307
Views
51
CrossRef citations to date
0
Altmetric
Review

Systems-wide proteomic characterization of combinatorial post-translational modification patterns

, &
Pages 79-92 | Published online: 09 Jan 2014

References

  • Hirota T, Lipp JJ, Toh BH, Peters JM. Histone H3 serine 10 phosphorylation by Aurora B causes HP1 dissociation from heterochromatin. Nature438(7071), 1176–1180 (2005).
  • Fischle W, Tseng BS, Dormann HL et al. Regulation of HP1-chromatin binding by histone H3 methylation and phosphorylation. Nature438(7071), 1116–1122 (2005).
  • Fischle W, Wang Y, Allis CD. Binary switches and modification cassettes in histone biology and beyond. Nature425(6957), 475–479 (2003).
  • Garcia BA, Barber CM, Hake SB et al. Modifications of human histone H3 variants during mitosis. Biochemistry44(39), 13202–13213 (2005).
  • Jiang T, Zhou X, Taghizadeh K, Dong M, Dedon PC. N-formylation of lysine in histone proteins as a secondary modification arising from oxidative DNA damage. Proc. Natl Acad. Sci. USA104(1), 60–65 (2007).
  • Wisniewski JR, Zougman A, Kruger S, Mann M. Mass spectrometric mapping of linker histone H1 variants reveals multiple acetylations, methylations, and phosphorylation as well as differences between cell culture and tissue. Mol. Cell. Proteomics6(1), 72–87 (2007).
  • Ulrich HD. Mutual interactions between the SUMO and ubiquitin systems: a plea of no contest. Trends Cell Biol.15(10), 525–532 (2005).
  • Heideker J, Perry JJ, Boddy MN. Genome stability roles of SUMO-targeted ubiquitin ligases. DNA Repair (Amst.)8(4), 517–524 (2009).
  • Prudden J, Pebernard S, Raffa G et al. SUMO-targeted ubiquitin ligases in genome stability. EMBO J.26(18), 4089–4101 (2007).
  • Xie Y, Kerscher O, Kroetz MB, McConchie HF, Sung P, Hochstrasser M. The yeast Hex3.Slx8 heterodimer is a ubiquitin ligase stimulated by substrate sumoylation. J. Biol. Chem.282(47), 34176–34184 (2007).
  • Sun H, Leverson JD, Hunter T. Conserved function of RNF4 family proteins in eukaryotes: targeting a ubiquitin ligase to SUMOylated proteins. EMBO J.26(18), 4102–4112 (2007).
  • Tatham MH, Geoffroy MC, Shen L et al. RNF4 is a poly-SUMO-specific E3 ubiquitin ligase required for arsenic-induced PML degradation. Nat. Cell. Biol.10(5), 538–546 (2008).
  • Lallemand-Breitenbach V, Jeanne M, Benhenda S et al. Arsenic degrades PML or PML–RARα through a SUMO-triggered RNF4/ubiquitin-mediated pathway. Nat. Cell. Biol.10(5), 547–555 (2008).
  • Schimmel J, Larsen KM, Matic I et al. The ubiquitin-proteasome system is a key component of the SUMO-2/3 cycle. Mol. Cell. Proteomics7(11), 2107–2122 (2008).
  • Sims JK, Houston SI, Magazinnik T, Rice JC. A trans-tail histone code defined by monomethylated H4 Lys-20 and H3 Lys-9 demarcates distinct regions of silent chromatin. J. Biol. Chem.281(18), 12760–12766 (2006).
  • Botuyan MV, Lee J, Ward IM et al. Structural basis for the methylation state-specific recognition of histone H4-K20 by 53BP1 and Crb2 in DNA repair. Cell127(7), 1361–1373 (2006).
  • Huyen Y, Zgheib O, Ditullio RA Jr et al. Methylated lysine 79 of histone H3 targets 53BP1 to DNA double-strand breaks. Nature432(7015), 406–411 (2004).
  • Strahl BD, Allis CD. The language of covalent histone modifications. Nature403(6765), 41–45 (2000).
  • Bonisch C, Nieratschker SM, Orfanos NK, Hake SB. Chromatin proteomics and epigenetic regulatory circuits. Exp. Rev. Proteomics5(1), 105–119 (2008).
  • Shi Y, Whetstine JR. Dynamic regulation of histone lysine methylation by demethylases. Mol. Cell25(1), 1–14 (2007).
  • Kouzarides T. Chromatin modifications and their function. Cell128(4), 693–705 (2007).
  • Garcia BA, Shabanowitz J, Hunt DF. Characterization of histones and their post-translational modifications by mass spectrometry. Curr. Opin. Chem. Biol.11(1), 66–73 (2007).
  • Yang XJ. Multisite protein modification and intramolecular signaling. Oncogene24(10), 1653–1662 (2005).
  • Benayoun BA, Veitia RA. A post-translational modification code for transcription factors: sorting through a sea of signals. Trends Cell Biol.19(5), 189–197 (2009).
  • Joubel A, Chalkley RJ, Medzihradszky KF, Hondermarck H, Burlingame AL. Identification of new p53 acetylation sites in COS-1 cells. Mol. Cell. Proteomics8(6), 1167–1173 (2009).
  • Kachirskaia I, Shi X, Yamaguchi H et al. Role for 53BP1 Tudor domain recognition of p53 dimethylated at lysine 382 in DNA damage signaling. J. Biol. Chem.283(50), 34660–34666 (2008).
  • Li M, Luo J, Brooks CL, Gu W. Acetylation of p53 inhibits its ubiquitination by Mdm2. J. Biol. Chem.277(52), 50607–50611 (2002).
  • Milne DM, Palmer RH, Campbell DG, Meek DW. Phosphorylation of the p53 tumour-suppressor protein at three N-terminal sites by a novel casein kinase I-like enzyme. Oncogene7(7), 1361–1369 (1992).
  • Khanna KK, Keating KE, Kozlov S et al. ATM associates with and phosphorylates p53: mapping the region of interaction. Nat. Genet.20(4), 398–400 (1998).
  • Dumaz N, Milne DM, Meek DW. Protein kinase CK1 is a p53-threonine 18 kinase which requires prior phosphorylation of serine 15. FEBS Lett.463(3), 312–316 (1999).
  • Lopez-Borges S, Lazo PA. The human vaccinia-related kinase 1 (VRK1) phosphorylates threonine-18 within the Mdm-2 binding site of the p53 tumour suppressor protein. Oncogene19(32), 3656–3664 (2000).
  • Okorokov AL, Ponchel F, Milner J. Induced N- and C-terminal cleavage of p53: a core fragment of p53, generated by interaction with damaged DNA, promotes cleavage of the N-terminus of full-length p53, whereas ssDNA induces C-terminal cleavage of p53. EMBO J.16(19), 6008–6017 (1997).
  • Chehab NH, Malikzay A, Stavridi ES, Halazonetis TD. Phosphorylation of Ser-20 mediates stabilization of human p53 in response to DNA damage. Proc. Natl Acad. Sci. USA96(24), 13777–13782 (1999).
  • Turenne GA, Price BD. Glycogen synthase kinase3 β phosphorylates serine 33 of p53 and activates p53’s transcriptional activity. BMC Cell. Biol.2, 12 (2001).
  • Radhakrishnan SK, Gartel AL. CDK9 phosphorylates p53 on serine residues 33, 315 and 392. Cell Cycle5(5), 519–521 (2006).
  • Zheng H, You H, Zhou XZ et al. The prolyl isomerase Pin1 is a regulator of p53 in genotoxic response. Nature419(6909), 849–853 (2002).
  • Sakaguchi K, Herrera JE, Saito S et al. DNA damage activates p53 through a phosphorylation–acetylation cascade. Genes Dev.12(18), 2831–2841 (1998).
  • Wulf GM, Liou YC, Ryo A, Lee SW, Lu KP. Role of Pin1 in the regulation of p53 stability and p21 transactivation, and cell cycle checkpoints in response to DNA damage. J. Biol. Chem.277(50), 47976–47979 (2002).
  • Zacchi P, Gostissa M, Uchida T et al. The prolyl isomerase Pin1 reveals a mechanism to control p53 functions after genotoxic insults. Nature419(6909), 853–857 (2002).
  • D’Orazi G, Cecchinelli B, Bruno T et al. Homeodomain-interacting protein kinase-2 phosphorylates p53 at Ser 46 and mediates apoptosis. Nat. Cell Biol.4(1), 11–19 (2002).
  • Yeh PY, Chuang SE, Yeh KH, Song YC, Cheng AL. Nuclear extracellular signal-regulated kinase 2 phosphorylates p53 at Thr55 in response to doxorubicin. Biochem. Biophys. Res. Commun.284(4), 880–886 (2001).
  • Buschmann T, Potapova O, Bar-Shira A et al. Jun NH2-terminal kinase phosphorylation of p53 on Thr-81 is important for p53 stabilization and transcriptional activities in response to stress. Mol. Cell. Biol.21(8), 2743–2754 (2001).
  • Berger M, Stahl N, Del Sal G, Haupt Y. Mutations in proline 82 of p53 impair its activation by Pin1 and Chk2 in response to DNA damage. Mol. Cell. Biol.25(13), 5380–5388 (2005).
  • Matsuoka S, Ballif BA, Smogorzewska A et al. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science316(5828), 1160–1166 (2007).
  • Tang Y, Luo J, Zhang W, Gu W. Tip60-dependent acetylation of p53 modulates the decision between cell-cycle arrest and apoptosis. Mol. Cell24(6), 827–839 (2006).
  • Sykes SM, Mellert HS, Holbert MA et al. Acetylation of the p53 DNA-binding domain regulates apoptosis induction. Mol. Cell24(6), 841–851 (2006).
  • Yang WH, Kim JE, Nam HW et al. Modification of p53 with O-linked N-acetylglucosamine regulates p53 activity and stability. Nat. Cell. Biol.8(10), 1074–1083 (2006).
  • Uhle S, Medalia O, Waldron R et al. Protein kinase CK2 and protein kinase D are associated with the COP9 signalosome. EMBO J.22(6), 1302–1312 (2003).
  • Bech-Otschir D, Kraft R, Huang X et al. COP9 signalosome-specific phosphorylation targets p53 to degradation by the ubiquitin system. EMBO J.20(7), 1630–1639 (2001).
  • Tang Y, Zhao W, Chen Y, Zhao Y, Gu W. Acetylation is indispensable for p53 activation. Cell133(4), 612–626 (2008).
  • Wang YH, Tsay YG, Tan BC, Lo WY, Lee SC. Identification and characterization of a novel p300-mediated p53 acetylation site, lysine 305. J. Biol. Chem.278(28), 25568–25576 (2003).
  • Price BD, Hughes-Davies L, Park SJ. Cdk2 kinase phosphorylates serine 315 of human p53 in vitro. Oncogene11(1), 73–80 (1995).
  • Le Cam L, Linares LK, Paul C et al. E4F1 is an atypical ubiquitin ligase that modulates p53 effector functions independently of degradation. Cell127(4), 775–788 (2006).
  • Abida WM, Nikolaev A, Zhao W, Zhang W, Gu W. FBXO11 promotes the Neddylation of p53 and inhibits its transcriptional activity. J. Biol. Chem.282(3), 1797–1804 (2007).
  • Kruse JP, Gu W. MSL2 promotes Mdm2-independent cytoplasmic localization of p53. J. Biol. Chem.284(5), 3250–3263 (2009).
  • Ou YH, Chung PH, Sun TP, Shieh SY. p53 C-terminal phosphorylation by CHK1 and CHK2 participates in the regulation of DNA-damage-induced C-terminal acetylation. Mol. Biol. Cell.16(4), 1684–1695 (2005).
  • Gu W, Roeder RG. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell90(4), 595–606 (1997).
  • Huang J, Perez-Burgos L, Placek BJ et al. Repression of p53 activity by Smyd2-mediated methylation. Nature444(7119), 629–632 (2006).
  • Huang J, Sengupta R, Espejo AB et al. p53 is regulated by the lysine demethylase LSD1. Nature449(7158), 105–108 (2007).
  • Rodriguez MS, Desterro JM, Lain S, Lane DP, Hay RT. Multiple C-terminal lysine residues target p53 for ubiquitin-proteasome-mediated degradation. Mol. Cell. Biol.20(22), 8458–8467 (2000).
  • Xirodimas DP, Saville MK, Bourdon JC, Hay RT, Lane DP. Mdm2-mediated NEDD8 conjugation of p53 inhibits its transcriptional activity. Cell118(1), 83–97 (2004).
  • Youmell M, Park SJ, Basu S, Price BD. Regulation of the p53 protein by protein kinase C α and protein kinase C ζ. Biochem. Biophys. Res. Commun.245(2), 514–518 (1998).
  • Chuikov S, Kurash JK, Wilson JR et al. Regulation of p53 activity through lysine methylation. Nature432(7015), 353–360 (2004).
  • Waterman MJ, Stavridi ES, Waterman JL, Halazonetis TD. ATM-dependent activation of p53 involves dephosphorylation and association with 14-13-3 proteins. Nat. Genet.19(2), 175–178 (1998).
  • Shi X, Kachirskaia I, Yamaguchi H et al. Modulation of p53 function by SET8-mediated methylation at lysine 382. Mol. Cell27(4), 636–646 (2007).
  • Gostissa M, Hengstermann A, Fogal V et al. Activation of p53 by conjugation to the ubiquitin-like protein SUMO-1. EMBO J.18(22), 6462–6471 (1999).
  • Stewart ZA, Tang LJ, Pietenpol JA. Increased p53 phosphorylation after microtubule disruption is mediated in a microtubule inhibitor- and cell-specific manner. Oncogene20(1), 113–124 (2001).
  • Knights CD, Catania J, Di Giovanni S et al. Distinct p53 acetylation cassettes differentially influence gene-expression patterns and cell fate. J. Cell. Biol.173(4), 533–544 (2006).
  • Li AG, Piluso LG, Cai X, Gadd BJ, Ladurner AG, Liu X. An acetylation switch in p53 mediates holo-TFIID recruitment. Mol. Cell28(3), 408–421 (2007).
  • Ivanov GS, Ivanova T, Kurash J et al. Methylation-acetylation interplay activates p53 in response to DNA damage. Mol. Cell. Biol.27(19), 6756–6769 (2007).
  • Meek DW. Multisite phosphorylation and the integration of stress signals at p53. Cell Signal.10(3), 159–166 (1998).
  • Xiao T, Hall H, Kizer KO et al. Phosphorylation of RNA polymerase II CTD regulates H3 methylation in yeast. Genes Dev.17(5), 654–663 (2003).
  • Corden JL. Tails of RNA polymerase II. Trends Biochem. Sci.15(10), 383–387 (1990).
  • Akhtar MS, Heidemann M, Tietjen JR et al. TFIIH kinase places bivalent marks on the carboxy-terminal domain of RNA polymerase II. Mol. Cell34(3), 387–393 (2009).
  • Kelly WG, Dahmus ME, Hart GW. RNA polymerase II is a glycoprotein. Modification of the COOH-terminal domain by O-GlcNAc. J. Biol. Chem.268(14), 10416–10424 (1993).
  • Xu YX, Manley JL. Pinning down transcription: regulation of RNA polymerase II activity during the cell cycle. Cell Cycle3(4), 432–435 (2004).
  • Friebe S, Hartrodt B, Neubert K, Krauss GJ. High-performance liquid chromatographic separation of cis–trans isomers of proline-containing peptides. II. Fractionation in different cyclodextrin systems. J. Chromatogr. A661(1–2), 7–12 (1994).
  • Counterman AE, Clemmer DE. Cis–trans signatures of proline-containing tryptic peptides in the gas phase. Anal. Chem.74(9), 1946–1951 (2002).
  • Grigorean G, Cong X, Lebrilla CB. Chiral analyses of peptides by ion/molecule reactions. Int. J. Mass Spectrom.234(1–3), 71–77 (2004).
  • Ewing MA, Wang J, Sheeley SA, Sweedler JV. Detecting D-amino acid-containing neuropeptides using selective enzymatic digestion. Anal. Chem.80(8), 2874–2880 (2008).
  • Edde B, Rossier J, Le Caer JP, Desbruyeres E, Gros F, Denoulet P. Posttranslational glutamylation of α-tubulin. Science247(4938), 83–85 (1990).
  • Audebert S, Desbruyeres E, Gruszczynski C et al. Reversible polyglutamylation of α- and β-tubulin and microtubule dynamics in mouse brain neurons. Mol. Biol. Cell4(6), 615–626 (1993).
  • van Dijk J, Rogowski K, Miro J, Lacroix B, Edde B, Janke C. A targeted multienzyme mechanism for selective microtubule polyglutamylation. Mol. Cell26(3), 437–448 (2007).
  • Janke C, Rogowski K, Wloga D et al. Tubulin polyglutamylase enzymes are members of the TTL domain protein family. Science308(5729), 1758–1762 (2005).
  • Redeker V, Levilliers N, Schmitter JM et al. Polyglycylation of tubulin: a posttranslational modification in axonemal microtubules. Science266(5191), 1688–1691 (1994).
  • Ersfeld K, Wehland J, Plessmann U, Dodemont H, Gerke V, Weber K. Characterization of the tubulin-tyrosine ligase. J. Cell. Biol.120(3), 725–732 (1993).
  • Hallak ME, Rodriguez JA, Barra HS, Caputto R. Release of tyrosine from tyrosinated tubulin. Some common factors that affect this process and the assembly of tubulin. FEBS Lett.73(2), 147–150 (1977).
  • Paturle L, Wehland J, Margolis RL, Job D. Complete separation of tyrosinated, detyrosinated, and nontyrosinatable brain tubulin subpopulations using affinity chromatography. Biochemistry28(6), 2698–2704 (1989).
  • Paturle-Lafanechere L, Manier M, Trigault N, Pirollet F, Mazarguil H, Job D. Accumulation of δ2-tubulin, a major tubulin variant that cannot be tyrosinated, in neuronal tissues and in stable microtubule assemblies. J. Cell. Sci.107(Pt 6), 1529–1543 (1994).
  • Paturle-Lafanechere L, Edde B, Denoulet P et al. Characterization of a major brain tubulin variant which cannot be tyrosinated. Biochemistry30(43), 10523–10528 (1991).
  • L’Hernault SW, Rosenbaum JL. Chlamydomonas α-tubulin is posttranslationally modified by acetylation on the ε-amino group of a lysine. Biochemistry24(2), 473–478 (1985).
  • Eipper BA. Properties of rat brain tubulin. J. Biol. Chem.249(5), 1407–1416 (1974).
  • Eipper BA. Rat brain tubulin and protein kinase activity. J. Biol. Chem.249(5), 1398–1406 (1974).
  • Gard DL, Kirschner MW. A polymer-dependent increase in phosphorylation of β-tubulin accompanies differentiation of a mouse neuroblastoma cell line. J. Cell. Biol.100(3), 764–774 (1985).
  • Caron JM. Posttranslational modification of tubulin by palmitoylation: I. In vivoand cell-free studies. Mol. Biol. Cell8(4), 621–636 (1997).
  • Ozols J, Caron JM. Posttranslational modification of tubulin by palmitoylation: II. Identification of sites of palmitoylation. Mol. Biol. Cell8(4), 637–645 (1997).
  • Reed NA, Cai D, Blasius TL et al. Microtubule acetylation promotes kinesin-1 binding and transport. Curr. Biol.16(21), 2166–2172 (2006).
  • Lin SX, Gundersen GG, Maxfield FR. Export from pericentriolar endocytic recycling compartment to cell surface depends on stable, detyrosinated (glu) microtubules and kinesin. Mol. Biol. Cell13(1), 96–109 (2002).
  • Peris L, Thery M, Faure J et al. Tubulin tyrosination is a major factor affecting the recruitment of CAP-Gly proteins at microtubule plus ends. J. Cell Biol.174(6), 839–849 (2006).
  • Redeker V, Levilliers N, Vinolo E et al. Mutations of tubulin glycylation sites reveal cross-talk between the C termini of α- and β-tubulin and affect the ciliary matrix in Tetrahymena. J. Biol. Chem.280(1), 596–606 (2005).
  • Hammond JW, Cai D, Verhey KJ. Tubulin modifications and their cellular functions. Curr. Opin. Cell Biol.20(1), 71–76 (2008).
  • Verhey KJ, Gaertig J. The tubulin code. Cell Cycle,6(17), 2152–2160 (2007).
  • Westermann S, Weber K. Post-translational modifications regulate microtubule function. Nat. Rev. Mol. Cell Biol.4(12), 938–947 (2003).
  • Grosschedl R, Giese K, Pagel J. HMG domain proteins: architectural elements in the assembly of nucleoprotein structures. Trends Genet.10(3), 94–100 (1994).
  • Chiappetta G, Bandiera A, Berlingieri MT et al. The expression of the high mobility group HMGI (Y) proteins correlates with the malignant phenotype of human thyroid neoplasias. Oncogene10(7), 1307–1314 (1995).
  • Giancotti V, Berlingieri MT, DiFiore PP, Fusco A, Vecchio G, Crane-Robinson C. Changes in nuclear proteins on transformation of rat epithelial thyroid cells by a murine sarcoma retrovirus. Cancer Res.45(12 Pt 1), 6051–6057 (1985).
  • Giancotti V, Buratti E, Perissin L et al. Analysis of the HMGI nuclear proteins in mouse neoplastic cells induced by different procedures. Exp. Cell Res.184(2), 538–545 (1989).
  • Chiappetta G, Avantaggiato V, Visconti R et al. High level expression of the HMGI (Y) gene during embryonic development. Oncogene13(11), 2439–2446 (1996).
  • Zhou X, Benson KF, Ashar HR, Chada K. Mutation responsible for the mouse pygmy phenotype in the developmentally regulated factor HMGI-C. Nature376(6543), 771–774 (1995).
  • Reeves R, Wolffe AP. Substrate structure influences binding of the non-histone protein HMG-I (Y) to free nucleosomal DNA. Biochemistry35(15), 5063–5074 (1996).
  • Reeves R, Nissen MS. Interaction of high mobility group-I (Y) nonhistone proteins with nucleosome core particles. J. Biol. Chem.268(28), 21137–21146 (1993).
  • Reeves R, Leonard WJ, Nissen MS. Binding of HMG-I (Y) imparts architectural specificity to a positioned nucleosome on the promoter of the human interleukin-2 receptor a gene. Mol. Cell Biol.20(13), 4666–4679 (2000).
  • Zhang Q, Wang Y. High mobility group proteins and their post-translational modifications. Biochim. Biophys. Acta1784(9), 1159–1166 (2008).
  • Elton TS, Reeves R. Purification and postsynthetic modifications of Friend erythroleukemic cell high mobility group protein HMG-I. Anal. Biochem.157(1), 53–62 (1986).
  • Lund T, Holtlund J, Laland SG. On the phosphorylation of low molecular mass HMG (high mobility group) proteins in Ehrlich ascites cells. FEBS Lett.180(2), 275–279 (1985).
  • Zhang Q, Wang Y. High mobility group proteins and their post-translational modifications. Biochim. Biophys. Acta1784(9), 1159–1166 (2008).
  • Nissen MS, Langan TA, Reeves R. Phosphorylation by cdc2 kinase modulates DNA binding activity of high mobility group I nonhistone chromatin protein. J. Biol. Chem.266(30), 19945–19952 (1991).
  • Harrer M, Luhrs H, Bustin M, Scheer U, Hock R. Dynamic interaction of HMGA1a proteins with chromatin. J. Cell. Sci.117(Pt 16), 3459–3471 (2004).
  • Banks GC, Li Y, Reeves R. Differential In vivo modifications of the HMGI(Y) nonhistone chromatin proteins modulate nucleosome and DNA interactions. Biochemistry39(28), 8333–8346 (2000).
  • Edberg DD, Bruce JE, Siems WF, Reeves R. In vivo posttranslational modifications of the high mobility group A1a proteins in breast cancer cells of differing metastatic potential. Biochemistry43(36), 11500–11515 (2004).
  • Bergel M, Herrera JE, Thatcher BJ et al. Acetylation of novel sites in the nucleosomal binding domain of chromosomal protein HMG-14 by p300 alters its interaction with nucleosomes. J. Biol. Chem.275(15), 11514–11520 (2000).
  • Herrera JE, Sakaguchi K, Bergel M, Trieschmann L, Nakatani Y, Bustin M. Specific acetylation of chromosomal protein HMG-17 by PCAF alters its interaction with nucleosomes. Mol. Cell. Biol.19(5), 3466–3473 (1999).
  • Zubarev RA, Kelleher NL, McLafferty FW. Electron capture dissociation of multiply charged protein cations. a nonergodic process. J. Am. Chem. Soc.120(13), 3265–3266 (1998).
  • Syka JE, Coon JJ, Schroeder MJ, Shabanowitz J, Hunt DF. Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc. Natl Acad. Sci. USA101(26), 9528–9533 (2004).
  • Zubarev RA, Zubarev AR, Savitski MM. Electron capture/transfer versus collisionally activated/induced dissociations: solo or duet? J. Am. Soc. Mass Spectrom.19(6), 753–761 (2008).
  • Macek B, Waanders LF, Olsen JV, Mann M. Top–down protein sequencing and MS3 on a hybrid linear quadrupole ion trap-orbitrap mass spectrometer. Mol. Cell. Proteomics5(5), 949–958 (2006).
  • Wysocki VH, Tsaprailis G, Smith LL, Breci LA. Mobile and localized protons: a framework for understanding peptide dissociation. J. Mass Spectrom.35(12), 1399–1406 (2000).
  • Siuti N, Kelleher NL. Decoding protein modifications using top–down mass spectrometry. Nat. Methods4(10), 817–821 (2007).
  • Lindner HH. Analysis of histones, histone variants, and their post-translationally modified forms. Electrophoresis29(12), 2516–2532 (2008).
  • Bonenfant D, Coulot M, Towbin H, Schindler P, van Oostrum J. Characterization of histone H2A and H2B variants and their post-translational modifications by mass spectrometry. Mol. Cell Proteomics6(11), 1917–1932 (2006).
  • Hake SB, Garcia BA, Duncan EM et al. Expression patterns and post-translational modifications associated with mammalian histone H3 variants. J. Biol. Chem.281(1), 559–568 (2006).
  • Hake SB, Garcia BA, Kauer M et al. Serine 31 phosphorylation of histone variant H3.3 is specific to regions bordering centromeres in metaphase chromosomes. Proc. Natl Acad. Sci. USA102(18), 6344–6349 (2005).
  • Garcia BA, Pesavento JJ, Mizzen CA, Kelleher NL. Pervasive combinatorial modification of histone H3 in human cells. Nat. Methods4(6), 487–489 (2007).
  • Phanstiel D, Brumbaugh J, Berggren WT et al. Mass spectrometry identifies and quantifies 74 unique histone H4 isoforms in differentiating human embryonic stem cells. Proc. Natl Acad. Sci. USA105(11), 4093–4098 (2008).
  • Young NL, Dimaggio PA, Plazas-Mayorca MD, Baliban RC, Floudas CA, Garcia BA. High-throughput characterization of combinatorial histone codes. Mol. Cell. Proteomics8(10), 2266–2284 (2009).
  • Pesavento JJ, Bullock CR, LeDuc RD, Mizzen CA, Kelleher NL. Combinatorial modification of human histone H4 quantitated by two-dimensional liquid chromatography coupled with top down mass spectrometry. J. Biol. Chem.283(22), 14927–14937 (2008).
  • Jiang L, Smith JN, Anderson SL, Ma P, Mizzen CA, Kelleher NL. Global assessment of combinatorial post-translational modification of core histones in yeast using contemporary mass spectrometry. LYS4 trimethylation correlates with degree of acetylation on the same H3 tail. J. Biol. Chem.282(38), 27923–27934 (2007).
  • Medzihradszky KF, Zhang X, Chalkley RJ et al. Characterization of Tetrahymena histone H2B variants and posttranslational populations by electron capture dissociation (ECD) Fourier transform ion cyclotron mass spectrometry (FT-ICR MS). Mol. Cell Proteomics3(9), 872–886 (2004).
  • Siuti N, Roth MJ, Mizzen CA, Kelleher NL, Pesavento JJ. Gene-specific characterization of human histone H2B by electron capture dissociation. J. Proteome Res.5(2), 233–239 (2006).
  • Boyne MT 2nd, Pesavento JJ, Mizzen CA, Kelleher NL. Precise characterization of human histones in the H2A gene family by top down mass spectrometry. J. Proteome Res.5(2), 248–253 (2006).
  • Thomas CE, Kelleher NL, Mizzen CA. Mass spectrometric characterization of human histone H3: a bird’s eye view. J. Proteome Res.5(2), 240–247 (2006).
  • Taverna SD, Ueberheide BM, Liu Y et al. Long-distance combinatorial linkage between methylation and acetylation on histone H3 N termini. Proc. Natl Acad. Sci. USA104(7), 2086–2091 (2007).
  • Mayya V, Rezual K, Wu L, Fong MB, Han DK. Absolute quantification of multisite phosphorylation by selective reaction monitoring mass spectrometry: determination of inhibitory phosphorylation status of cyclin-dependent kinases. Mol. Cell. Proteomics5(6), 1146–1157 (2006).
  • Soufi B, Gnad F, Jensen PR et al. The Ser/Thr/Tyr phosphoproteome of Lactococcus lactis IL1403 reveals multiply phosphorylated proteins. Proteomics8(17), 3486–3493 (2008).
  • Wisniewski JR, Zougman A, Kruger S et al. Constitutive and dynamic phosphorylation and acetylation sites on NUCKS, a hypermodified nuclear protein, studied by quantitative proteomics. Proteins73(3), 710–718 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.