56
Views
10
CrossRef citations to date
0
Altmetric
Review

Tsetse flies, trypanosomes, humans and animals: what is proteomics revealing about their crosstalks?

, , &
Pages 113-126 | Published online: 09 Jan 2014

References

  • WHO. Human African trypanosomiasis (sleeping sickness): epidemiological update. Wkly Epidemiol. Rec.81, 71–80 (2006).
  • Simmaro PP, Jannin J, Cattand P. Eliminating human African trypanosomiasis: where do we stand and what comes next? PLoS Med.5(2), E55 (2008).
  • Desquesnes M, Dia ML. Mechanical transmission of Trypanosoma congolense in cattle by the African tabanid Atylotus agrestis. Exp. Parasitol.105(3–4), 226–231 (2003).
  • Desquesnes M, Dia ML. Mechanical transmission of Trypanosoma vivax in cattle by the African tabanid Atylotus fuscipes. Vet. Parasitol.119(1), 9–19 (2004).
  • Desquesnes M, Bossard G, Patrel D et al. First outbreak of Trypanosoma evansi in camels in metropolitan France. Vet. Rec162(23), 750–752 (2008).
  • Joshi PP, Shegokar VR, Powar RM et al. Human trypanosomiasis caused by Trypanosoma evansi in India: the first case report. Am. J. Trop. Med. Hyg.73(3), 491–495 (2005).
  • Dantas-Torres F, Marcondes CB. Fighting neglected tropical diseases in the postgenomic era. Trends Parasitol.24(4), 156–157 (2008).
  • Holzmuller P, Grébaut P, Brizard JP et al. ‘Pathogeno-Proteomics’: toward a new approach of host–vector–pathogen interactions. Ann. NY Acad. Sci.1149, 337–342 (2008).
  • Roditi I, Lehane M. Interactions between trypanosomes and tsetse flies. Curr. Opin. Microb.11, 345–351 (2008).
  • Biron DG, Moura H, Marché L, Hughes AL, Thomas F. Towards a new conceptual approach to ‘parasitoproteomics’. Trends Parasitol.21, 162–168 (2005).
  • Bridges DJ, Pitt AR, Hanrahan O et al. Characterisation of the plasma membrane subproteome of bloodstream form Trypanosoma brucei. Proteomics8(1), 83–99 (2008).
  • Anderson NL, Parish NM, Richardson JP, Pearson TW. Comparison of African trypanosomes of different antigenic phenotypes, subspecies and life cycle stages by two-dimensional gel electrophoresis. Mol. Biochem. Parasitol.16(3), 299–314 (1985).
  • Pearson TW, Moloo SK, Jenni L. Culture form and tsetse fly midgut form procyclic Trypanosoma brucei express common proteins. Mol. Biochem. Parasitol.25(3), 273–278 (1987).
  • van Deursen FJ, Thornton DJ, Matthews KR. A reproducible protocol for analysis of the proteome of Trypanosoma brucei by 2-dimensional gel electrophoresis. Mol. Biochem. Parasitol.128(1), 107–110 (2003).
  • Colasante C, Ellis M, Ruppert T, Voncken F. Comparative proteomics of glycosomes from bloodstream form and procyclic culture form Trypanosoma brucei brucei. Proteomics6(11), 3275–3293 (2006).
  • Holzmuller P, Biron DG, Courtois P et al. Virulence and pathogenicity patterns of Trypanosoma brucei gambiense field isolates in experimentally infected mouse: differences in host immune response modulation by secretome and proteomics. Microbes Infect.10(1), 79–86 (2008).
  • Grébaut P, Chuchana P, Brizard JP et al. Identification of total and differentially expressed excreted-secreted proteins from Trypanosoma congolense strains exhibiting different virulence and pathogenicity. Int. J. Parasitol.39, 1137–1150 (2009).
  • Hart SR, Lau KW, Hao Z et al. Analysis of the trypanosome flagellar proteome using a combined electron transfer/collisionally activated dissociation strategy. J. Am. Soc. Mass. Spectrom.20(2), 167–175 (2009).
  • Degrasse JA, Chait BT, Field MC, Rout MP. High-yield isolation and subcellular proteomic characterization of nuclear and subnuclear structures from trypanosomes. Methods Mol. Biol.463, 77–92 (2008).
  • Panigrahi AK, Ogata Y, Zíková A et al. A comprehensive analysis of Trypanosoma brucei mitochondrial proteome. Proteomics9(2), 434–450 (2009).
  • Parsons M, Nielsen B. Trypanosoma brucei : two-dimensional gel analysis of the major glycosomal proteins during the life cycle. Exp. Parasitol.70(3), 276–285 (1990).
  • Foucher AL, McIntosh A, Douce G, Wastling J, Tait A, Turner CM. A proteomic analysis of arsenical drug resistance in Trypanosoma brucei. Proteomics6(9), 2726–2732 (2006).
  • Vertommen D, Van Roy J, Szikora JP, Rider MH, Michels PA, Opperdoes FR. Differential expression of glycosomal and mitochondrial proteins in the two major life-cycle stages of Trypanosoma brucei. Mol. Biochem. Parasitol.158(2), 189–201 (2008).
  • El-Sayed NM, Hegde P, Quackenbush J, Melville SE, Donelson JE. The African trypanosome genome. Int. J. Parasitol.30(4), 329–345 (2000).
  • Saas J, Ziegelbauer K, von Haeseler A, Fast B, Boshart M. A developmentally regulated aconitase related to iron-regulatory protein-1 is localized in the cytoplasm and in the mitochondrion of Trypanosoma brucei. J. Biol. Chem.275(4), 2745–2755 (2000).
  • Nett IR, Martin DM, Miranda-Saavedra D et al. The phosphoproteome of bloodstream form Trypanonosoma brucei, causative agent of African sleeping sickness. Mol. Cell. Proteomics.8, 1527–1538 (2009).
  • Lefèvre T, Thomas F, Ravel S et al.Trypanosoma brucei brucei induces alteration in the head proteome of the tsetse fly vector Glossina palpalis gambiensis. Insect Mol. Biol.16, 651–660 (2007).
  • Papadopoulos MC, Abel PM, Agranoff D et al. A novel and accurate diagnostic test for human African trypanosomiasis. Lancet363(9418), 1358–1363 (2004).
  • Agranoff D, Stich A, Abel P, Krishna S. Proteomic fingerprinting for the diagnosis of human African trypanosomiasis. Trends Parasitol.21(4), 154–157 (2005).
  • Biron DG, Loxdale HD, Ponton F et al. Population proteomics: an emerging discipline to study metapopulation ecology. Proteomics6, 1712–1715 (2006).
  • Matthews KR. The developmental cell biology of Trypanosoma brucei. J. Cell Sci.118(2), 283–290 (2005).
  • Aksoy S, Gibson WC, Lehane MJ et al. Perspectives on the interactions between tsetse and trypanosomes with implications for the control of trypanosomiasis. Adv. Parasitol.62, 1–83 (2003).
  • Lehane MJ, Msangi AR. Lectin and peritrophic membrane development in the gut of Glossina m. morsitans and a discussion of their role in protecting the fly against trypanosome infection. Med. Vet. Entomol.5, 495–501 (1991).
  • Hao Z, Kasumba I, Lehane MJ, Gibson WC, Kwon J, Aksoy S. Tsetse immune responses and trypanosome transmission: implications for the development of tsetse-based strategies to reduce trypanosomiasis. Proc. Natl Acad. Sci. USA98, 12648–12653 (2001).
  • Munks RJL, Sant’Anna MRV, Grail W et al. Antioxidant gene expression in the blood-feeding fly Glossina morsitans morsitans. Insect. Mol. Biol.14, 483–491 (2005).
  • Hu CY, Aksoy S. Innate immune responses regulate trypanosome parasite infection of the tsetse fly Glossina morsitans morsitans. Mol. Microbiol.60, 1194–1204 (2006).
  • Chandra M, Liniger M, Tetley L, Roditi I, Barry JD. TsetseEP, a gut protein from the tsetse Glossina morsitans, is related to a major surface glycoprotein of trypanosomes transmitted by the fly and to the products of a Drosophila gene family. Insect. Biochem. Mol. Biol.3, 1163–1173 (2004).
  • Haines LR, Jackson AM, Lehane MJ et al. Increased expression of unusual EP repeat-containing proteins in the midgut of the tsetse fly (Glossina) after bacterial challenge. Insect Biochem. Mol. Biol.35, 413–423 (2005).
  • Pearson TW. Procyclins, proteases and proteomics: dissecting trypanosomes in the tsetse fly. Trends Microbiol.9, 299–301 (2001).
  • Acosta-Serrano A, Vassella E, Liniger M et al. The surface coat of procyclic Trypanosoma brucei : programmed expression and proteolytic cleavage of procyclin in the tsetse fly. Proc. Natl Acad. Sci. USA98, 1513–1518 (2001).
  • Güther ML, Lee S, L Tetley A et al. GPI-anchored proteins and free GPI glycolipids of procyclic form Trypanosoma brucei are nonessential for growth, are required for colonization of the tsetse fly, and are not the only components of the surface coat. Mol. Biol. Cell.17, 5265–5274 (2006).
  • Güther ML, Beattie K, Lamont DJ et al. Fate of glycosylphosphatidylinositol (GPI)-less procyclin and characterization of sialylated non-GPI-anchored surface coat molecules of procyclic-form Trypanosoma brucei. Eukaryot. Cell8, 1407–1417 (2009).
  • Spoerri I, Chadwick R, Renggli CK et al. Role of the stage-regulated nucleoside transporter TbNT10 in differentiation and adenosine uptake in Trypanosoma brucei. Mol. Biochem. Parasitol.154, 110–114 (2007).
  • Dean S, Marchetti R, Kirk K et al. A surface transporter family conveys the trypanosome differentiation signal. Nature459, 213–217 (2009).
  • Mina JG, Pan SY, Wansadhipathi NK et al. The Trypanosoma brucei sphingolipid synthase, an essential enzyme and drug target. Mol. Biochem. Parasitol.168, 16–23 (2009).
  • Haddow JD, Poulis B, Haines LR et al. Identification of major soluble salivary gland proteins in teneral Glossina morsitans morsitans. Insect Biochem. Mol. Biol.32, 1045–1053 (2002).
  • Poulin R. The evolution of parasite manipulation of host behaviour: a theoretical analysis. Parasitology109, S109–S118 (1994).
  • Hurd H. Manipulation of medically important insect vectors by their parasites. Annu. Rev. Entomol.48, 141–161 (2003).
  • Thomas F, Adamo S, Moore J. Parasitic manipulation: where are we and where should we go? Behav. Proc.68, 185–199 (2005).
  • Lefèvre T, Thomas F. Behind the scene, something else is pulling the strings: emphasizing parasitic manipulation in vector-borne diseases. Inf. Gen. Evol.8, 504–519 (2008).
  • Lagrue C, Poulin R. Manipulative parasites in the world of veterinary science: implications for epidemiology and pathology. Vet. J. DOI: 10.1016/j.tvjl.2009.01.015 (2009) (Epub ahead of print).
  • Lefèvre T, Adamo S, Biron DG, Missé D, Hughes D, Thomas F. How to make someone do something: the diversity and evolution of manipulative strategies in host–parasite interactions. Adv. Parasitol.68, 45–83 (2009).
  • Adamo S. Modulating the modulators: parasites, neuromodulators and host behavioral change. Brain Behav. Evol.60, 370–377 (2002).
  • Beckage NE. Parasite- and pathogen-mediated manipulation of host hormones and behaviour. In:Hormones, Brain and Behaviour (Volumes 2–3). Pfaff DW, Arnold AP, Etgen AM, Fahrbach SE, Rubin RT (Eds). Academic Press, CA, USA, 281–318 (2002).
  • Schaub GA. Parasitogenic alterations of vector behaviour. Int. J. Med. Microbiol.296, 37–40 (2006).
  • Webster JP. Rats, cats, people and parasites: the impact of latent toxoplasmosis on behaviour. Microbes Infect.3, 1037–1045 (2001).
  • Lefèvre T, Roche B, Poulin R, Hurd H, Renaud F, Thomas F. Exploiting host compensatory responses: the ‘must’ of manipulation? Trends Parasitol.24(10), 435–439 (2008).
  • Moore J. Parasites and the behaviour of biting flies. J. Parasitol.79, 1–16 (1993).
  • Lefèvre T, Koella JC, Renaud F, Hurd H, Biron DG, Thomas F. New prospects for research on manipulation of insect vectors by pathogens. PLoS Path.2(7), E75 (2006).
  • Rogers ME, Bates PA. Leishmania manipulation of sand fly feeding behaviour results in enhanced transmission. PLoS Path.3, E91 (2007).
  • Jenni L, Molyneux DH, Livesey JL, Galun R. Feeding behavior of tsetse flies infected with salivarian trypanosomes. Nature283, 383–385 (1980).
  • Roberts W. Probing by Glossina morsitans morsitans and transmission of Trypanosoma (Nannomonas) congolense. Am. J. Trop. Med. Hyg.30, 948–951 (1981).
  • Molyneux DH, Jefferies D. Feeding behaviour of pathogen-infected vectors. Parasitology92, 721–736 (1986).
  • Helluy S, Holmes JC. Serotonin, octopamine and the clinging behaviour induced by the parasite Polymorphus paradoxus (Acanthocephala) in Gammarus lacustris (Crustacea). Can. J. Zool.68, 1214–1220 (1990).
  • Thompson SN, Kavaliers M. Physiological bases for parasite-induced alterations of host behaviour. Parasitology109, S119–S138 (1994).
  • Klein SL. Parasite manipulation of the proximate mechanisms that mediate social behaviour in vertebrates. Physiol. Behav.79, 441–449 (2003).
  • Biron DG, Joly C, Galeotti N, Ponton F, Marché L. The proteomics: a new prospect for studying parasitic manipulation. Behav. Processes68, 249–253 (2005).
  • Libersat F, Delago A, Gal R. Manipulation of host behavior by parasitic insects and insect parasites. Annu. Rev. Entomol.54, 189–207 (2009).
  • Lefèvre T, Thomas F, Schwartz A et al. Malaria Plasmodium agent induces alteration in the head proteome of their Anopheles mosquito host. Proteomics7, 1908–1915 (2007).
  • Barry JD, McCulloch R. Antigenic variation in trypanosomes: enhanced phenotypic variation in a eukaryotic parasite. Adv. Parasitol.49, 1–70 (2001).
  • Ferguson MA, Brimacombe JS, Brown JR et al. The GPI biosynthetic pathway as a therapeutic target for African sleeping sickness. Biochim. Biophys. Acta.1455(2–3), 327–340(1999).
  • de Koning HP, Bridges DJ, Burchmore RJ. Purine and pyrimidine transport in pathogenic protozoa: from biology to therapy. FEMS Microbiol. Rev.29(5), 987–1020 (2005).
  • Seebeck T, Schaub R, Johner A. cAMP signalling in the kinetoplastid protozoa. Curr. Mol. Med.4(6), 585–599 (2004).
  • Rout MP, Field MC. Isolation and characterization of subnuclear compartments from Trypanosoma brucei. Identification of a major repetitive nuclear lamina component. J. Biol. Chem.276(41), 38261–38271 (2001).
  • Parsons M. Glycosomes: parasites and the divergence of peroxisomal purpose. Mol. Microbiol.53(3), 717–724 (2004).
  • van Hellemond JJ, Opperdoes FR, Tielens AG. The extraordinary mitochondrion and unusual citric acid cycle in Trypanosoma brucei. Biochem. Soc. Trans.33(5), 967–971 (2005).
  • Guerra-Giraldez C, Quijada L, Clayton CE. Compartmentation of enzymes in a microbody, the glycosome, is essential in Trypanosoma brucei. J. Cell Sci.115(13), 2651–2658 (2002).
  • Acestor N, Panigrahi AK, Ogata Y et al. Protein composition of Trypanosoma brucei mitochondrial membranes. Proteomics9(24), 5497–5508 (2009).
  • Panigrahi AK, Zíková A, Dalley RA et al. Mitochondrial complexes in Trypanosoma brucei : a novel complex and a unique oxidoreductase complex. Mol. Cell. Proteomics7(3), 534–545 (2008).
  • Broadhead R, Dawe HR, Farr H et al. Flagellar motility is required for the viability of the bloodstream trypanosome. Nature440(7081), 224–227 (2006).
  • Holzmuller P, Grébaut P, Peltier JB et al. Secretome of animal trypanosomes. Ann. NY Acad. Sci.1149, 337–342 (2008).
  • Silverman JM, Chan SK, Robinson DP et al. Proteomic analysis of the secretome of Leishmania donovani. Genome Biol.9(2), R35 (2008).
  • Nandan D, Yi T, Lopez M, Lai C, Reiner NE. Leishmania EF-1a activates the Src homology 2 domain containing tyrosine phosphatase SHP-1 leading to macrophage deactivation. J. Biol. Chem.277(51), 50190–50197 (2002).
  • Ferreira V, Molina MC, Valck C et al. Role of calreticulin from parasites in its interaction with vertebrate hosts. Mol. Immunol.40(17), 1279–1291 (2004).
  • Probst P, Stromberg E, Ghalib HW et al. Identification and characterization of T cell-stimulating antigens from Leishmania by CD4 T cell expression cloning. J. Immunol.166(1), 498–505 (2001).
  • Lubega GW, Ochola DO, Prichard RK. Trypanosoma brucei : anti-tubulin antibodies specifically inhibit trypanosome growth in culture. Exp. Parasitol.102(3–4), 134–142 (2002).
  • Sajid M, McKerrow JH. Cysteine proteases of parasitic organisms. Mol. Biochem. Parasitol.120(1), 1–21 (2002).
  • Lalmanach G, Boulangé A, Serveau C et al. Congopain from Trypanosoma congolense : drug target and vaccine candidate. Biol. Chem.383(5), 739–749 (2002).
  • Poinsignon A, Cornelie S, Remoue F et al. Human/vector relationships during human African trypanosomiasis: initial screening of immunogenic salivary proteins of Glossina species. Am. J. Trop. Med. Hyg.76, 327–333 (2007).
  • Caljon G, Broos K, De Goeyse I et al. Identification of a functional antigen 5-related allergen in the saliva of a blood feeding insect, the tsetse fly. Insect Biochem. Mol. Biol.39, 332–341 (2009).
  • Zhang CG, Chromy BA, McCutchen-Maloney SL. Host–pathogen interactions: a proteomic view. Expert Rev. Proteomics2(2), 187–202 (2005).
  • Vierstraete E, Verleyen P, Baggerman G et al. A proteomic approach for the analysis of instantly released wound and immune proteins in Drosophila melanogaster hemolymph. Proc. Natl. Acad. Sci. USA101, 470–475 (2004).
  • Rabilloud T. Two-dimensional gel electrophoresis in proteomics: old, old fashioned, but it still climbs up the mountains. Proteomics.2, 3–10 (2002).
  • Steen H, Mann M. The ABC’s (and XYZ’s) of peptide sequencing. Nat. Rev. Mol. Cell Biol.5, 699–711 (2004).
  • Barrett J, Brophy PM, Hamilton JV. Analysing proteomic data. Int. J. Parasitol.35, 543–553 (2005).
  • Nedelkov D. Population proteomics: addressing protein diversity in humans. Expert Rev. Proteomics2(3), 315–324 (2005).
  • Kiehntopf M, Siegmund R, Deufel T. Use of SELDI-TOF mass spectrometry for identification of new biomarkers: potential and limitations. Clin. Chem. Lab. Med.45(11), 1435–1449 (2007).
  • Bischoff R, Luider TM. Methodological advances in the discovery of protein and peptide disease markers. J. Chromatogr. B.803, 27–40 (2004).
  • Issaq HJ, Veenstra TD, Conrads TP, Felschow D. The SELDI-TOF MS approach to proteomics: protein profiling and biomarker identification. Biochem. Biophys. Res. Commun.292(3), 587–592 (2002).
  • Seibert V, Wiesner A, Buschmann T, Meuer J. Surface-enhanced laser desorption ionization time-of-flight mass spectrometry (SELDI TOF-MS) and protein chip© technology in proteomics research. Pathol. Res. Pract.200, 83–94 (2004).
  • Brand S, Hahner S, Ketterlinus R. Protein profiling and identification in complex biological samples using LC-MALDI. Drug Plus Int.1, 6–8 (2005).
  • Greibrokk T, Pepaj M, Lundenes E, Andersen T, Novotna K. Separating proteins by pI-values – can 2D LC replace 2D GEL? LC-GC Europe18, 355–360 (2005).
  • Uetz P, Giot L, Cagney G et al. A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae. Nature403, 623–631 (2000).
  • Giot L, Bader JS, Brouwer C et al. A protein interaction map of Drosophila melanogaster. Science302, 1727–1736 (2003).
  • Li S, Armstrong CM, Bertin N et al. A map of the interactome network of the metazoan C. elegans. Science303, 540–543 (2004).
  • Juan D, Pazos F, Valencia A. High confidence prediction of global interactomes based on genome-wide coevolutionary networks. Proc. Natl Acad. Sci. USA105(3), 934–939 (2008).
  • Uetz P, Dong YA, Zeretzke C et al. Herpesviral protein networks and their interaction with the human proteome. Science311, 239–242 (2006).
  • Hong H, Dragan Y, Epstein J et al. Quality control and quality assessment of data from surface-enhanced laser desorption/ionization (SELDI) time-of flight (TOF) mass spectrometry (MS). BMC Bioinformatics6(Suppl. 2), S5 (2005).
  • Biron DG, Hughes AL, Loxdale HD et al. The need for megatechnologies: massive sequencing, proteomics and bioinformatics. In: Encyclopedia of Infectious Diseases: Modern Technologies. Tibayrenc M (Ed.). Wiley, NJ, USA, 357–377 (2007)
  • Brand S, Hahner S, Ketterlinus R. Protein profiling and identification in complex biological samples using LC-MALDI. DrugPlus International CA, USA, 6 September 2005.

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.