230
Views
25
CrossRef citations to date
0
Altmetric
Review

Proteomics in Parkinson’s disease: current trends, translational snags and future possibilities

, , &
Pages 127-139 | Published online: 09 Jan 2014

References

  • Singh MP, Patel S, Dikshit M, Gupta YK. Contribution of genomics and proteomics in understanding the role of modifying factors in Parkinson’s disease. Indian J. Biochem. Biophys.43(2), 69–81 (2006).
  • Parkinson J. An essay on the shaking palsy. 1817. J. Neuropsychiatry Clin. Neurosci.14(2), 223–236 (2002).
  • Singh S, Dikshit M. Apoptotic neuronal death in Parkinson’s disease: involvement of nitric oxide. Brain Res. Rev.54(2), 233–250 (2007).
  • Caronti G, Antonini C, Calderaro S et al. Dopamine transporter immunoreactivity in peripheral blood lymphocytes in Parkinson’s disease. J. Neural. Transm.108, 803–807(2001).
  • Lubec G, Krapfenbauer K, Fountoulakis M. Proteomics in brain research: potentials and limitations. Prog. Neurobiol.69(3), 193–211(2003).
  • Kim S, Jeon BS, Heo C et al. α-synuclein induces apoptosis by altered expression in human peripheral lymphocyte in Parkinson’s disease. FASEB J.18(13), 1615–1617 (2004).
  • Licker V, Kövari E, Hochstrasser DF, Burkhard PR. Proteomics in human Parkinson’s disease research. J. Proteomics73(1), 10–29 (2009).
  • Sowell RA, Owen JB, Butterfield DA. Proteomics in animal models of Alzheimer’s and Parkinson’s diseases. Ageing Res. Rev.8(1), 1–17 (2009)
  • Fasano M, Lopiano L. α-synuclein and Parkinson's disease: a proteomic view. Expert Rev. Proteomics5(2), 239–248 (2008).
  • Pienaar IS, Daniels WM, Götz J. Neuroproteomics as a promising tool in Parkinson’s disease research. J. Neural. Transm.115(10), 1413–1430 (2008).
  • Gasser T. Genomic and proteomic biomarkers for Parkinson disease. Neurology72(7), S27–S31 (2009).
  • Shi M, Caudle WM, Zhang J. Biomarker discovery in neurodegenerative diseases: a proteomic approach. Neurobiol. Dis.35(2), 157–164 (2009).
  • Basso M, Giraudo S, Corpillo D, Bergamasco B, Lopiano L, Fasano M. Proteome analysis of human substantia nigra in Parkinson’s disease. Proteomics4(12), 3943–3952 (2004).
  • Sinha A, Patel S, Shukla R, Singh MP. Blood proteome profiling in case controls and Parkinson’s disease patients in Indian population. Clin. Chim. Acta380(1–2), 232–234 (2007).
  • Sinha A, Srivastava N, Singh S et al. Identification of differentially displayed proteins in cerebrospinal fluid of Parkinson’s disease patients: a proteomic approach. Clin. Chim. Acta400(1–2), 14–20 (2009).
  • Patel S, Sinha A, Singh MP. Identification of differentially expressed proteins in striatum of maneb- and paraquat-induced Parkinson’s disease phenotype in mouse. Neurotoxicol. Teratol.29(5), 578–585 (2007).
  • Leighton JK. Application of emerging technologies in toxicology and safety assessment: regulatory perspectives. Int. J. Toxicol.24(3), 153–155 (2005).
  • Hynd MR, Lewohl JM, Scott HL, Dodd PR. Biochemical and molecular studies using human autopsy brain tissue. J. Neurochem.85(3), 543–562 (2003).
  • Michell AW, Lewis SJ, Foltynie T, Barker RA. Biomarkers and Parkinson’s disease. Brain127(8), 1693–1705 (2004).
  • Mitchell A, Brindle N. CSF phosphorylated tau – does it constitute an accurate biological test for Alzheimer’s disease? Int. J. Geriatr. Psychiatry18(5), 407–411 (2003).
  • Hodgetts A, Levin M, Kroll JS, Langford PR. Biomarker discovery in infectious diseases using SELDI. Future Microbiol.2(1), 35–49 (2007).
  • Petricoin EF, Zoon KC, Kohn EC, Barrett JC, Liotta LA. Clinical proteomics: translating benchside promise into bedside reality. Nat. Rev. Drug Discov.1(9), 683–695 (2002).
  • Graeber MB. Biomarkers for Parkinson’s disease. Exp. Neurol.216(2), 249–253 (2009).
  • Fasano M, Alberio T, Lopiano L. Peripheral biomarkers of Parkinson’s disease as early reporters of central neurodegeneration. Biomarker Med.2(5), 465–478 (2008).
  • Antoniades CA, Barker RA. The search for biomarkers in Parkinson’s disease: a critical review. Expert Rev. Neurother.8(12), 1841–1852 (2008).
  • Romeo MJ, Espina V, Lowenthal M, Espina BH, Petricoin EF 3rd, Liotta LA. CSF proteome: a protein repository for potential biomarker identification. Expert Rev. Proteomics2(1), 57–70 (2005).
  • Waragai M, Wei J, Fujita M et al. Increased level of DJ-1 in the cerebrospinal fluids of sporadic Parkinson’s disease. Biochem. Biophys. Res. Commun.345(3), 967–972 (2006).
  • Zhang Y, Dang C, Ma Q, Shimahara Y. Expression of nerve growth factor receptors and their prognostic value in human pancreatic cancer. Oncol. Rep.14(1), 161–171(2005).
  • Zhang J, Sokal I, Peskind ER et al. CSF multianalyte profile distinguishes Alzheimer and Parkinson diseases. Am. J. Clin. Pathol.129(4), 526–529 (2008).
  • El-Agnaf OM, Salem SA, Paleologou KE et al. Detection of oligomeric forms of α-synuclein protein in human plasma as a potential biomarker for Parkinson’s disease. FASEB J.20(3), 419–425 (2006).
  • Pan S, Rush J, Peskind ER et al. Application of targeted quantitative proteomics analysis in human cerebrospinal fluid using a liquid chromatography matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometer (LC MALDI TOF/TOF) platform. J. Proteome Res.7(2), 720–730 (2008).
  • Sheta EA, Appel SH, Goldknopf IL. 2D gel blood serum biomarkers reveal differential clinical proteomics of the neurodegenerative diseases. Expert Rev. Proteomics3(1), 45–62 (2006).
  • Goldknopf IL, Sheta EA, Bryson J et al. Complement C3c and related protein biomarkers in amyotrophic lateral sclerosis and Parkinson’s disease. Biochem. Biophys. Res. Commun.342(4), 1034–1039 (2006).
  • Kikuchi A, Takeda A, Onodera H et al. Systemic increase of oxidative nucleic acid damage in Parkinson’s disease and multiple system atrophy. Neurobiol. Dis.9(2), 244–248 (2002).
  • Yasuhara T, Hara K, Sethi KD, Morgan JC, Borlongan CV. Increased 8-OHdG levels in the urine, serum and substantia nigra of hemiparkinsonian rats. Brain Res.1133(1), 49–52 (2007).
  • Ilic TV, Jovanovic M, Jovicic A, Tomovic M. Oxidative stress indicators are elevated in de novo Parkinson’s disease patients. Funct. Neurol.4(3), 141–147 (1999)
  • Drouot X, Moutereau S, Nguyen JP et al. Low levels of ventricular CSF orexin/hypocretin in advanced PD. Neurology61(4), 540–543 (2003).
  • Finehout EJ, Franck Z, Lee KH. Complement protein isoforms in CSF as possible biomarkers for neurodegenerative disease. Dis. Markers21(2), 93–101 (2005).
  • Nagatsu T, Sawada M. Inflammatory process in Parkinson’s disease: role for cytokines. Curr. Pharm. Des.11(8), 999–1016 (2005).
  • Mila S, Albo AG, Corpillo D et al. Lymphocyte proteomics of Parkinson’s disease patients reveals cytoskeletal protein dysregulation and oxidative stress. Biomarker Med.3(2), 117–128 (2009).
  • Wikoff WR, Pendyala G, Siuzdak G, Fox HS. Metabolomic analysis of the cerebrospinal fluid reveals changes in phospholipase expression in the CNS of SIV-infected macaques. J. Clin. Invest.118(7), 2661–2669 (2008).
  • Cairns DA, Barrett JH, Billingham LJ et al. Sample size determination in clinical proteomic profiling experiments using mass spectrometry for class comparison. Proteomics9(1), 74–86 (2009).
  • Wu Q, Maniatis T. A striking organization of a large family of human neural cadherin-like cell adhesion genes. Cell97(6), 779–790 (1999).
  • Tribl F, Marcus K, Meyer HE, Bringmann G, Gerlach M, Riederer P. Subcellular proteomics reveals neuromelanin granules to be a lysosome-related organelle. J. Neural. Transm.113(6), 741–749 (2006).
  • Butterfield DA, Castegna A. Proteomics for the identification of specifically oxidized proteins in brain: technology and application to the study of neurodegenerative disorders. Amino Acids25(3–4), 419–425 (2003).
  • Werner CJ, Heyny-von Haussen R, Mall G, Wolf S. Proteome analysis of human substantia nigra in Parkinson’s disease. Proteome Sci.6, 8 (2008).
  • Patt S, Gertz HJ, Gerhard L, Cervós-Navarro J. Pathological changes in dendrites of substantia nigra neurons in Parkinson’s disease: a Golgi study. Histol. Histopathol.6(3), 373–380 (1991).
  • Burke WJ, Li SW, Williams EA, Nonneman R, Zahm DS. 3, 4-dihydroxyphenylacetaldehyde is the toxic dopamine metabolite in vivo: implications for Parkinson’s disease pathogenesis. Brain Res.989(2), 205–213 (2003).
  • Tobin JE, Cui J, Wilk JB et al. Sepiapterin reductase expression is increased in Parkinson’s disease brain tissue. Brain Res.1139, 42–47 (2007).
  • Fasano M, Bergamasco B, Lopiano L. Is neuromelanin changed in Parkinson’s disease? Investigations by magnetic spectroscopies. J. Neural. Transm.113(6), 769–774 (2006).
  • Grimm J, Mueller A, Hefti F, Rosenthal A. Molecular basis for catecholaminergic neuron diversity. Proc. Natl Acad. Sci. USA101(38), 13891–13896 (2004).
  • Langston JW, Ballard P, Tetrud JW, Irwin I. Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science219(4587), 979–980 (1983).
  • Patel S, Singh K, Singh S, Singh MP. Gene expression profiles of mouse striatum in control and maneb + paraquat-induced Parkinson’s disease phenotype: validation of differentially expressed energy metabolizing transcripts. Mol. Biotechnol.40(1), 59–68 (2008).
  • Thiruchelvam M, Richfield EK, Goodman BM, Baggs RB, Cory-Slechta DA. Developmental exposure to the pesticides paraquat and maneb and the Parkinson’s disease phenotype. Neurotoxicology23(4–5), 621–633 (2002).
  • Liu J, Zhou Y, Wang Y, Fong H, Murray TM, Zhang J. Identification of proteins involved in microglial endocytosis of α-synuclein. J. Proteome Res.6(9), 3614–3627 (2007).
  • Przedborski S, Chen Q, Vila M et al. Oxidative post-translational modifications of α-synuclein in the 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) mouse model of Parkinson’s disease. J. Neurochem.76(2), 637–640 (2001).
  • Jin J, Meredith GE, Chen L et al. Quantitative proteomic analysis of mitochondrial proteins: relevance to Lewy body formation and Parkinson’s disease. Brain Res. Mol. Brain Res.134(1), 119–138 (2005).
  • McLaughlin P, Zhou Y, Ma T et al. Proteomic analysis of microglial contribution to mouse strain-dependent dopaminergic neurotoxicity. Glia53(6), 567–582 (2006).
  • Svensson M, Sköld K, Nilsson A, Fälth M, Svenningsson P, Andrén PE. Neuropeptidomics: expanding proteomics downwards. Biochem. Soc. Trans.35(Pt 3), 588–593 (2007).
  • Ara J, Przedborski S, Naini AB et al. Inactivation of tyrosine hydroxylase by nitration following exposure to peroxynitrite and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Proc. Natl Acad. Sci. USA95(13), 7659–7663 (1998).
  • Ungerstedt U. 6-hydroxy-dopamine induced degeneration of central monoamine neurons. Eur. J. Pharmacol.5(1), 107–110 (1968).
  • Luthman J, Fredriksson A, Sundström E, Jonsson G, Archer T. Selective lesion of central dopamine or noradrenaline neuron systems in the neonatal rat: motor behavior and monoamine alterations at adult stage. Behav. Brain Res.33(3), 267–277 (1989).
  • Pierson J, Svenningsson P, Caprioli RM, Andren PE. Increased levels of ubiquitin in the 6-OHDA-lesioned striatum of rats. J. Proteome Res.4(2), 223–226 (2005).
  • Elkon H, Melamed E, Offen D. 6-hydroxydopamine increases ubiquitin-conjugates and protein degradation: implications for the pathogenesis of Parkinson’s disease. Cell. Mol. Neurobiol.21(6), 771–781 (2001).
  • Nakamura M, Yamada M, Ohsawa T et al. Phosphoproteomic profiling of human SH-SY5Y neuroblastoma cells during response to 6-hydroxydopamine-induced oxidative stress. Biochim. Biophys. Acta1763(9), 977–989 (2006).
  • Choi WS, Yoon SY, Oh TH, Choi EJ, O’Malley KL, Oh YJ. Two distinct mechanisms are involved in 6-hydroxydopamine- and MPP+-induced dopaminergic neuronal cell death: role of caspases, ROS, and JNK. J. Neurosci. Res.57(1), 86–94 (1999).
  • Lee YM, Park SH, Shin DI et al. Oxidative modification of peroxiredoxin is associated with drug-induced apoptotic signaling in experimental models of Parkinson disease. J. Biol. Chem.283(15), 9986–9998 (2008).
  • Saito Y, Nishio K, Ogawa Y et al. Molecular mechanisms of 6-hydroxydopamine-induced cytotoxicity in PC12 cells: involvement of hydrogen peroxide-dependent and -independent action. Free Radic. Biol. Med.42(5), 675–685 (2007).
  • Shen Y, Yu Y, Guo H, Tang Z, Yu FS, Zhou J. Identification and comparative analysis of differentially expressed proteins in rat striatum following 6-hydroxydopamine lesions of the nigrostriatal pathway: up-regulation of amyloid precursor-like protein 2 expression. Eur. J. Neurosci.16(5), 896–906 (2002).
  • Nilsson A, Sköld K, Sjögren B et al. Increased striatal mRNA and protein levels of the immunophilin FKBP-12 in experimental Parkinson’s disease and identification of FKBP-12-binding proteins. J. Proteome Res.6(10), 3952–3961 (2007).
  • Lee YM, Park SH, Chung KC, Oh YJ. Proteomic analysis reveals upregulation of calreticulin in murine dopaminergic neuronal cells after treatment with 6-hydroxydopamine. Neurosci. Lett.352(1), 17–20 (2003).
  • Manning-Bog AB, McCormack AL, Li J, Uversky VN, Fink AL, Di Monte DA. The herbicide paraquat causes up-regulation and aggregation of α-synuclein in mice: paraquat and α-synuclein. J. Biol. Chem.277(3), 1641–1644 (2002).
  • Miller RL, Sun GY, Sun AY. Cytotoxicity of paraquat in microglial cells: Involvement of PKC-δ and ERK1/2-dependent NADPH oxidase. Brain Res.1167, 129–139 (2007).
  • Höglinger GU, Carrard G, Michel PP et al. Dysfunction of mitochondrial complex I and the proteasome: interactions between two biochemical deficits in a cellular model of Parkinson’s disease. J. Neurochem.86(5), 1297–1307 (2003).
  • Wang XF, Li S, Chou AP, Bronstein JM. Inhibitory effects of pesticides on proteasome activity: implication in Parkinson’s disease. Neurobiol. Dis.23(1), 198–205 (2006).
  • Casarejos MJ, Menéndez J, Solano RM, Rodríguez-Navarro JA, García de Yébenes J, Mena MA. Susceptibility to rotenone is increased in neurons from parkin null mice and is reduced by minocycline. J. Neurochem.97(4), 934–946 (2006).
  • Wang C, Ko HS, Thomas B et al. Stress-induced alterations in parkin solubility promote parkin aggregation and compromise parkin’s protective function. Hum. Mol. Genet.14(24), 3885–3897 (2005).
  • Terzioglu M, Galter D. Parkinson’s disease: genetic versus toxin-induced rodent models. FEBS J.275(7), 1384–1391 (2008).
  • Chesselet MF, Fleming S, Mortazavi F, Meurers B. Strengths and limitations of genetic mouse models of Parkinson’s disease. Parkinsonism Relat. Disord.14(2), S84–S87 (2008).
  • Klose J. Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues. A novel approach to testing for induced point mutations in mammals. Humangenetik26(3), 231–243 (1975).
  • O’Farrell PH. High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem.250(10), 4007–4021 (1975).
  • Klose J, Nock C, Herrmann M et al. Genetic analysis of the mouse brain proteome. Nat. Genet.30(4), 385–393 (2002).
  • Fonteh AN, Harrington RJ, Huhmer AF, Biringer RG, Riggins JN, Harrington MG. Identification of disease markers in human cerebrospinal fluid using lipidomic and proteomic methods. Dis. Markers22(1–2), 39–64 (2006).
  • Morón JA, Devi LA. Use of proteomics for the identification of novel drug targets in brain diseases. J. Neurochem.102(2), 306–315 (2007).
  • Görg A, Weiss W, Dunn MJ. Current 2D electrophoresis technology for proteomics. Proteomics4(12), 3665–3685 (2004).
  • Garbis S, Lubec G, Fountoulakis M. Limitations of current proteomics technologies. J. Chromatogr. A1077(1), 1–18 (2005).
  • Fountoulakis M. Proteomics: current technologies and applications in neurological disorders and toxicology. Amino Acids21(4), 363–381 (2001).
  • Marcus K, Schmidt O, Schaefer H, Hamacher M, van Hall A, Meyer HE. Proteomics – application to the brain. Int. Rev. Neurobiol.61, 285–311 (2004).
  • Leverenz JB, Umar I, Wang Q et al. Proteomic identification of novel proteins in cortical lewy bodies. Brain Pathol.17(2), 139–145 (2007).
  • Haab BB. Methods and applications of antibody microarrays in cancer research. Proteomics3(11), 2116–2122 (2003).
  • Davidsson P, Sjögren M. The use of proteomics in biomarker discovery in neurodegenerative diseases. Dis. Markers21(2), 81–92 (2005).
  • Rite I, Argüelles S, Venero JL et al. Proteomic identification of biomarkers in the cerebrospinal fluid in a rat model of nigrostriatal dopaminergic degeneration. J. Neurosci. Res.85(16), 3607–3618 (2007).
  • Xia Q, Liao L, Cheng D et al. Proteomic identification of novel proteins associated with Lewy bodies. Front. Biosci.13, 3850–3856 (2008).
  • Tribl F, Asan E, Arzberger T et al. Identification of l-ferritin in neuromelanin granules of the human substantia nigra – a targeted proteomics approach. Mol. Cell. Proteomics8(8), 1832–1838 (2009).
  • Jin J, Hulette C, Wang Y et al. Proteomic identification of a stress protein, mortalin/mthsp70/GRP75: relevance to Parkinson disease. Mol. Cell. Proteomics5(7), 1193–1204 (2006).
  • Liu B, Shi Q, Ma S et al. Striatal 19S Rpt6 deficit is related to α-synuclein accumulation in MPTP-treated mice. Biochem. Biophys. Res. Commun.376(2), 277–282 (2008).
  • Xun Z, Sowell RA, Kaufman TC, Clemmer DE. Quantitative proteomics of a presymptomatic A53T α-synuclein Drosophila model of Parkinson disease. Mol. Cell. Proteomics7(7), 1191–1203 (2008).
  • Dukes AA, Van Laar VS, Cascio M, Hastings TG. Changes in endoplasmic reticulum stress proteins and aldolase A in cells exposed to dopamine. J. Neurochem.106(1), 333–346 (2008).
  • Diedrich M, Mao L, Bernreuther C et al. Proteome analysis of ventral midbrain in MPTP-treated normal and L1cam transgenic mice. Proteomics8(6), 1266–1275 (2008).
  • Zhang L, Chang M, Li H et al. Proteomic changes of PC12 cells treated with proteasomal inhibitor PSI. Brain Res.1153, 196–203 (2007).
  • Xun Z, Sowell RA, Kaufman TC, Clemmer DE. Protein expression in a Drosophila model of Parkinson’s disease. J. Proteome Res.6(1), 348–357 (2007).
  • Sköld K, Svensson M, Nilsson A et al. Decreased striatal levels of PEP-19 following MPTP lesion in the mouse. J. Proteome Res.5(2), 262–269 (2006).
  • De Iuliis A, Grigoletto J, Recchia A, Giusti P, Arslan P. A proteomic approach in the study of an animal model of Parkinson’s disease. Clin. Chim. Acta357(2), 202–209 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.