspired biomechanical model of the human eyeball. J. Biomed. Opt.13(4), 044034 (2008).
  • Srodka W, Pierscionek ΒΚ. Effect of material properties of the eyeball coat on optical image stability. J. Biomed. Opt.13(5), 054013 (2008).
  • Purslow PP, Karwatowski WS. Ocular elasticity. Is engineering stiffness a more useful characterization parameter than ocular rigidity? Ophthalmology103(10), 1686–1692 (1996).
  • Friedenwald JS. Contribution to the theory and practice of tonometry. Am. J. Opthalmol.20, 985–1024 (1937).
  • Grant WM. Tonographic method for measuring the facility and rate of aqueous flow in human eyes. Arch. Ophthal.44(2), 204–214 (1950).
  • Grant WM. Clinical tonography. Trans. Am. Acad. Ophthalmol. Otolaryngol.55, 774–781 (1951).
  • Gloster J, Perkins ES. Distensibility of the human eye. Br. J. Ophthalmol.43(2), 97–101 (1959).
  • Silver DM, Farrell RA, Langham ME et al. Estimation of pulsatile ocular blood flow from intraocular pressure. Acta Ophthalmol. Suppl.191, 25–29 (1989).
  • Krakau CE. Calculation of the pulsatile ocular blood flow. Invest. Ophthalmol. Vis. Sci.33(9), 2754–2756 (1992).
  • Eisenlohr JE, Langham ME, Maumenee AE. Manometric studies of the pressure–volume relationship in living and enucleated eyes of individual human subjects. Br. J. Ophthalmol.46(9), 536–548 (1962).
  • Prijot E, Weekers R. Contribution to the study of the rigidity of the normal human eye. Ophthalmologica138, 1–9 (1959).
  • Ytteborg J. Influence of bulbar compression on rigidity coefficient of human eyes, in vivo and encleated. Acta Ophthalmol. (Copenh.)38, 562–577 (1960).
  • Ytteborg J. The role of intraocular blood volume in rigidity measurements on human eyes. Acta Ophthalmol (Copenh.)38, 410–436 (1960).
  • Pallikaris IG, Kymionis GD, Ginis HS et al. Ocular rigidity in living human eyes. Invest. Ophthalmol. Vis. Sci.46(2), 409–414 (2005).
  • Dastiridou AI, Ginis HS, De Brouwere D et al. Ocular rigidity, ocular pulse amplitude, and pulsatile ocular blood flow: the effect of intraocular pressure. Invest. Ophthalmol. Vis. Sci.50(12), 5718–5722 (2009).
  • Jackson CR. Schiotz tonometers. An assessment of their usefulness. Br. J. Ophthalmol.49(9), 478–484 (1965).
  • Gloster J, Perkins ES. Ocular rigidity and tonometry. Proc. R. Soc. Med.50(9), 667–674 (1957).
  • Perkins ES, Gloster J. Further studies on the distensibility of the eye. Br. J. Ophthalmol.41(8), 475–486 (1957).
  • Moses RA, Grodzki WJ. Ocular rigidity in tonography. Doc. Ophthalmol.26, 118–129 (1969).
  • Bayerle-Eder M, Kolodjaschna J, Wolzt M et al. Effect of a nifedipine induced reduction in blood pressure on the association between ocular pulse amplitude and ocular fundus pulsation amplitude in systemic hypertension. Br. J. Ophthalmol.89(6), 704–708 (2005).
  • Hommer A, Fuchsjager-Mayrl G, Resch H et al. Estimation of ocular rigidity based on measurement of pulse amplitude using pneumotonometry and fundus pulse using laser interferometry in glaucoma. Invest. Ophthalmol. Vis. Sci.49(9), 4046–4050 (2008).
  • Wang J, Lesk MR. Estimation of ocular rigidity using ocular pulse amplitude and pulsatile choroidal blood flowmetry in glaucoma. Invest. Ophthalmol. Vis. Sci.50, E-Abstract 4901 (2009).
  • Pallikaris I, Ginis HS, De Brouwere D, Tsilimbaris MK. A novel instrument for the non-invasive measurement of intraocular pressure and ocular rigidity. Invest. Ophthalmol. Vis. Sci.47, E-Abstract 2268 (2006).
  • Panagiotoglou TD, De Brouwere D, Ginis HS, Tsilimbaris MK, Pallikaris IG. Non-invasive measurement of ocular rigidity with a novel instrument. Invest. Ophthalmol. Vis. Sci.49, E-Abstract 4598 (2008).
  • Clark JH. A method for measuring elasticity in vivo and results obtained on the eyeball at different intraocular pressures. Am. J. Physiol.101, 474–481 (1932).
  • Ridley F. The intraocular pressure and drainage of the aqueous humor. Br. J. Exp. Path.11, 217–240 (1930).
  • Ytteborg J. The effect of intraocular pressure on rigidity coefficient in the human eye. Acta Ophthalmol. (Copenh.)38, 548–561 (1960).
  • Eisenlohr JE, Langham ME. The relationship between pressure and volume changes in living and dead rabbit eyes. Invest. Ophthalmol.1, 63–77 (1962).
  • Gloster J, Perkins ES. Distensibility of the eye. Br. J. Ophthalmol.41(2), 93–102 (1957).
  • Grant WM, Trotter RR. Tonographic measurements in enucleated eyes. AMA Arch. Ophthalmol.53(2), 191–200 (1955).
  • Draeger J. Studies on the rigidity coefficient. Doc. Ophthalmol.13, 431–486 (1959).
  • Moses RA, Tarkkanen A. Tonometry; the pressure–volume relationship in the intact human eye at low pressures. Am. J. Ophthalmol.47(1 Pt 2), 557–563; discussion 563–564 (1959).
  • Mc Bain E. Tonometer calibration. II. Ocular rigidity. AMA Arch. Ophthalmol.60(6), 1080–1091 (1958).
  • Holland MG, Madison J, Bean W. The ocular rigidity function. Am. J. Ophthalmol.50, 958–974 (1960).
  • McEwen WK, St Helen R. Rheology of the human sclera. Unifying formulation of ocular rigidity. Ophthalmologica150(5), 321–346 (1965).
  • Woo SL, Kobayashi AS, Lawrence C et al. Mathematical model of the corneo–scleral shell as applied to intraocular pressure–volume relations and applanation tonometry. Ann. Biomed. Eng.1(1), 87–98 (1972).
  • Hibbard RR, Lyon CS, Shepherd MD et al. Immediate rigidity of an eye. I. Whole, segments and strips. Exp. Eye Res.9(1), 137–143 (1970).
  • van der Werff TJ. A new single-parameter ocular rigidity function. Am. J. Ophthalmol.92(3), 391–395 (1981).
  • Silver DM, Geyer O. Pressure–volume relation for the living human eye. Curr. Eye Res.20(2), 115–120 (2000).
  • Dastiridou A, Ginis H, De Brouwere D, Karyotakis N, Tsilimbaris M, Pallikaris I. Axial length, ocular rigidity and pulsatile ocular blood flow. Invest. Ophthalmol. Vis. Sci.50, E-Abstract 414 (2009).
  • James CB, Trew DR, Clark K et al. Factors influencing the ocular pulse-axial length. Graefes Arch. Clin. Exp. Ophthalmol.229(4), 341–344 (1991).
  • Mori F, Konno S, Hikichi T et al. Factors affecting pulsatile ocular blood flow in normal subjects. Br. J. Ophthalmol.85(5), 529–530 (2001).
  • Lam AK, Chan ST, Chan B et al. The effect of axial length on ocular blood flow assessment in anisometropes. Ophthalmic Physiol. Opt.23(4), 315–320 (2003).
  • Kotliar K, Maier M, Bauer S et al. Effect of intravitreal injections and volume changes on intraocular pressure: clinical results and biomechanical model. Acta Ophthalmol. Scand.85(7), 777–781 (2007).
  • Gottlieb MD, Joshi HB, Nickla DL. Scleral changes in chicks with form-deprivation myopia. Curr. Eye Res.9(12), 1157–1165 (1990).
  • Norton TT. Experimental myopia in tree shrews. Ciba Found. Symp.155, 178–194; discussion 194–199 (1990).
  • Tokoro T, Funata M, Akazawa Y. Influence of intraocular pressure on axial elongation. J. Ocul. Pharmacol.6(4), 285–291 (1990).
  • Phillips JR, McBrien NA. Form deprivation myopia: elastic properties of sclera. Ophthalmic Physiol. Opt.15(5), 357–362 (1995).
  • Reiner A, Shih YF, Fitzgerald ME. The relationship of choroidal blood flow and accommodation to the control of ocular growth. Vision Res.35(9), 1227–1245 (1995).
  • Wallman J, Wildsoet C, Xu et al. Moving the retina: choroidal modulation of refractive state. Vision Res.35(1), 37–50 (1995).
  • Nickla DL, Wallman J. The multifunctional choroid. Prog. Retin. Eye Res.29(2), 144–168 (2010).
  • Perkins ES. Ocular volume and ocular rigidity. Exp. Eye Res.33(2), 141–145 (1981).
  • Friberg TR, Fourman SB. Scleral buckling and ocular rigidity. Clinical ramifications. Arch. Ophthalmol.108(11), 1622–1627 (1990).
  • Whitacre MM, Emig MD, Hassanein K. Effect of buckling material on ocular rigidity. Ophthalmology99(4), 498–502 (1992).
  • Gaasterland D, Kupfer C, Milton R et al. Studies of aqueous humour dynamics in man. VI. Effect of age upon parameters of intraocular pressure in normal human eyes. Exp. Eye Res.26(6), 651–656 (1978).
  • Lam AK, Chan ST, Chan H et al. The effect of age on ocular blood supply determined by pulsatile ocular blood flow and color Doppler ultrasonography. Optom. Vis. Sci.80(4), 305–311 (2003).
  • Girard MJ, Suh JK, Bottlang M et al. Scleral biomechanics in the aging monkey eye. Invest. Ophthalmol. Vis. Sci.50(11), 5226–5237 (2009).
  • Friberg TR, Lace JW. A comparison of the elastic properties of human choroid and sclera. Exp. Eye Res.47(3), 429–436 (1988).
  • Friedman E. A hemodynamic model of the pathogenesis of age-related macular degeneration. Am. J. Ophthalmol.124(5), 677–682 (1997).
  • Kiel JW. The effect of arterial pressure on the ocular pressure–volume relationship in the rabbit. Exp. Eye Res.60(3), 267–278 (1995).
  • Best M, Masket S, Rabinovitz AZ. Measurement of vascular rigidity in the living eye. Arch. Ophthalmol.86(6), 699–705 (1971).
  • Kiel JW. Choroidal myogenic autoregulation and intraocular pressure. Exp. Eye Res.58(5), 529–543 (1994).
  • Kymionis GD, Diakonis VF, Kounis G et al. Ocular rigidity evaluation after photorefractive keratectomy: an experimental study. J. Refract. Surg.24(2), 173–177 (2008).
  • Cronemberger S, Guimaraes CS, Calixto N et al. Intraocular pressure and ocular rigidity after LASIK. Arq. Bras. Oftalmol.72(4), 439–443 (2009).
  • Tittel PG, Richards RD. Distensibility measurement of the rabbit eye. Invest. Ophthalmol.10(10), 800–809 (1971).
  • Richards RD, Tittel PG. Corneal and scleral distensibility ratio on enucleated human eyes. Invest. Ophthalmol.12(2), 145–151 (1973).
  • Asejczyk-Widlicka M, Pierscionek BK. The elasticity and rigidity of the outer coats of the eye. Br. J. Ophthalmol.92(10), 1415–1418 (2008).
  • McMonnies CW, Boneham GC. Corneal curvature stability with increased intraocular pressure. Eye Contact Lens33(3), 130–137 (2007).
  • Pierscionek BK, Asejczyk-Widlicka M, Schachar RA. The effect of changing intraocular pressure on the corneal and scleral curvatures in the fresh porcine eye. Br. J. Ophthalmol.91(6), 801–803 (2007).
  • Leydolt C, Findl O, Drexler W. Effects of change in intraocular pressure on axial eye length and lens position. Eye (Lond.)22(5), 657–661 (2008).
  • Liu J, He X. Corneal stiffness affects IOP elevation during rapid volume change in the eye. Invest. Ophthalmol. Vis. Sci.50(5), 2224–2229 (2009).
  • Dupps WJ Jr, Wilson SE. Biomechanics and wound healing in the cornea. Exp. Eye Res.83(4), 709–720 (2006).
  • Friedman E, Ivry M, Ebert E et al. Increased scleral rigidity and age-related macular degeneration. Ophthalmology96(1), 104–108 (1989).
  • Chaine G, Hullo A, Sahel J et al. Case-control study of the risk factors for age related macular degeneration. France-DMLA Study Group. Br. J. Ophthalmol.82(9), 996–1002 (1998).
  • Wang JJ, Mitchell P, Smith W. Refractive error and age-related maculopathy: the Blue Mountains Eye Study. Invest. Ophthalmol. Vis. Sci.39(11), 2167–2171 (1998).
  • Ikram MK, van Leeuwen R, Vingerling JR et al. Relationship between refraction and prevalent as well as incident age-related maculopathy: the Rotterdam Study. Invest. Ophthalmol. Vis. Sci.44(9), 3778–3782 (2003).
  • Pallikaris IG, Kymionis GD et al. Ocular rigidity in patients with age-related macular degeneration. Am. J. Ophthalmol.141(4), 611–615 (2006).
  • Fechtner RD, Weinreb RN. Mechanisms of optic nerve damage in primary open angle glaucoma. Surv. Ophthalmol.39(1), 23–42 (1994).
  • Schumer RA, Podos SM. The nerve of glaucoma! Arch. Ophthalmol.112(1), 37–44 (1994).
  • Burgoyne CF, Downs JC, Bellezza AJ et al. The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage. Prog. Retin. Eye Res.24(1), 39–73 (2005).
  • Sigal IA, Ethier CR. Biomechanics of the optic nerve head. Exp. Eye Res.88(4), 799–807 (2009).
  • Downs JC, Roberts MD, Burgoyne CF. Mechanical environment of the optic nerve head in glaucoma. Optom. Vis. Sci.85(6), 425–435 (2008).
  • Sigal IA, Flanagan JG, Ethier CR. Factors influencing optic nerve head biomechanics. Invest. Ophthalmol. Vis. Sci.46(11), 4189–4199 (2005).
  • Eilaghi A, Flanagan JG, Simmons CA et al. Effects of scleral stiffness properties on optic nerve head biomechanics. Ann. Biomed. Eng.38(4), 1586–1592 (2010).
  • Yang H, Downs JC, Sigal IA et al. Deformation of the normal monkey optic nerve head connective tissue after acute IOP elevation within 3-D histomorphometric reconstructions. Invest. Ophthalmol. Vis. Sci.50(12), 5785–5799 (2009).
  • Sigal IA, Flanagan JG, Tertinegg I et al. Modeling individual-specific human optic nerve head biomechanics. Part II: influence of material properties. Biomech. Model. Mechanobiol.8(2), 99–109 (2009).
  • Sigal IA. Interactions between geometry and mechanical properties on the optic nerve head. Invest. Ophthalmol. Vis. Sci.50(6), 2785–2795 (2009).
  • Roberts W, Rogers JW. Postural effects on pressure and ocular rigidity measurements. Am. J. Ophthalmol.57, 111–118 (1964).
  • Kiss B, Dallinger S, Polak K et al. Ocular hemodynamics during isometric exercise. Microvasc. Res.61(1), 1–13 (2001).
  • Ebneter A, Wagels B, Zinkernagel MS. Non-invasive biometric assessment of ocular rigidity in glaucoma patients and controls. Eye (Lond.)23(3), 606–611 (2009).
  • Andreassen TT, Simonsen AH, Oxlund H. Biomechanical properties of keratoconus and normal corneas. Exp. Eye Res.31(4), 435–441 (1980).
  • Edmund C. Corneal topography and elasticity in normal and keratoconic eyes. A methodological study concerning the pathogenesis of keratoconus. Acta Ophthalmol. Suppl.193, 1–36 (1989).
  • Meek KM, Tuft SJ, Huang Y et al. Changes in collagen orientation and distribution in keratoconus corneas. Invest. Ophthalmol. Vis. Sci.46(6), 1948–1956 (2005).
  • Edmund C. Corneal elasticity and ocular rigidity in normal and keratoconic eyes. Acta Ophthalmol. (Copenh.)66(2), 134–140 (1988).
  • Brooks AM, Robertson IF, Mahoney AM. Ocular rigidity and intraocular pressure in keratoconus. Aust. J. Ophthalmol.12(4), 317–324 (1984).
  • Kaiser-Kupfer MI, McCain L, Shapiro JR et al. Low ocular rigidity in patients with osteogenesis imperfecta. Invest. Ophthalmol. Vis. Sci.20(6), 807–809 (1981).
  • Kaiser-Kupfer MI, Podgor MJ, McCain L et al. Correlation of ocular rigidity and blue sclerae in osteogenesis imperfecta. Trans. Ophthalmol. Soc. UK104(Pt 2), 191–195 (1985).
  • Weekers R, Lavergne G. Changes in ocular rigidity in endocrine exophthalmos. Br. J. Ophthalmol.42(11), 680–685 (1958).
  • Syrdalen P. Intraocular pressure and ocular rigidity in patients with retinal detachment. II. Postoperative study. Acta Ophthalmol. (Copenh.)48(5), 1036–1044 (1970).
  • Harbin TS Jr, Laikam SE, Lipsitt K et al. Applanation-Schiotz disparity after retinal detachment surgery utilizing cryopexy. Ophthalmology86(9), 1609–1612 (1979).
  • Vaid RL, Bachh H, Ahuja L. Ocular rigidity during normal menstrual cycle. Indian J. Ophthalmol.22(4), 16–18 (1974).
  • Dragostinoff N, Werkmeister RM, Groschl M et al. Depth-resolved measurement of ocular fundus pulsations by low-coherence tissue interferometry. J. Biomed. Opt.14(5), 054047 (2009).
  • Luce DA. Determining in vivo biomechanical properties of the cornea with an ocular response analyzer. J. Cataract Refract. Surg.31(1), 156–162 (2005).
  • Ginis HS, Pallikaris IG, Tsilimbaris MK, Kounis GA, Kymionis GD. Changes in ocular rigidity upon insertion of an intraocular bubble. Invest. Ophthalmol. Vis. Sci.43, E-Abstract 1112 (2002).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.