324
Views
8
CrossRef citations to date
0
Altmetric
Review

Proteomics revisits the cancer metabolome

, , , , , , & show all
Pages 505-533 | Published online: 09 Jan 2014

References

  • Warburg O. On the origin of cancer cells. Science123(3191), 309–314 (1956).
  • Warburg O. [On the metabolism of the carcinoma cell]. Naturwissenschaften12(50), 1131–1137 (1924).
  • Zhou ST, Huang CH, Wei YQ. The metabolic switch and its regulation in cancer cells. Sci. China Life Sci.53(8), 942–958 (2010).
  • Fantin VR, St-Pierre J, Leder P. Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell9(6), 425–434 (2006).
  • Moreno Sánchez R, Rodríguez Enríquez S, Marín Hernández A, Saavedra E. Energy metabolism in tumor cells. FEBS J.274(6), 1393–1418 (2007).
  • Vogelstein B, Lane D, Levine AJ. Surfing the p53 network. Nature408(6810), 307–310 (2000).
  • Fogal V, Richardson AD, Karmali PP, Scheffler IE, Smith JW, Ruoslahti E. Mitochondrial p32 protein is a critical regulator of tumor metabolism via maintenance of oxidative phosphorylation. Mol. Cell Biol.30(6), 1303–1318 (2010).
  • DeBerardinis RJ, Sayed N, Ditsworth D, Thompson CB. Brick by brick: metabolism and tumor cell growth. Curr. Opin. Genet. Dev.18(1), 54–61 (2008).
  • Scatena R, Bottoni P, Pontoglio A, Giardina B. Revisiting the Warburg effect in cancer cells with proteomics. The emergence of new approaches to diagnosis, prognosis and therapy. Proteomics Clin. Appl.4(2), 143–158 (2010).
  • Mashima T, Seimiya H, Tsuruo T. De novo fatty-acid synthesis and related pathways as molecular targets for cancer therapy. Br. J. Cancer100(9), 1369–1372 (2009).
  • Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science324(5930), 1029–1033 (2009).
  • Nomura DK, Long JZ, Niessen S, Hoover HS, Ng SW, Cravatt BF. Monoacylglycerol lipase regulates a fatty acid network that promotes cancer pathogenesis. Cell140(1), 49–61 (2010).
  • DeBerardinis RJ, Mancuso A, Daikhin E et al. Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc. Natl Acad. Sci. USA104(49), 19345–19350 (2007).
  • Liu R, Li Z, Bai S et al. Mechanism of cancer cell adaptation to metabolic stress. Mol. Cell Proteomics8(1), 70–85 (2009).
  • Ren F, Wu H, Lei Y et al. Quantitative proteomics identification of phosphoglycerate mutase 1 as a novel therapeutic target in hepatocellular carcinoma. Mol. Cancer9(1), 81 (2010).
  • Tong A, Gou L, Lau QC et al. Proteomic profiling identifies aberrant epigenetic modifications induced by hepatitis B virus X protein. J. Proteome. Res.8(2), 1037–1046 (2008).
  • Wellen KE, Hatzivassiliou G, Sachdeva UM, Bui TV, Cross JR, Thompson CB. ATP-citrate lyase links cellular metabolism to histone acetylation. Science324(5930), 1076–1080 (2009).
  • Deng H, Yu F, Chen J, Zhao Y, Xiang J, Lin A. Phosphorylation of Bad at Thr-201 by JNK1 promotes glycolysis through activation of phosphofructokinase-1. J. Biol. Chem.283(30), 20754–20760 (2008).
  • Hammerman PS, Fox CJ, Thompson CB. Beginnings of a signal-transduction pathway for bioenergetic control of cell survival. Trends. Biochem. Sci.29(11), 586–592 (2004).
  • Hsu PP, Sabatini DM. Cancer cell metabolism: Warburg and beyond. Cell134(5), 703–707 (2008).
  • Eng CH, Yu K, Lucas J, White E, Abraham RT. Ammonia derived from glutaminolysis is a diffusible regulator of autophagy. Sci. Signal.3(119), ra31 (2010).
  • Li J, Liu R, Lei Y et al. Proteomic analysis revealed association of aberrant ROS signaling with suberoylanilide hydroxamic acid-induced autophagy in Jurkat T-leukemia cells. Autophagy6(6), 711–724 (2010).
  • Ronquist G, Theodorsson E. Inherited, non-spherocytic haemolysis due to deficiency of glucose-6-phosphate dehydrogenase. Scand. J. Clin. Lab. Invest.67(1), 105–111 (2007).
  • Ontko JA. Metabolism of free fatty acids in isolated liver cells. J. Biol. Chem.247(6), 1788–1800 (1972).
  • Mankoff DA, Eary JF, Link JM et al. Tumor-specific positron emission tomography imaging in patients: [18F] fluorodeoxyglucose and beyond. Clin. Cancer. Res.13(12), 3460–3469 (2007).
  • Hediger MA, Rhoads DB. Molecular physiology of sodium-glucose cotransporters. Physiol. Rev.74(4), 993–1026 (1994).
  • Thorens B, Mueckler M. Glucose transporters in the 21st Century. Am. J. Physiol. Endocrinol. Metab.298(2), 141–145 (2010).
  • Ganapathy V, Thangaraju M, Prasad PD. Nutrient transporters in cancer: relevance to Warburg hypothesis and beyond. Pharmacology Ther.121(1), 29–40 (2009).
  • Thorens B. Molecular and cellular physiology of GLUT-2, a High-Km facilitated diffusion glucose transporter. Int. Rev. Cytol.137, 209–238 (1992).
  • Medina RA, Owen GI. Glucose transporters: expression, regulation and cancer. Biol. Res.35, 9–26 (2002).
  • Christopher CW, Kohlbacher MS, Amos H. Transport of sugars in chick-embryo fibroblasts. Evidence for a low-affinity system and a high-affinity system for glucose transport. Biochem. J.158(2), 439–450 (1976).
  • Lane RH, Crawford SE, Flozak AS, Simmons RA. Localization and quantification of glucose transporters in liver of growth-retarded fetal and neonatal rats. Am. J. Physiol.276(1), E135–E142 (1999).
  • Lee JD, Yang WI, Park YN et al. Different glucose uptake and glycolytic mechanisms between hepatocellular carcinoma and intrahepatic mass-forming cholangiocarcinoma with increased 18F-FDG uptake. J. Nucl. Med.46(10), 1753–1759 (2005).
  • Goel A, Mathupala SP, Pedersen PL. Glucose metabolism in cancer. J. Biol. Chem.278(17), 15333–15340 (2003).
  • Wilson JE. Isozymes of mammalian hexokinase: structure, subcellular localization and metabolic function. J. Exp. Biol.206(12), 2049–2057 (2003).
  • Nakashima RA, Paggi MG, Scott LJ, Pedersen PL. Purification and characterization of a bindable form of mitochondrial bound hexokinase from the highly glycolytic AS-30D rat hepatoma cell line. Cancer Res.48(4), 913–919 (1988).
  • Pedersen PL, Mathupala S, Rempel A, Geschwind J, Ko YH. Mitochondrial bound type II hexokinase: a key player in the growth and survival of many cancers and an ideal prospect for therapeutic intervention. Biochim. Biophys. Acta.1555(1–3), 14–20 (2002).
  • Galluzzi L, Morselli E, Kepp O, Vitale I, Rigoni A, Vacchelli E. Mitochondrial gateways to cancer. Mol. Aspects. Med.31(1), 1–20 (2010).
  • Parry DM, Pedersen P. Intracellular localization and properties of particulate hexokinase in the Novikoff ascites tumor. Evidence for an outer mitochondrial membrane location. J. Biol. Chem.258(18), 10904–10912 (1983).
  • Danial NN, Gramm CF, Scorrano L et al. BAD and glucokinase reside in a mitochondrial complex that integrates glycolysis and apoptosis. Nature424(6951), 952–956 (2003).
  • Klimek F, Bannasch P. Isoenzyme shift from glucokinase to hexokinase is not an early but a late event in hepatocarcinogenesis. Carcinogenesis14(9), 1857 (1993).
  • Rencurel F, Muñoz-Alonso MJ, Girard J, Leturque A. An unusual high-K m hexokinase is expressed in the mhAT3F hepatoma cell line. J. Biol. Chem.273(40), 26187–26193 (1998).
  • Bustamante E, Pedersen PL. High aerobic glycolysis of rat hepatoma cells in culture: role of mitochondrial hexokinase. Proc. Natl Acad. Sci. USA74(9), 3735–3739 (1977).
  • Aloj L, Caraco C, Jagoda E, Eckelman W, Neumann R. Glut-1 and hexokinase expression: relationship with 2-fluoro-2-deoxy-D-glucose uptake in A431 and T47D cells in culture. Cancer Res.59(18), 4709–4714 (1999).
  • Zhao S, Xu W, Jiang W et al. Regulation of cellular metabolism by protein lysine acetylation. Science327(5968), 1000–1004 (2010).
  • Robey R, Hay N. Mitochondrial hexokinases, novel mediators of the antiapoptotic effects of growth factors and Akt. Oncogene25(34), 4683–4696 (2006).
  • Miller S, Ross-Inta C, Giulivi C. Kinetic and proteomic analyses of S-nitrosoglutathione-treated hexokinase A: consequences for cancer energy metabolism. Amino acids32(4), 593–602 (2007).
  • Salaris SC, Ramasamy R, Bergmann SR. Fructose-2,6-bisphosphate, a potent stimulator of phosphofructokinase, is increased by high exogenous glucose perfusion. Coron. Artery. Dis.11(3), 279–286 (2000).
  • Oskam R, Rijksen G, Staal GEJ, Vora S. Isozymic composition and regulatory properties of phosphofructokinase from well-differentiated and anaplastic medullary thyroid carcinomas of the rat. Cancer Res.45(1), 135–142 (1985).
  • Perroud B, Ishimaru T, Borowsky AD, Weiss RH. Grade-dependent proteomics characterization of kidney cancer. Mol. Cell Proteomics8(5), 971–985 (2009).
  • Sánchez-Martínez C, Aragón JJ. Analysis of phosphofructokinase subunits and isozymes in ascites tumor cells and its original tissue, murine mammary gland. FEBS Lett.409(1), 86–90 (1997).
  • Vora S, Halper JP, Knowles DM. Alterations in the activity and isozymic profile of human phosphofructokinase during malignant transformation in vivo and in vitro: transformation-and progression-linked discriminants of malignancy. Cancer Res.45(7), 2993–3001 (1985).
  • Bando H, Atsumi T, Nishio T et al. Phosphorylation of the 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase/PFKFB3 family of glycolytic regulators in human cancer. Clin. Cancer Res.11(16), 5784–5792 (2005).
  • Eigenbrodt E, Reinacher M, Scheefers-Borchel U, Scheefers H, Friis R. Double role for pyruvate kinase type M2 in the expansion of phosphometabolite pools found in tumor cells. Crit. Rev. Oncog.3(1–2), 91–115 (1992).
  • Marsin AS, Bouzin C, Bertrand L, Hue L. The stimulation of glycolysis by hypoxia in activated monocytes is mediated by AMP-activated protein kinase and inducible 6-phosphofructo-2-kinase. J. Biol. Chem.277(34), 30778–30783 (2002).
  • Durany N, Joseph J, Jimenez O et al. Phosphoglycerate mutase 2, 3-bisphosphoglycerate phosphatase, creatine kinase and enolase activity and isoenzymes in breast carcinoma. Br. J. Cancer82(1), 20–27 (2000).
  • Evans MJ, Saghatelian A, Sorensen EJ, Cravatt BF. Target discovery in small-molecule cell-based screens by in situ proteome reactivity profiling. Nat. Biotechnol.23(10), 1303–1307 (2005).
  • Liu L, Wang S, Zhang Q, Ding Y. Identification of potential genes/proteins regulated by Tiam1 in colorectal cancer by microarray analysis and proteome analysis. Cell Biol. Int.32(10), 1215–1222 (2008).
  • Usuba T, Ishibashi Y, Okawa Y, Hirakawa T, Takada K, Ohkawa K. Purification and identification of monoubiquitin-phosphoglycerate mutase B complex from human colorectal cancer tissues. Int. J. Cancer94(5), 662–668 (2001).
  • Chen G, Gharib TG, Wang H et al. Protein profiles associated with survival in lung adenocarcinoma. Proc. Natl Acad. Sci. USA100(23), 13537–13542 (2003).
  • Li C, Xiao Z, Chen Z et al. Proteome analysis of human lung squamous carcinoma. Proteomics6(2), 547–558 (2006).
  • Narayanan NK, Narayanan BA, Nixon DW. Resveratrol-induced cell growth inhibition and apoptosis is associated with modulation of phosphoglycerate mutase B in human prostate cancer cells: two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis and mass spectrometry evaluation. Cancer Detect. Prev.28(6), 443–452 (2004).
  • Turhani D, Krapfenbauer K, Thurnher D, Langen H, Fountoulakis M. Identification of differentially expressed, tumor associated proteins in oral squamous cell carcinoma by proteomic analysis. Electrophoresis27(7), 1417–1423 (2006).
  • Fang MZ, Liu C, Song Y et al. Over-expression of gastrin-releasing peptide in human esophageal squamous cell carcinomas. Carcinogenesis25(6), 865–871 (2004).
  • Kondoh H, Lleonart ME, Gil J et al. Glycolytic enzymes can modulate cellular life span. Cancer Res.65(1), 177–185 (2005).
  • He QY, Cheung YH, Leung SY, Yuen ST, Chu KM, Chiu JF. Diverse proteomic alterations in gastric adenocarcinoma. Proteomics4(10), 3276–3287 (2004).
  • Vorum H, Stergaard M, Hensechke P, Enghild JJ, Riazati M, Rice GE. Proteomic analysis of hyperoxia induced responses in the human choriocarcinoma cell line JEG 3. Proteomics4(3), 861–867 (2004).
  • Christofk HR, Vander Heiden MG, Harris MH et al. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature452(7184), 230–233 (2008).
  • Chen M, David CJ, Manley J. Tumor metabolism: hnRNP proteins get in on the act. Cell Cycle9(10), 1863–1864 (2010).
  • Hacker H, Steinberg P, Bannasch P. Pyruvate kinase isoenzyme shift from L-type to M2-type is a late event in hepatocarcinogenesis induced in rats by a choline-deficient/DL-ethionine-supplemented diet. Carcinogenesis19(1), 99–107 (1998).
  • Mazurek S, Boschek CB, Hugo F, Eigenbrodt E. Pyruvate kinase type M2 and its role in tumor growth and spreading. Semin. Cancer Biol.15(4), 300–308 (2005).
  • Mazurek S, Zwerschke W, Jansen-Dürr P, Eigenbrodt E. Effects of the human papilloma virus HPV-16 E7 oncoprotein on glycolysis and glutaminolysis: role of pyruvate kinase type M2 and the glycolytic-enzyme complex. Biochem. J.356(Pt 1), 247–256 (2001).
  • Zwerschke W, Mazurek S, Massimi P, Banks L, Eigenbrodt E, Jansen-Dürr P. Modulation of type M2 pyruvate kinase activity by the human papillomavirus type 16 E7 oncoprotein. Proc. Natl Acad. Sci. USA96(4), 1291–1296 (1999).
  • Boxer MB, Jiang J, Vander Heiden MG et al. Evaluation of substituted N,N-diarylsulfonamides as activators of the tumor cell specific M2 isoform of pyruvate kinase. J. Med. Chem.53(3), 1048–1055 (2009).
  • Pore N, Jiang Z, Shu HK, Bernhard E, Kao GD, Maity A. Akt1 activation can augment hypoxia-inducible factor-1 expression by increasing protein translation through a mammalian target of rapamycin-independent pathway. Mol. Cancer Res.4(7), 471–479 (2006).
  • Eigenbrodt E, Glossmann H. Glycolysis – one of the keys to cancer? Pharmacol. Sci.1(2), 240–245 (1980).
  • Dombrauckas JD, Santarsiero BD, Mesecar AD. Structural basis for tumor pyruvate kinase M2 allosteric regulation and catalysis. Biochemistry44(27), 9417–9429 (2005).
  • Ashizawa K, Willingham M, Liang C, Cheng S. In vivo regulation of monomer-tetramer conversion of pyruvate kinase subtype M2 by glucose is mediated via fructose 1,6-bisphosphate. J. Biol. Chem.266(25), 16842–16846 (1991).
  • Weernink P, Rijksen G, Staal G. Phosphorylation of pyruvate kinase and glycolytic metabolism in three human glioma cell lines. Tumour Biol.12(6), 339–352 (1991).
  • Mazurek S, Drexler HCA, Troppmair J, Eigenbrodt E, Rapp ULFR. Regulation of pyruvate kinase type M2 by A-Raf: a possible glycolytic stop or go mechanism. Anticancer Res.27(6B), 3963–3971 (2007).
  • Christofk HR, Vander Heiden MG, Wu N, Asara JM, Cantley LC. Pyruvate kinase M2 is a phosphotyrosine-binding protein. Nature452(7184), 181–186 (2008).
  • Steták A, Veress R, Ovádi J, Csermely P, Kéri G, Ullrich A. Nuclear translocation of the tumor marker pyruvate kinase M2 induces programmed cell death. Cancer Res.67(4), 1602–1608 (2007).
  • DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab.7(1), 11–20 (2008).
  • Hilf R, Rector WD, Orlando RA. Multiple molecular forms of lactate dehydrogenase and glucose 6-phosphate dehydrogenase in normal and abnormal human breast tissues. Cancer37(4), 1825–1830 (1976).
  • Unwin RD, Craven RA, Harnden P et al. Proteomic changes in renal cancer and co ordinate demonstration of both the glycolytic and mitochondrial aspects of the Warburg effect. Proteomics3(8), 1620–1632 (2003).
  • Leiblich A, Cross S, Catto J et al. Lactate dehydrogenase-B is silenced by promoter hypermethylation in human prostate cancer. Oncogene25(20), 2953–2960 (2006).
  • Glen A, Gan CS, Hamdy FC et al. iTRAQ-facilitated proteomic analysis of human prostate cancer cells identifies proteins associated with progression. J. Proteome Res.7(3), 897–907 (2008).
  • Bui T, Thompson CB. Cancer’s sweet tooth. Cancer Cell9(6), 419–420 (2006).
  • Dang CV. p32 (C1QBP) and cancer cell metabolism: is the Warburg effect a lot of hot air? Mol. Cell Biol.30(6), 1300–1302 (2010).
  • Dai Z, Yin J, He H et al. Mitochondrial comparative proteomics of human ovarian cancer cells and their platinum-resistant sublines. Proteomics10(21), 3789–3799 (2010).
  • Han J. Mitochondrial alterations in human gastric carcinoma cell line. Am. J. Physiol. Cell Physiol.293(2), 761–771 (2007).
  • Isidoro A, Martínez M, Fernández PL et al. Alteration of the bioenergetic phenotype of mitochondria is a hallmark of breast, gastric, lung and oesophageal cancer. Biochem. J.378(Pt 1), 17–20 (2004).
  • Cuezva JM, Krajewska M, de Heredia ML et al. The bioenergetic signature of cancer. Cancer Res.62(22), 6674–6681 (2002).
  • Matoba S, Kang JG, Patino WD et al. p53 regulates mitochondrial respiration. Science312(5780), 1650–1653 (2006).
  • Cheung EC, Vousden KH. The role of p53 in glucose metabolism. Curr. Opin. Cell Biol.22(2), 186–191 (2010).
  • King A, Selak M, Gottlieb E. Succinate dehydrogenase and fumarate hydratase: linking mitochondrial dysfunction and cancer. Oncogene25(34), 4675–4682 (2006).
  • Yan H, Parsons DW, Jin G et al. IDH1 and IDH2 mutations in gliomas. N. Engl. J. Med.360(8), 765–773 (2009).
  • Weinhouse S. The Warburg hypothesis fifty years later. Z. Krebsforsch Klin. Onkol. Cancer Res. Clin. Oncol.87(2), 115–126 (1976).
  • Huang B, Wu P, Bowker-Kinley MM, Harris RA. Regulation of pyruvate dehydrogenase kinase expression by peroxisome proliferator–activated receptor- ligands, glucocorticoids, and insulin. Diabetes51(2), 276–283 (2002).
  • Papandreou I, Cairns RA, Fontana L, Lim AL, Denko NC. HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab.3(3), 187–197 (2006).
  • Kim J, Tchernyshyov I, Semenza GL, Dang CV. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab.3(3), 177–185 (2006).
  • Jones RG, Thompson CB. Tumor suppressors and cell metabolism: a recipe for cancer growth. Genes Dev.23(5), 537–548 (2009).
  • Kroemer G, Pouyssegur J. Tumor cell metabolism: cancer’s Achilles’ heel. Cancer Cell13(6), 472–482 (2008).
  • Ralph SJ, Rodríguez-Enríquez S, Neuzil J, Saavedra E, Moreno-Sánchez R. The causes of cancer revisited: “mitochondrial malignancy” and ROS-induced oncogenic transformation – why mitochondria are targets for cancer therapy. Mol. Aspects Med.31(2), 145–170 (2010).
  • Rathmell JC, Newgard CB. A glucose-to-gene link. Science324(5930), 1021–1022 (2009).
  • Krycer JR, Sharpe LJ, Luu W, Brown AJ. The Akt-SREBP nexus: cell signaling meets lipid metabolism. Trends Endocrinol. Metab.21(5), 268–276 (2010).
  • Laplante M, Sabatini DM. An emerging role of mTOR in lipid biosynthesis. Curr. Biol.19(22), 1046–1052 (2009).
  • Dang CV. MYC, microRNAs and glutamine addiction in cancers. Cell Cycle8(20), 3243–3245 (2009).
  • Gao P, Tchernyshyov I, Chang TC et al. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature458(7239), 762–765 (2009).
  • Morell M, Espargaró A, Avilés FX, Ventura S. Detection of transient protein-protein interactions by bimolecular fluorescence complementation: the Abl-SH3 case. Proteomics7(7), 1023–1036 (2007).
  • Jones RG, Plas DR, Kubek S et al. AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol. Cell18(3), 283–293 (2005).
  • Jansen M, ten Klooster JP, Offerhaus GJ, Clevers H. LKB1 and AMPK family signaling: the intimate link between cell polarity and energy metabolism. Physiol. Rev.89(3), 777–798 (2009).
  • Yocum AK, Chinnaiyan AM. Current affairs in quantitative targeted proteomics: multiple reaction monitoring-mass spectrometry. Brief. Funct. Genomic. Proteomic.8(2), 145–157 (2009).
  • Huang WG, Cheng AL, Chen ZC et al. Targeted proteomic analysis of 14-13-3[σ] in nasopharyngeal carcinoma. Int. J. Biochem. Cell Biol.42(1), 137–147 (2010).
  • Cheng L, Pan CX, Zhang JT et al. Loss of 14-13-3σ in prostate cancer and its precursors. Clin. Cancer Res.10(9), 3064–3068 (2004).
  • Ito K, Suzuki T, Akahira J et al. 14-13-3σ in endometrial cancer – a possible prognostic marker in early-stage cancer. Clin. Cancer Res.11(20), 7384–7391 (2005).
  • Li Z, Liu JY, Zhang JT. 14-13-3σ, the double-edged sword of human cancers. Am. J. Transl. Res.1(4), 326–340 (2009).
  • Lee MH, Lozano G. Regulation of the p53-MDM2 pathway by 14-13-3 [σ] and other proteins. Semin. Cancer Biol.16(3), 225–234 (2006).
  • Mhawech P. 14-13-3 proteins – an update. Cell Res.15(4), 228–236 (2005).
  • Aguilar V, Annicotte JS, Escote X, Vendrell J, Langin D, Fajas L. Cyclin G2 regulates adipogenesis through PPAR γ coactivation. Endocrinology151(11), 5247–5254 (2010).
  • Kourtidis A, Srinivasaiah R, Carkner R, Brosnan MJ, Conklin D. Peroxisome proliferator-activated receptor-γ protects ERBB2-positive breast cancer cells from palmitate toxicity. Breast Cancer Res.11(2), R16 (2009).
  • Chearwae W, Bright JJ. PPARγ agonists inhibit growth and expansion of CD133+ brain tumour stem cells. Br. J. Cancer99(12), 2044–2053 (2008).
  • Krishnan A, Nair SA, Pillai MR. Biology of PPAR γ in cancer: a critical review on existing lacunae. Curr. Mol. Med.7(6), 532–540 (2007).
  • Alevizos I, Mahadevappa M, Zhang X et al. Oral cancer in vivo gene expression profiling assisted by laser capture microdissection and microarray analysis. Oncogene20(43), 6196–6204 (2001).
  • Frasor J, Danes JM, Komm B, Chang KC, Lyttle CR, Katzenellenbogen BS. Profiling of estrogen up- and down-regulated gene expression in human breast cancer cells: insights into gene networks and pathways underlying estrogenic control of proliferation and cell phenotype. Endocrinology144(10), 4562–4574 (2003).
  • Ito Y, Yoshida H, Uruno T et al. Decreased expression of cyclin G2 is significantly linked to the malignant transformation of papillary carcinoma of the thyroid. Anticancer Res.23(3B), 2335–2338 (2003).
  • Choi MG, Noh JH, An JY et al. Expression levels of cyclin G2, but not cyclin E, correlate with gastric cancer progression. J. Surg. Res.157(2), 168–174 (2009).
  • Kim Y, Shintani S, Kohno Y, Zhang R, Wong DT. Cyclin G2 dysregulation in human oral cancer. Cancer Res.64(24), 8980–8986 (2004).
  • Gerstein M, Lan N, Jansen R. Integrating interactomes. Science295(5553), 284–287 (2002).
  • Pilot-Storck F, Chopin E, Rual JF et al. Interactome mapping of the phosphatidylinositol 3-kinase-mammalian target of rapamycin pathway identifies deformed epidermal autoregulatory factor-1 as a new glycogen synthase kinase-3 interactor. Mol. Cell Proteomics9(7), 1578–1593 (2010).
  • Brunn GJ, Hudson CC, Sekuli A et al. Phosphorylation of the translational repressor PHAS-I by the mammalian target of rapamycin. Science277(5322), 99–101 (1997).
  • Burnett PE, Barrow RK, Cohen NA, Snyder SH, Sabatini DM. RAFT1 phosphorylation of the translational regulators p70 S6 kinase and 4E-BP1. Proc. Natl Acad. Sci. USA95(4), 1432–1437 (1998).
  • Kwon G, Marshall CA, Pappan KL, Remedi MS, McDaniel ML. Signaling elements involved in the metabolic regulation of mTOR by nutrients, incretins, and growth factors in islets. Diabetes53(Suppl. 3), S225–S232 (2004).
  • Mori H, Inoki K, Münzberg H et al. Critical role for hypothalamic mTOR activity in energy balance. Cell Metab.9(4), 362–374 (2009).
  • Shaw RJ, Kosmatka M, Bardeesy N et al. The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc. Natl Acad. Sci. USA101(10), 3329–3335 (2004).
  • Davies SP, Sim ATR, Hardie DG. Location and function of three sites phosphorylated on rat acetyl-CoA carboxylase by the AMP-activated protein kinase. Eur. J. Biochem.187(1), 183–190 (1990).
  • Greer EL, Oskoui PR, Banko MR et al. The energy sensor AMP-activated protein kinase directly regulates the mammalian FOXO3 transcription factor. J. Biol. Chem.282(41), 30107–30119 (2007).
  • Feng Z, Zhang H, Levine AJ, Jin S. The coordinate regulation of the p53 and mTOR pathways in cells. Proc. Natl Acad. Sci. USA102(23), 8204–8209 (2005).
  • Bunney TD, Katan M. Phosphoinositide signalling in cancer: beyond PI3K and PTEN. Nat. Rev. Cancer10(5), 342–352 (2010).
  • Chen X, Thakkar H, Tyan F et al. Constitutively active Akt is an important regulator of TRAIL sensitivity in prostate cancer. Oncogene20(42), 6073–6083 (2001).
  • Cappuzzo F, Magrini E, Ceresoli GL et al. Akt phosphorylation and gefitinib efficacy in patients with advanced non-small-cell lung cancer. J. Natl Cancer Inst.96(15), 1133–1141 (2004).
  • Tanno S, Mitsuuchi Y, Altomare DA, Xiao GH, Testa JR. AKT activation up-regulates insulin-like growth factor I receptor expression and promotes invasiveness of human pancreatic cancer cells. Cancer Res.61(2), 589–593 (2001).
  • Page C, Huang M, Jin X et al. Elevated phosphorylation of AKT and Stat3 in prostate, breast, and cervical cancer cells. Int. J. Oncol.17(1), 23–28 (2000).
  • Porstmann T, Griffiths B, Chung YL et al. PKB/Akt induces transcription of enzymes involved in cholesterol and fatty acid biosynthesis via activation of SREBP. Oncogene24(43), 6465–6481 (2005).
  • Memmott RM, Dennis PA. Akt-dependent and-independent mechanisms of mTOR regulation in cancer. Cell Signal.21(5), 656–664 (2009).
  • David Z, Fei Y, Ling G et al. Proteomics, pathway array and signaling network-based medicine in cancer. Cell Div.4, 20 (2009).
  • Madoz-Gúrpide J, Cañamero M, Sanchez L, Solano J, Alfonso P, Casal JI. A proteomics analysis of cell signaling alterations in colorectal cancer. Mol. Cell Proteomics6(12), 2150 (2007).
  • Lee DH, Szczepanski MJ, Lee YJ. Magnolol induces apoptosis via inhibiting the EGFR/PI3K/Akt signaling pathway in human prostate cancer cells. J. Cell Biochem.106(6), 1113–1122 (2009).
  • Zhou C, Qiu L, Sun Y et al. Inhibition of EGFR/PI3K/AKT cell survival pathway promotes TSA’s effect on cell death and migration in human ovarian cancer cells. Int. J. Oncol.29(1), 269–278 (2006).
  • Toulany M, Baumann M, Rodemann HP. Stimulated PI3K-AKT signaling mediated through ligand or radiation-induced EGFR depends indirectly, but not directly, on constitutive K-Ras activity. Mol. Cancer Res.5(8), 863–872 (2007).
  • Monga SPS. Role of Wnt/[β]-catenin signaling in liver metabolism and cancer. Int. J. Biochem. Cell Biol.43(7), 1021–1029 (2011).
  • Brase JC, Mannsperger H, Fröhlich H et al. Increasing the sensitivity of reverse phase protein arrays by antibody-mediated signal amplification. Proteome Sci.8(1), 36 (2010).
  • Sanchez-Carbayo M, Socci ND, Lozano JJ, Haab BB, Cordon-Cardo C. Profiling bladder cancer using targeted antibody arrays. Am. J. Pathol.168(1), 93–103 (2006).
  • Nice E, Rothacker J, Weinstock J, Lim L, Catimel B. Use of multidimensional separation protocols for the purification of trace components in complex biological samples for proteomics analysis. J. Chromatogr. A.1168(1–2), 190–210 (2007).
  • Ang CS, Phung J, Nice EC. The discovery and validation of colorectal cancer biomarkers. Biomed. Chromatogr.25(1–2), 82–99 (2011).
  • Murphy JP, Pinto DM. Targeted proteomic analysis of glycolysis in cancer cells. J. Proteome Res.10(2), 604–613 (2011).
  • Kolch W, Pitt A. Functional proteomics to dissect tyrosine kinase signalling pathways in cancer. Nat. Rev. Cancer10(9), 618–629 (2010).
  • Larsen MR, Thingholm TE, Jensen ON, Roepstorff P, Jørgensen TJD. Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Mol. Cell Proteomics4(7), 873–886 (2005).
  • Pinkse MWH, Uitto PM, Hilhorst MJ, Ooms B, Heck AJR. Selective isolation at the femtomole level of phosphopeptides from proteolytic digests using 2D-NanoLC-ESI-MS/MS and titanium oxide precolumns. Anal. Chem.76(14), 3935–3943 (2004).
  • Tao WA, Wollscheid B, O’Brien R et al. Quantitative phosphoproteome analysis using a dendrimer conjugation chemistry and tandem mass spectrometry. Nat. Methods2(8), 591–598 (2005).
  • Zhou H, Watts JD, Aebersold R. A systematic approach to the analysis of protein phosphorylation. Nat. Biotechnol.19(4), 375–378 (2001).
  • Ding SJ, Qian WJ, Smith RD. Quantitative proteomic approaches for studying phosphotyrosine signaling. Expert Rev. Proteomics4(1), 13–23 (2007).
  • McNulty DE, Annan RS. Hydrophilic interaction chromatography reduces the complexity of the phosphoproteome and improves global phosphopeptide isolation and detection. Mol. Cell Proteomics7(5), 971–980 (2008).
  • Mann M. Functional and quantitative proteomics using SILAC. Nat. Rev. Mol. Cell Biol.7(12), 952–958 (2006).
  • Ross PL, Huang YN, Marchese JN et al. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol. Cell Proteomics3(12), 1154–1169 (2004).
  • Leroy C, Fialin C, Sirvent A et al. Quantitative phosphoproteomics reveals a cluster of tyrosine kinases that mediates SRC invasive activity in advanced colon carcinoma cells. Cancer Res.69(6), 2279–2286 (2009).
  • Yan GR, Chen NP, Huang YD et al. Signaling networks in gastric cancer cells revealed by phosphoproteomics. J. Proteomics. Bioinform.3(4), 113–120 (2010).
  • Moritz A, Li Y, Guo A et al. Akt-RSK-S6 Kinase signaling networks activated by oncogenic receptor tyrosine kinases. Sci. Signal.3(136), ra64 (2010).
  • Andersen JN, Sathyanarayanan S, Di Bacco A et al. Pathway-based identification of biomarkers for targeted therapeutics: personalized oncology with PI3K pathway inhibitors. Sci. Transl. Med.2(43), 43ra55 (2010).
  • Rikova K, Guo A, Zeng Q et al. Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell131(6), 1190–1203 (2007).
  • Kinch MS, Moore MB, Harpole DH. Predictive value of the EphA2 receptor tyrosine kinase in lung cancer recurrence and survival. Clin. Cancer Res.9(2), 613–618 (2003).
  • Amann J, Kalyankrishna S, Massion PP et al. Aberrant epidermal growth factor receptor signaling and enhanced sensitivity to EGFR inhibitors in lung cancer. Cancer Res.65(1), 226–235 (2005).
  • Stephens P, Hunter C, Bignell G et al. Lung cancer: Intragenic ERBB2 kinase mutations in tumours. Nature431(7008), 525–526 (2004).
  • Cheung WL, Briggs SD, Allis CD. Acetylation and chromosomal functions. Curr. Opin. Cell Biol.12(3), 326–333 (2000).
  • Jenuwein T. Re-SET-ting heterochromatin by histone methyltransferases. Trends. Cell Biol11(6), 266–273 (2001).
  • Yang X, Seto E. HATs and HDACs: from structure, function and regulation to novel strategies for therapy and prevention. Oncogene26(37), 5310–5318 (2007).
  • Choudhary C, Kumar C, Gnad F et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science325(5942), 834–840 (2009).
  • Shulaev V. Metabolomics technology and bioinformatics. Brief Bioinform.7(2), 128–139 (2006).
  • Hekmatyar S, Wilson M, Jerome N et al.1H nuclear magnetic resonance spectroscopy characterisation of metabolic phenotypes in the medulloblastoma of the SMO transgenic mice. Br. J. Cancer103(8), 1297–1304 (2010).
  • Crawford D, Serkova N, Gamito E, Jones R, O’Donnell C, Hedlund T. Nuclear magnetic resonance spectroscopy of expressed prostatic secretions: metabolite citrate and derivatives are potential markers of prostate cancer. J. Clin. Oncol.24(18), 4623 (2006).
  • Denkert C, Budczies J, Weichert W et al. Metabolite profiling of human colon carcinoma – deregulation of TCA cycle and amino acid turnover. Mol. Cancer7(1), 72 (2008).
  • Sreekumar A, Poisson LM, Rajendiran TM et al. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature457(7231), 910–914 (2009).
  • Lawton KA, Berger A, Mitchell M et al. Analysis of the adult human plasma metabolome. Pharmacogenomics9(4), 383–397 (2008).
  • Rhodes DR, Kalyana-Sundaram S, Tomlins SA et al. Molecular concepts analysis links tumors, pathways, mechanisms, and drugs. Neoplasia9(5), 443–454 (2007).
  • Tomlins SA, Mehra R, Rhodes DR et al. Integrative molecular concept modeling of prostate cancer progression. Nat. Genet.39(1), 41–51 (2006).
  • Kelloff GJ, Hoffman JM, Johnson B et al. Progress and promise of FDG-PET imaging for cancer patient management and oncologic drug development. Clin. Cancer Res.11(8), 2785–2808 (2005).
  • Smith TA. The rate-limiting step for tumor [18F]fluoro-2-deoxy-D-glucose (FDG) incorporation. Nucl. Med. Biol.28(1), 1–4 (2001).
  • Aderem A. Systems biology: its practice and challenges. Cell121(4), 511–513 (2005).
  • Boros LG, Serkova NJ, Cascante MS, Lee WNP. Use of metabolic pathway flux information in targeted cancer drug design. Drug Discov. Today Ther. Strateg.1(4), 435–443 (2004).
  • Green R. Mystery of thiamine-responsive megaloblastic anemia unlocked. Blood102(10), 3464–3465 (2003).
  • Harris T, Eliyahu G, Frydman L, Degani H. Kinetics of hyperpolarized 13C1-pyruvate transport and metabolism in living human breast cancer cells. Proc. Natl Acad. Sci. USA106(43), 18131–18136 (2009).
  • Vazquez A, Liu J, Zhou Y, Oltvai ZN. Catabolic efficiency of aerobic glycolysis: the Warburg effect revisited. BMC. Syst. Biol.4(1), 58 (2010).
  • Schaffer JE. Lipotoxicity: when tissues overeat. Curr. Opin. Lipidol.14(3), 281–287 (2003).
  • Artwohl M, Roden M, Waldhäusl W, Freudenthaler A, Baumgartner-Parzer SM. Free fatty acids trigger apoptosis and inhibit cell cycle progression in human vascular endothelial cells. FASEB. J.18(1), 146–148 (2004).
  • Srivastava S, Chan C. Application of metabolic flux analysis to identify the mechanisms of free fatty acid toxicity to human hepatoma cell line. Biotechnol. Bioeng.99(2), 399–410 (2008).
  • Menendez JA. Fine-tuning the lipogenic/lipolytic balance to optimize the metabolic requirements of cancer cell growth: Molecular mechanisms and therapeutic perspectives. Biochim. Biophys. Acta1801(3), 381–391 (2010).
  • Boros LG, Lerner MR, Morgan DL et al. [1,2-13C2]-D-glucose profiles of the serum, liver, pancreas, and DMBA-induced pancreatic tumors of rats. Pancreas31(4), 337–343 (2005).
  • Yang C, Richardson AD, Osterman A, Smith JW. Profiling of central metabolism in human cancer cells by two-dimensional NMR, GC-MS analysis, and isotopomer modeling. Metabolomics4(1), 13–29 (2008).
  • Munger J, Bennett BD, Parikh A et al. Systems-level metabolic flux profiling identifies fatty acid synthesis as a target for antiviral therapy. Nat. Biotechnol.26(10), 1179–1186 (2008).
  • Na TY, Shin YK, Roh KJ et al. Liver X receptor mediates hepatitis B virus X protein-induced lipogenesis in hepatitis B virus-associated hepatocellular carcinoma. Hepatology49(4), 1122–1131 (2009).
  • Huttlin EL, Chen X, Barrett-Wilt GA et al. Discovery and validation of colonic tumor-associated proteins via metabolic labeling and stable isotopic dilution. Proc. Natl Acad. Sci. USA106(40), 17235–17240 (2009).
  • Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell144(5), 646–674 (2011).
  • Griffin JL, Shockcor JP. Metabolic profiles of cancer cells. Nat. Rev. Cancer4(7), 551–561 (2004).
  • Shi H, Wei SH, Leu YW et al. Triple Analysis of the Cancer Epigenome. Cancer Res.63(9), 2164–2171 (2003).
  • Feltus F, Lee E, Costello J, Plass C, Vertino P. Predicting aberrant CpG island methylation. Proc. Natl Acad. Sci. USA100(21), 12253–12258 (2003).
  • Albertson DG, Pinkel D. Genomic microarrays in human genetic disease and cancer. Hum. Mol. Genet.12(2), R145–R152 (2003).
  • Roy NC, Altermann E, Park ZA, McNabb WC. A comparison of analog and next-Generation transcriptomic tools for mammalian studies. Brief. Funct. Genomics10(3), 135–150 (2011).
  • Chin K, DeVries S, Fridlyand J et al. Genomic and transcriptional aberrations linked to breast cancer pathophysiologies. Cancer Cell10(6), 529–541 (2006).
  • Neve RM, Chin K, Fridlyand J et al. A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell10(6), 515–527 (2006).
  • Anderson L, Seilhamer J. A comparison of selected mRNA and protein abundances in human liver. Electrophoresis18(3–4), 533–537 (1997).
  • Hanash S. Disease proteomics. Nature422(6928), 226–232 (2003).
  • Yang XJ, Seto E. Lysine acetylation: codified crosstalk with other posttranslational modifications. Mol. Cell31(4), 449–461 (2008).
  • Inuzuka H, Tseng A, Gao D et al. Phosphorylation by casein kinase I promotes the turnover of the Mdm2 oncoprotein via the SCF(β-TRCP) ubiquitin ligase. Cancer Cell18(2), 147–159 (2010).
  • Tateishi Y, Ariyoshi M, Igarashi R et al. Molecular basis for SUMOylation-dependent regulation of DNA binding activity of heat shock factor 2. J. Biol. Chem.284(4), 2435–2447 (2009).
  • Mani A, Gelmann EP. The ubiquitin–proteasome pathway and its role in cancer. J. Clin. Oncol.23(21), 4776–4789 (2005).
  • Nishizuka S, Charboneau L, Young L et al. Proteomic profiling of the NCI-60 cancer cell lines using new high-density reverse-phase lysate microarrays. Proc. Natl Acad. Sci. USA100(24), 14229–14234 (2003).
  • Bertucci F, Salas S, Eysteries S et al. Gene expression profiling of colon cancer by DNA microarrays and correlation with histoclinical parameters. Oncogene23(7), 1377–1391 (2004).
  • Bi X, Lin Q, Foo TW et al. Proteomic analysis of colorectal cancer reveals alterations in metabolic pathways. Mol. Cell Proteomics5(6), 1119–1130 (2006).
  • Hurt EM, Thomas SB, Peng B, Farrar WL. Integrated molecular profiling of SOD2 expression in multiple myeloma. Blood109(9), 3953–3962 (2007).
  • Liu R, Wang K, Yuan K, Wei Y, Huang C. Integrative oncoproteomics strategies for anticancer drug discovery. Expert Rev. Proteomics7(3), 411–429 (2010).
  • Cai Z, Zhao JS, Li JJ et al. A combined proteomic and metabolomic profiling of gastric cardia cancer reveals characteristic dysregulations in glucose metabolism. Mol. Cell Proteomics9(12), 2617–2618 (2010).
  • Perroud B, Lee J, Valkova N et al. Pathway analysis of kidney cancer using proteomics and metabolic profiling. Mol. Cancer5(1), 64 (2006).
  • Chen Y, Shi G, Xia W et al. Identification of hypoxia-regulated proteins in head and neck cancer by proteomic and tissue array profiling. Cancer Res.64(20), 7302–7310 (2004).
  • Zhang DH, Tai LK, Wong LL, Chiu LL, Sethi SK, Koay ESC. Proteomic study reveals that proteins involved in metabolic and detoxification pathways are highly expressed in HER-2/neu-positive breast cancer. Mol. Cell Proteomics4(11), 1686–1696 (2005).
  • Li LS, Kim H, Rhee H et al. Proteomic analysis distinguishes basaloid carcinoma as a distinct subtype of nonsmall cell lung carcinoma. Proteomics4(11), 3394–3400 (2004).
  • Sun W, Xing B, Sun Y et al. Proteome analysis of hepatocellular carcinoma by two-dimensional difference gel electrophoresis. Mol. Cell Proteomics6(10), 1798–1808 (2007).
  • Xu X, Qiao M, Zhang Y et al. Quantitative proteomics study of breast cancer cell lines isolated from a single patient: Discovery of TIMM17A as a marker for breast cancer. Proteomics10(7), 1374–1390 (2010).
  • McKinney KQ, Lee YY, Choi HS et al. Discovery of putative pancreatic cancer biomarkers using subcellular proteomics. J. Proteomics74(1), 79–88 (2010).
  • Nibbe RK, Markowitz S, Myeroff L, Ewing R, Chance MR. Discovery and scoring of protein interaction subnetworks discriminative of late stage human colon cancer. Mol. Cell Proteomics8(4), 827–845 (2009).
  • Chen G, Gharib TG, Huang CC et al. Proteomic analysis of lung adenocarcinoma: identification of a highly expressed set of proteins in tumors. Clin. Cancer Res.8(7), 2298–2305 (2002).
  • Tomonaga T, Matsushita K, Yamaguchi S et al. Identification of altered protein expression and post-translational modifications in primary colorectal cancer by using agarose two-dimensional gel electrophoresis. Clin. Cancer Res.10(6), 2007–2014 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.