1,432
Views
73
CrossRef citations to date
0
Altmetric
Review

Isolation of cell surface proteins for mass spectrometry-based proteomics

, , &
Pages 141-154 | Published online: 09 Jan 2014

References

  • Wu CC, Yates JR 3rd. The application of mass spectrometry to membrane proteomics. Nat. Biotechnol.21(3), 262–267 (2003).
  • Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science235(4785), 177–182 (1987).
  • Arispe N, Doh M. Plasma membrane cholesterol controls the cytotoxicity of Alzheimer’s disease AβP (1–40) and (1–42) peptides. FASEB J.16(12), 1526–1536 (2002).
  • Mitchell KJ, Tsuboi T, Rutter GA. Role for plasma membrane-related Ca2+-ATPase-1 (ATP2C1) in pancreatic β-cell Ca2+ homeostasis revealed by RNA silencing. Diabetes53(2), 393–400 (2004).
  • Eccles SA. Monoclonal antibodies targeting cancer: ‘magic bullets’ or just the trigger? Breast Cancer Res.3(2), 86–90 (2001).
  • Zola H. Medical applications of leukocyte surface molecules – the CD molecules. Mol. Med.12(11–12), 312–316 (2006).
  • Brekke OH, Sandlie I. Therapeutic antibodies for human diseases at the dawn of the twenty-first century. Nat. Rev. Drug Discov.2(1), 52–62 (2003).
  • Gundry RL, Boheler KR, Van Eyk JE, Wollscheid B. A novel role for proteomics in the discovery of cell-surface markers on stem cells: scratching the surface. Proteomics Clin. Appl.2(6), 892–903 (2008).
  • Nagano K, Yoshida Y, Isobe T. Cell surface biomarkers of embryonic stem cells. Proteomics8(19), 4025–4035 (2008).
  • Wallin E, von Heijne G. Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Sci.7(4), 1029–1038 (1998).
  • Macher BA, Yen TY. Proteins at membrane surfaces – a review of approaches. Mol. Biosyst.3(10), 705–713 (2007).
  • Tan S, Tan HT, Chung MC. Membrane proteins and membrane proteomics. Proteomics8(19), 3924–3932 (2008).
  • Zheng YZ, Foster LJ. Biochemical and proteomic approaches for the study of membrane microdomains. J. Proteomics72(1), 12–22 (2009).
  • Yates JR 3rd, Gilchrist A, Howell KE, Bergeron JJ. Proteomics of organelles and large cellular structures. Nat. Rev. Mol. Cell. Biol.6(9), 702–714 (2005).
  • Brakke MK. Zonal separations by density-gradient centrifugation. Arch. Biochem. Biophys.45(2), 275–290 (1953).
  • Neville DM Jr. The isolation of a cell membrane fraction from rat liver. J. Biophys. Biochem. Cytol.8, 413–422 (1960).
  • Aronson NN Jr, Touster O. Isolation of rat liver plasma membrane fragments in isotonic sucrose. Methods Enzymol.31(Pt A), 90–102 (1974).
  • Kidwai AM. Isolation of plasma membrane from smooth, skeletal, and heart muscle. Methods Enzymol.31(Pt A), 134–144 (1974).
  • Carlin RK, Grab DJ, Cohen RS, Siekevitz P. Isolation and characterization of postsynaptic densities from various brain regions: enrichment of different types of postsynaptic densities. J. Cell. Biol.86(3), 831–845 (1980).
  • Torrent-Quetglas M, Rivera-Fillat MP, Grau-Oliete MR. Murine leukemic lymphoblasts: homogenization and fractionation procedures for plasma membrane vesicles isolation. Anal. Biochem.114(2), 228–234 (1981).
  • Fayle DR, Sim PS, Irvine DK, Doe WF. Isolation of plasma membrane from human blood monocytes. Subcellular fractionation and marker distribution. Eur. J. Biochem.147(2), 409–419 (1985).
  • Schindler J, Lewandrowski U, Sickmann A, Friauf E, Nothwang HG. Proteomic analysis of brain plasma membranes isolated by affinity two-phase partitioning. Mol. Cell. Proteomics5(2), 390–400 (2006).
  • Schindler J, Nothwang HG. Aqueous polymer two-phase systems: effective tools for plasma membrane proteomics. Proteomics6(20), 5409–5417 (2006).
  • Everberg H, Gustavasson N, Tjerned F. Enrichment of membrane proteins by partitioning in detergent/polymer aqueous two-phase systems. Methods Mol. Biol.424, 403–412 (2008).
  • Cao R, Li X, Liu Z et al. Integration of a two-phase partition method into proteomics research on rat liver plasma membrane proteins. J. Proteome Res.5(3), 634–642 (2006).
  • McCarthy FM, Burgess SC, van den Berg BH, Koter MD, Pharr GT. Differential detergent fractionation for non-electrophoretic eukaryote cell proteomics. J. Proteome Res.4(2), 316–324 (2005).
  • McCarthy FM, Cooksey AM, Burgess SC. Sequential detergent extraction prior to mass spectrometry analysis. Methods Mol. Biol.528, 110–118 (2009).
  • Guo L, Eisenman JR, Mahimkar RM et al. A proteomic approach for the identification of cell-surface proteins shed by metalloproteases. Mol. Cell Proteomics1(1), 30–36 (2002).
  • Elortza F, Nuhse TS, Foster LJ, Stensballe A, Peck SC, Jensen ON. Proteomic analysis of glycosylphosphatidylinositol-anchored membrane proteins. Mol. Cell Proteomics2(12), 1261–1270 (2003).
  • Watarai H, Hinohara A, Nagafune J, Nakayama T, Taniguchi M, Yamaguchi Y. Plasma membrane-focused proteomics: dramatic changes in surface expression during the maturation of human dendritic cells. Proteomics5(15), 4001–4011 (2005).
  • Ghosh D, Krokhin O, Antonovici M et al. Lectin affinity as an approach to the proteomic analysis of membrane glycoproteins. J. Proteome Res.3(4), 841–850 (2004).
  • Lawson EL, Clifton JG, Huang F, Li X, Hixson DC, Josic D. Use of magnetic beads with immobilized monoclonal antibodies for isolation of highly pure plasma membranes. Electrophoresis27(13), 2747–2758 (2006).
  • Speers AE, Wu CC. Proteomics of integral membrane proteins – theory and application. Chem. Rev.107(8), 3687–3714 (2007).
  • Dormeyer W, van Hoof D, Mummery CL, Krijgsveld J, Heck AJ. A practical guide for the identification of membrane and plasma membrane proteins in human embryonic stem cells and human embryonal carcinoma cells. Proteomics8(19), 4036–4053 (2008).
  • Huber LA, Pfaller K, Vietor I. Organelle proteomics: implications for subcellular fractionation in proteomics. Circ. Res.92(9), 962–968 (2003).
  • Castle JD. Purification of organelles from mammalian cells. Curr. Protoc. Immunol.8, 8 (2003).
  • Pertoft H. Fractionation of cells and subcellular particles with Percoll. J. Biochem. Biophys. Methods44(1–2), 1–30 (2000).
  • Le Bihan T, Goh T, Stewart II et al. Differential analysis of membrane proteins in mouse fore- and hindbrain using a label-free approach. J. Proteome Res.5(10), 2701–2710 (2006).
  • Stasyk T, Huber LA. Zooming in: fractionation strategies in proteomics. Proteomics4(12), 3704–3716 (2004).
  • Andersen JS, Lyon CE, Fox AH et al. Directed proteomic analysis of the human nucleolus. Curr. Biol.12(1), 1–11 (2002).
  • Kislinger T, Cox B, Kannan A et al. Global survey of organ and organelle protein expression in mouse: combined proteomic and transcriptomic profiling. Cell125(1), 173–186 (2006).
  • Schirmer EC, Florens L, Guan T, Yates JR 3rd, Gerace L. Nuclear membrane proteins with potential disease links found by subtractive proteomics. Science301(5638), 1380–1382 (2003).
  • Wu L, Hwang SI, Rezaul K et al. Global survey of human T leukemic cells by integrating proteomics and transcriptomics profiling. Mol. Cell. Proteomics6(8), 1343–1353 (2007).
  • Lund R, Leth-Larsen R, Jensen ON, Ditzel HJ. Efficient isolation and quantitative proteomic analysis of cancer cell plasma membrane proteins for identification of metastasis-associated cell surface markers. J. Proteome Res.8(6), 3078–3090 (2009).
  • Dormeyer W, van Hoof D, Braam SR, Heck AJ, Mummery CL, Krijgsveld J. Plasma membrane proteomics of human embryonic stem cells and human embryonal carcinoma cells. J. Proteome Res.7(7), 2936–2951 (2008).
  • Nielsen PA, Olsen JV, Podtelejnikov AV, Andersen JR, Mann M, Wisniewski JR. Proteomic mapping of brain plasma membrane proteins. Mol. Cell. Proteomics4(4), 402–408 (2005).
  • Ye X, Johann DJ Jr, Hakami RM et al. Optimization of protein solubilization for the analysis of the CD14 human monocyte membrane proteome using LC-MS/MS. J. Proteomics73(1), 112–122 (2009).
  • Prokhorova TA, Rigbolt KT, Johansen PT, et al. Stable isotope labeling by amino acids in cell culture (SILAC) and quantitative comparison of the membrane proteomes of self-renewing and differentiating human embryonic stem cells. Mol. Cell. Proteomics8(5), 959–970 (2009).
  • Harkness L, Christiansen H, Nehlin J, Barington T, Andersen JS, Kassem M. Identification of a membrane proteomic signature for human embryonic stem cells independent of culture conditions. Stem Cell Res.1(3), 219–227 (2008).
  • Foster LJ, Zeemann PA, Li C, Mann M, Jensen ON, Kassem M. Differential expression profiling of membrane proteins by quantitative proteomics in a human mesenchymal stem cell line undergoing osteoblast differentiation. Stem Cells23(9), 1367–1377 (2005).
  • Chaney LK, Jacobson BS. Coating cells with colloidal silica for high yield isolation of plasma membrane sheets and identification of transmembrane proteins. J. Biol. Chem.258(16), 10062–10072 (1983).
  • Durr E, Yu J, Krasinska KM et al. Direct proteomic mapping of the lung microvascular endothelial cell surface in vivo and in cell culture. Nat. Biotechnol.22(8), 985–992 (2004).
  • Rahbar AM, Fenselau C. Integration of Jacobson’s pellicle method into proteomic strategies for plasma membrane proteins. J. Proteome Res.3(6), 1267–1277 (2004).
  • Oh P, Li Y, Yu J et al. Subtractive proteomic mapping of the endothelial surface in lung and solid tumours for tissue-specific therapy. Nature429(6992), 629–635 (2004).
  • Arjunan S, Reinartz M, Emde B, Zanger K, Schrader J. Limitations of the colloidal silica method in mapping the endothelial plasma membrane proteome of the mouse heart. Cell Biochem. Biophys.53(3), 135–143 (2009).
  • Robinson JM, Ackerman WE, Tewari AK, Kniss DA, Vandre DD. Isolation of highly enriched apical plasma membranes of the placental syncytiotrophoblast. Anal. Biochem.387(1), 87–94 (2009).
  • Simonson AB, Schnitzer JE. Vascular proteomic mapping in vivo. J. Thromb. Haemost.5(Suppl. 1), 183–187 (2007).
  • Rybak JN, Ettorre A, Kaissling B, Giavazzi R, Neri D, Elia G. In vivo protein biotinylation for identification of organ-specific antigens accessible from the vasculature. Nat. Methods2(4), 291–298 (2005).
  • Nunomura K, Nagano K, Itagaki C et al. Cell surface labeling and mass spectrometry reveal diversity of cell surface markers and signaling molecules expressed in undifferentiated mouse embryonic stem cells. Mol. Cell. Proteomics4(12), 1968–1976 (2005).
  • Elia G. Biotinylation reagents for the study of cell surface proteins. Proteomics8(19), 4012–4024 (2008).
  • Gauthier DJ, Gibbs BF, Rabah N, Lazure C. Utilization of a new biotinylation reagent in the development of a nondiscriminatory investigative approach for the study of cell surface proteins. Proteomics4(12), 3783–3790 (2004).
  • Shimkus M, Levy J, Herman T. A chemically cleavable biotinylated nucleotide: usefulness in the recovery of protein–DNA complexes from avidin affinity columns. Proc. Natl Acad. Sci. USA82(9), 2593–2597 (1985).
  • Bickel U, Kang YS, Pardridge WM. In vivo cleavability of a disulfide-based chimeric opioid peptide in rat brain. Bioconjug. Chem.6(2), 211–218 (1995).
  • Berstein EM, Quick MW. Regulation of γ-aminobutyric acid (GABA) transporters by extracellular GABA. J. Biol. Chem.274, 889–895 (1999).
  • Olejnik J, Krzymanska-Olejnik E, Rothschild KJ. Photocleavable biotin phosphoramidite for 5´-end-labeling, affinity purification and phosphorylation of synthetic oligonucleotides. Nucleic Acids Res.24(2), 361–366 (1996).
  • Kamada H, Fugmann T, Neri D, Roesli C. Improved protein sequence coverage by on resin deglycosylation and cysteine modification for biomarker discovery. Proteomics9(3), 783–787 (2009).
  • Scheurer SB, Roesli C, Neri D, Elia G. A comparison of different biotinylation reagents, tryptic digestion procedures, and mass spectrometric techniques for 2-D peptide mapping of membrane proteins. Proteomics5(12), 3035–3039 (2005).
  • Berro R, de la Fuente C, Klase Z et al. Identifying the membrane proteome of HIV-1 latently infected cells. J. Biol. Chem.282(11), 8207–8218 (2007).
  • Conn EM, Madsen MA, Cravatt BF, Ruf W, Deryugina EI, Quigley JP. Cell surface proteomics identifies molecules functionally linked to tumor cell intravasation. J. Biol. Chem.283(39), 26518–26527 (2008).
  • Faca VM, Ventura AP, Fitzgibbon MP et al. Proteomic analysis of ovarian cancer cells reveals dynamic processes of protein secretion and shedding of extra-cellular domains. PLoS ONE3(6), E2425 (2008).
  • Garcia J, Faca V, Jarzembowski J, Zhang Q, Park J, Hanash S. Comprehensive profiling of the cell surface proteome of sy5y neuroblastoma cells yields a subset of proteins associated with tumor differentiation. J. Proteome Res.8(8), 3791–3796 (2009).
  • Lee SK, Kim Y, Kim SS et al. Differential expression of cell surface proteins in human bone marrow mesenchymal stem cells cultured with or without basic fibroblast growth factor containing medium. Proteomics9(18), 4389–405 (2009).
  • Peirce MJ, Cope AP, Wait R. Proteomic analysis of the lymphocyte plasma membrane using cell surface biotinylation and solution-phase isoelectric focusing. Methods Mol. Biol.528, 135–140 (2009).
  • Scheurer SB, Rybak JN, Roesli C et al. Identification and relative quantification of membrane proteins by surface biotinylation and two-dimensional peptide mapping. Proteomics5(11), 2718–2728 (2005).
  • Sostaric E, Georgiou AS, Wong CH, Watson PF, Holt WV, Fazeli A. Global profiling of surface plasma membrane proteome of oviductal epithelial cells. J. Proteome Res.5(11), 3029–3037 (2006).
  • Liu H, Sadygov RG, Yates JR 3rd. A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal. Chem.76(14), 4193–4201 (2004).
  • Schliemann C, Roesli C, Kamada H et al.In vivo biotinylation of the vasculature in B cell lymphomaidentifies BST-2 as a target for antibody-based therapy. Blood DOI: 10.1182/blood-2009-08-239004 (2009) (Epub ahead of print).
  • Peirce MJ, Wait R, Begum S, Saklatvala J, Cope AP. Expression profiling of lymphocyte plasma membrane proteins. Mol. Cell. Proteomics3(1), 56–65 (2004).
  • Qiu H, Wang Y. Quantitative analysis of surface plasma membrane proteins of primary and metastatic melanoma cells. J. Proteome Res.7(5), 1904–1915 (2008).
  • Apweiler R, Hermjakob H, Sharon N. On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim. Biophys. Acta1473(1), 4–8 (1999).
  • Wollscheid B, Bausch-Fluck D, Henderson C et al. Mass-spectrometric identification and relative quantification of N-linked cell surface glycoproteins. Nat. Biotechnol.27(4), 378–386 (2009).
  • Lee A, Kolarich D, Haynes PA, Jensen PH, Baker MS, Packer NH. Rat liver membrane glycoproteome: enrichment by phase partitioning and glycoprotein capture. J. Proteome Res.8(2), 770–781 (2009).
  • Yang Z, Hancock WS. Approach to the comprehensive analysis of glycoproteins isolated from human serum using a multi-lectin affinity column. J. Chromatogr. A1053(1–2), 79–88 (2004).
  • Kaji H, Saito H, Yamauchi Y et al. Lectin affinity capture, isotope-coded tagging and mass spectrometry to identify N-linked glycoproteins. Nat. Biotechnol.21(6), 667–672 (2003).
  • Ramachandran P, Boontheung P, Xie Y, Sondej M, Wong DT, Loo JA. Identification of N-linked glycoproteins in human saliva by glycoprotein capture and mass spectrometry. J. Proteome Res.5(6), 1493–1503 (2006).
  • Zhang H, Li XJ, Martin DB, Aebersold R. Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. Nat. Biotechnol.21(6), 660–666 (2003).
  • Pan S, Wang Y, Quinn JF et al. Identification of glycoproteins in human cerebrospinal fluid with a complementary proteomic approach. J. Proteome Res.5(10), 2769–2779 (2006).
  • McDonald CA, Yang JY, Marathe V, Yen TY, Macher BA. Combining results from lectin affinity chromatography and glycocapture approaches substantially improves the coverage of the glycoproteome. Mol. Cell. Proteomics8(2), 287–301 (2009).
  • Bobbitt JM. Periodate oxidation of carbohydrates. Adv. Carbohydr. Chem.48(11), 1–41 (1956).
  • Bayer EA, Ben-Hur H, Wilchek M. Biocytin hydrazide – a selective label for sialic acids, galactose, and other sugars in glycoconjugates using avidin–biotin technology. Anal. Biochem.170(2), 271–281 (1988).
  • Lewandrowski U, Moebius J, Walter U, Sickmann A. Elucidation of N-glycosylation sites on human platelet proteins: a glycoproteomic approach. Mol. Cell. Proteomics5(2), 226–233 (2006).
  • Sun B, Ranish JA, Utleg AG et al. Shotgun glycopeptide capture approach coupled with mass spectrometry for comprehensive glycoproteomics. Mol. Cell. Proteomics6(1), 141–149 (2007).
  • Schiess R, Mueller LN, Schmidt A, Mueller M, Wollscheid B, Aebersold R. Analysis of cell surface proteome changes via label-free, quantitative mass spectrometry. Mol. Cell. Proteomics8(4), 624–638 (2009).
  • Gundry RL, Raginski K, Tarasova Y et al. The mouse C2C12 myoblast cell surface N-linked glycoproteome: identification, glycosite occupancy, and membrane orientation. Mol. Cell. Proteomics8(11), 2555–2569 (2009).
  • Arcinas A, Yen TY, Kebebew E, Macher BA. Cell surface and secreted protein profiles of human thyroid cancer cell lines reveal distinct glycoprotein patterns. J. Proteome Res.8(8), 3958–3968 (2009).
  • Tian Y, Zhou Y, Elliott S, Aebersold R, Zhang H. Solid-phase extraction of N-linked glycopeptides. Nat. Protoc.2(2), 334–339 (2007).
  • Said EA, Krust B, Nisole S, Svab J, Briand JP, Hovanessian AG. The anti-HIV cytokine midkine binds the cell surface-expressed nucleolin as a low affinity receptor. J. Biol. Chem.277(40), 37492–37502 (2002).
  • Christian S, Pilch J, Akerman ME, Porkka K, Laakkonen P, Ruoslahti E. Nucleolin expressed at the cell surface is a marker of endothelial cells in angiogenic blood vessels. J. Cell. Biol.163(4), 871–878 (2003).
  • Zola H, Swart B, Banham A et al. CD molecules 2006 – human cell differentiation molecules. J. Immunol. Methods319(1–2), 1–5 (2007).
  • Zola H, Swart BW. Human leucocyte differentiation antigens. Trends Immunol.24(7), 353–354 (2003).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.