80
Views
20
CrossRef citations to date
0
Altmetric
Perspective

Neurochemical dementia diagnostics in Alzheimer’s disease: where are we now and where are we going?

&
Pages 447-458 | Published online: 09 Jan 2014

References

  • Mayeux R. Evaluation and use of diagnostic tests in Alzheimer’s disease. Neurobiol. Aging19(2), 139–143 (1998).
  • Klafki HW, Staufenbiel M, Kornhuber J, Wiltfang J. Therapeutic approaches to Alzheimer’s disease. Brain129(Pt 11), 2840–2855 (2006).
  • Reiber H. Dynamics of brain-derived proteins in cerebrospinal fluid. Clin. Chim. Acta310(2), 173–186 (2001).
  • Andreasen N, Minthon L, Davidsson P et al. Evaluation of CSF-Tau and CSF-Aβ42 as diagnostic markers for Alzheimer disease in clinical practice. Arch. Neurol.58(3), 373–379 (2001).
  • Blennow K, Wallin A, Hager O. Low frequency of post-lumbar puncture headache in demented patients. Acta Neurol. Scand.88(3), 221–223 (1993).
  • Weih M, Krinninger M, Zimmermann R et al. [Sensitivity of neurochemical dementia diagnostics in CSF compared to 99mTc-SPECT in Alzheimer‘s dementia]. Fortschr. Neurol. Psychiatr.77(7), 407–411 (2009).
  • Kang J, Lemaire HG, Unterbeck A et al. The precursor of Alzheimer‘s disease amyloid A4 protein resembles a cell-surface receptor. Nature325(6106), 733–736 (1987).
  • Panegyres PK. The amyloid precursor protein gene: a neuropeptide gene with diverse functions in the central nervous system. Neuropeptides31(6), 523–535 (1997).
  • Klafki H, Abramowski D, Swoboda R, Paganetti PA, Staufenbiel M. The carboxyl termini of β-amyloid peptides 1–40 and 1–42 are generated by distinct γ-secretase activities. J. Biol. Chem.271(45), 28655–28659 (1996).
  • Citron M, Diehl TS, Gordon G, Biere AL, Seubert P, Selkoe DJ. Evidence that the 42- and 40-amino acid forms of amyloid β protein are generated from the β-amyloid precursor protein by different protease activities. Proc. Natl Acad. Sci. USA93(23), 13170–13175 (1996).
  • Lichtenthaler SF, Beher D, Grimm HS et al. The intramembrane cleavage site of the amyloid precursor protein depends on the length of its transmembrane domain. Proc. Natl Acad. Sci. USA99(3), 1365–1370 (2002).
  • Jang H, Arce FT, Ramachandran S et al. Truncated β-amyloid peptide channels provide an alternative mechanism for Alzheimer’s disease and Down syndrome. Proc. Natl Acad. Sci. USA107(14), 6538–6543 (2010).
  • Lewczuk P, Esselmann H, Meyer M et al. The amyloid-β (Aβ) peptide pattern in cerebrospinal fluid in Alzheimer’s disease: evidence of a novel carboxyterminally elongated Aβ peptide. Rapid Commun. Mass Spectrom.17(12), 1291–1296 (2003).
  • Lewczuk P, Esselmann H, Otto M et al. Neurochemical diagnosis of Alzheimer’s dementia by CSF Aβ42, Aβ42/Aβ40 ratio and total Tau. Neurobiol. Aging25(3), 273–281 (2004).
  • Wiltfang J, Esselmann H, Bibl M et al. Highly conserved and disease-specific patterns of carboxyterminally truncated Aβ peptides 1–37/38/39 in addition to 1–40/42 in Alzheimer’s disease and in patients with chronic neuroinflammation. J. Neurochem.81(3), 481–496 (2002).
  • Blennow K, Vanmechelen E, Hampel H. CSF total Tau, Aβ42 and phosphorylated Tau protein as biomarkers for Alzheimer’s disease. Mol. Neurobiol.24(1–3), 87–97 (2001).
  • Wiltfang J, Esselmann H, Maler JM, Bleich S, Hüther G, Kornhuber J. Molecular biology of Alzheimer’s dementia and its clinical relevance to early diagnosis and new therapeutic strategies. Gerontology47(2), 65–71 (2001).
  • Lewczuk P, Wiltfang J. Neurochemical dementia diagnostics: state of the art and research perspectives. Proteomics8(6), 1292–1301 (2008).
  • Motter R, Vigo-Pelfrey C, Kholodenko D et al. Reduction of β-amyloid peptide 42 in the cerebrospinal fluid of patients with Alzheimer’s disease. Ann. Neurol.38(4), 643–648 (1995).
  • Wiltfang J, Esselmann H, Smirnov A et al. β-amyloid peptides in cerebrospinal fluid of patients with Creutzfeldt–Jakob disease. Ann. Neurol.54(2), 263–267 (2003).
  • Sjögren M, Gisslen M, Vanmechelen E, Blennow K. Low cerebrospinal fluid β-amyloid 42 in patients with acute bacterial meningitis and normalization after treatment. Neurosci. Lett.314(1–2), 33–36 (2001).
  • Hulstaert F, Blennow K, Ivanoiu A et al. Improved discrimination of AD patients using β-amyloid(1–42) and Tau levels in CSF. Neurology52(8), 1555–1562 (1999).
  • Galasko D, Chang L, Motter R et al. High cerebrospinal fluid Tau and low amyloid β42 levels in the clinical diagnosis of Alzheimer disease and relation to apolipoprotein E genotype. Arch. Neurol.55(7), 937–945 (1998).
  • Buee L, Bussiere T, Buee-Scherrer V, Delacourte A, Hof PR. Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res. Brain Res. Rev.33(1), 95–130 (2000).
  • Mandelkow E, von Bergen M, Biernat J, Mandelkow EM. Structural principles of Tau and the paired helical filaments of Alzheimer‘s disease. Brain Pathol.17(1), 83–90 (2007).
  • Cairns NJ, Lee VM, Trojanowski JQ. The cytoskeleton in neurodegenerative diseases. J. Pathol.204(4), 438–449 (2004).
  • Shahani N, Brandt R. Functions and malfunctions of the Tau proteins. Cell Mol. Life Sci.59(10), 1668–1680 (2002).
  • Mawal-Dewan M, Henley J, Van de Voorde A, Trojanowski JQ, Lee VM. The phosphorylation state of Tau in the developing rat brain is regulated by phosphoprotein phosphatases. J. Biol. Chem.269(49), 30981–30987 (1994).
  • Rosner H, Rebhan M, Vacun G, Vanmechelen E. Developmental expression of Tau proteins in the chicken and rat brain: rapid down-regulation of a paired helical filament epitope in the rat cerebral cortex coincides with the transition from immature to adult Tau isoforms. Int. J. Dev. Neurosci.13(6), 607–617 (1995).
  • Sunderland T, Linker G, Mirza N et al. Decreased β-amyloid1–42 and increased Tau levels in cerebrospinal fluid of patients with Alzheimer disease. JAMA289(16), 2094–2103 (2003).
  • Otto M, Wiltfang J, Tumani H et al. Elevated levels of Tau-protein in cerebrospinal fluid of patients with Creutzfeldt–Jakob disease. Neurosci. Lett.225(3), 210–212 (1997).
  • Hesse C, Rosengren L, Andreasen N et al. Transient increase in total Tau but not phospho-Tau in human cerebrospinal fluid after acute stroke. Neurosci. Lett.297(3), 187–190 (2001).
  • Iqbal K, Grundke-Iqbal I, Zaidi T et al. Defective brain microtubule assembly in Alzheimer‘s disease. Lancet2(8504), 421–426 (1986).
  • Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI. Abnormal phosphorylation of the microtubule-associated protein Tau (Tau) in Alzheimer cytoskeletal pathology. Proc. Natl Acad. Sci. USA83(13), 4913–4917 (1986).
  • Hu YY, He SS, Wang X et al. Levels of nonphosphorylated and phosphorylated Tau in cerebrospinal fluid of Alzheimer’s disease patients: an ultrasensitive bienzyme-substrate-recycle enzyme-linked immunosorbent assay. Am. J. Pathol.160(4), 1269–1278 (2002).
  • Iqbal K, Alonso Adel C, El-Akkad E et al. Significance and mechanism of Alzheimer neurofibrillary degeneration and therapeutic targets to inhibit this lesion. J. Mol. Neurosci.19(1–2), 95–99 (2002).
  • Lewczuk P, Esselmann H, Bibl M et al. Tau protein phosphorylated at threonine 181 in CSF as a neurochemical biomarker in Alzheimer’s disease: original data and review of the literature. J. Mol. Neurosci.23(1–2), 115–122 (2004).
  • Vanmechelen E, Van Kerschaver E, Blennow K et al. CSF-phospho-Tau (181P) as a promising marker for discriminating Alzheimer‘s disease from dementia with lewy bodies. In: Alzheimer’s Disease: Advances in Etiology, Pathogenesis and Therapeutics. Iqbal K, Sisodia SS, Winblad B (Eds.) John Wiley and Sons Ltd., Chichester, UK, 285–291 (2001).
  • Parnetti L, Lanari A, Amici S, Gallai V, Vanmechelen E, Hulstaert F. CSF phosphorylated Tau is a possible marker for discriminating Alzheimer’s disease from dementia with Lewy bodies. Phospho-Tau International Study Group. Neurol. Sci.22(1), 77–78 (2001).
  • Itoh N, Arai H, Urakami K et al. Large-scale, multicenter study of cerebrospinal fluid Tau protein phosphorylated at serine 199 for the antemortem diagnosis of Alzheimer’s disease. Ann. Neurol.50(2), 150–156 (2001).
  • Hampel H, Buerger K, Kohnken R et al. Tracking of Alzheimer‘s disease progression with cerebrospinal fluid Tau protein phosphorylated at threonine 231. Ann. Neurol.49(4), 545–546 (2001).
  • Arai H, Ishiguro K, Ohno H et al. CSF phosphorylated Tau protein and mild cognitive impairment: a prospective study. Exp. Neurol.166(1), 201–203 (2000).
  • Hampel H, Buerger K, Zinkowski R et al. Measurement of phosphorylated Tau epitopes in the differential diagnosis of Alzheimer disease: a comparative cerebrospinal fluid study. Arch. Gen. Psychiatry61(1), 95–102 (2004).
  • Tumani H, Nolker G, Reiber H. Relevance of cerebrospinal fluid variables for early diagnosis of neuroborreliosis. Neurology45(9), 1663–1670 (1995).
  • Reiber H, Ungefehr S, Jacobi C. The intrathecal, polyspecific and oligoclonal immune response in multiple sclerosis. Mult. Scler.4(3), 111–117 (1998).
  • Wang ZF, Li HL, Li XC et al. Effects of endogenous β-amyloid overproduction on Tau phosphorylation in cell culture. J. Neurochem.98(4), 1167–1175 (2006).
  • Grueninger F, Bohrmann B, Czech C et al. Phosphorylation of Tau at S422 is enhanced by Aβ in TauPS2APP triple transgenic mice. Neurobiol. Dis.37(2), 294–306 (2010).
  • Huang HC, Jiang ZF. Accumulated amyloid-β peptide and hyperphosphorylated Tau protein: relationship and links in Alzheimer’s disease. J. Alzheimers Dis.16(1), 15–27 (2009).
  • Mudher A, Lovestone S. Alzheimer’s disease – do tauists and baptists finally shake hands? Trends Neurosci.25(1), 22–26 (2002).
  • Lewczuk P, Zimmermann R, Wiltfang J, Kornhuber J. Neurochemical dementia diagnostics: a simple algorithm for interpretation of the CSF biomarkers. J. Neural Transm.116(9), 1163–1167 (2009).
  • Lewczuk P, Beck G, Ganslandt O et al. International quality control survey of neurochemical dementia diagnostics. Neurosci. Lett.409(1), 1–4 (2006).
  • Zetterberg H, Wahlund LO, Blennow K. Cerebrospinal fluid markers for prediction of Alzheimer’s disease. Neurosci. Lett.352(1), 67–69 (2003).
  • Hansson O, Zetterberg H, Buchhave P, Londos E, Blennow K, Minthon L. Association between CSF biomarkers and incipient Alzheimer’s disease in patients with mild cognitive impairment: a follow-up study. Lancet Neurol.5(3), 228–234 (2006).
  • Lewczuk P, Kornhuber J, Vanderstichele H et al. Multiplexed quantification of dementia biomarkers in the CSF of patients with early dementias and MCI: a multicenter study. Neurobiol. Aging29(6), 812–818 (2008).
  • van Rossum IA, Vos S, Handels R, Visser PJ. Biomarkers as predictors for conversion from mild cognitive impairment to Alzheimer-type dementia: implications for trial design. J. Alzheimers Dis.20(3), 881–891 (2010).
  • Schoonenboom NS, Mulder C, Vanderstichele H et al. Effects of processing and storage conditions on amyloid β (1–42) and Tau concentrations in cerebrospinal fluid: implications for use in clinical practice. Clin. Chem.51(1), 189–195 (2005).
  • Jensen M, Hartmann T, Engvall B et al. Quantification of Alzheimer amyloid β peptides ending at residues 40 and 42 by novel ELISA systems. Mol. Med.6(4), 291–302 (2000).
  • Vanderstichele H, Van Kerschaver E, Hesse C et al. Standardization of measurement of β-amyloid(1–42) in cerebrospinal fluid and plasma. Amyloid7(4), 245–258 (2000).
  • Lewczuk P, Beck G, Esselmann H et al. Effect of sample collection tubes on cerebrospinal fluid concentrations of Tau proteins and amyloid β peptides. Clin. Chem.52(2), 332–334 (2006).
  • Zimmermann R, Lelental N, Ganslandt O, Maler JM, Kornhuber J, Lewczuk P. Preanalytical sample handling and sample stability testing for the neurochemical dementia diagnostics. J. Alzheimer Dis. (In Press) (2011).
  • Lewczuk P, Kamrowski-Kruck H, Peters O et al. Soluble amyloid precursor proteins in the cerebrospinal fluid as novel potential biomarkers of Alzheimer’s disease: a multicenter study. Mol. Psychiatry15(2), 138–145 (2010).
  • Gabelle A, Roche S, Geny C et al. Correlations between soluble α/β forms of amyloid precursor protein and Aβ38, 40, and 42 in human cerebrospinal fluid. Brain Res.1357, 175–183 (2010).
  • Felgenhauer K, Beuche W. Labordiagnostik Neurologischer Erkrankungen: Liquoranalytik und -Zytologie, Diagnose- und Processmarker. Thieme, Stuttgart, Germany (1999).
  • DeMattos RB, Bales KR, Cummins DJ, Dodart JC, Paul SM, Holtzman DM. Peripheral anti-Aβ antibody alters CNS and plasma Aβ clearance and decreases brain Aβ burden in a mouse model of Alzheimer’s disease. Proc. Natl Acad. Sci. USA98(15), 8850–8855 (2001).
  • DeMattos RB, Bales KR, Cummins DJ, Paul SM, Holtzman DM. Brain to plasma amyloid-β efflux: a measure of brain amyloid burden in a mouse model of Alzheimer’s disease. Science295(5563), 2264–2267 (2002).
  • Preston SD, Steart PV, Wilkinson A, Nicoll JA, Weller RO. Capillary and arterial cerebral amyloid angiopathy in Alzheimer’s disease: defining the perivascular route for the elimination of amyloid β from the human brain. Neuropathol. Appl. Neurobiol.29(2), 106–117 (2003).
  • Di Luca M, Pastorino L, Bianchetti A et al. Differential level of platelet amyloid β precursor protein isoforms: an early marker for Alzheimer disease. Arch. Neurol.55(9), 1195–1200 (1998).
  • Kuo YM, Kokjohn TA, Watson MD et al. Elevated Aβ42 in skeletal muscle of Alzheimer disease patients suggests peripheral alterations of AβPP metabolism. Am. J. Pathol.156(3), 797–805 (2000).
  • van Oijen M, Hofman A, Soares HD, Koudstaal PJ, Breteler MM. Plasma Aβ(1–40) and Aβ(1–42) and the risk of dementia: a prospective case–cohort study. Lancet Neurol.5(8), 655–660 (2006).
  • Mayeux R, Honig LS, Tang MX et al. Plasma Aβ40 and Aβ42 and Alzheimer’s disease: relation to age, mortality, and risk. Neurology61(9), 1185–1190 (2003).
  • Graff-Radford NR, Crook JE, Lucas J et al. Association of low plasma aβ42/aβ40 ratios with increased imminent risk for mild cognitive impairment and Alzheimer disease. Arch. Neurol.64(3), 354–362 (2007).
  • Sun X, Steffens DC, Au R et al. Amyloid-associated depression: a prodromal depression of Alzheimer disease? Arch. Gen. Psychiatry65(5), 542–550 (2008).
  • Ownby RL, Crocco E, Acevedo A, John V, Loewenstein D. Depression and risk for Alzheimer disease: systematic review, meta-analysis, and metaregression analysis. Arch. Gen. Psychiatry63(5), 530–538 (2006).
  • Lewczuk P, Kornhuber J, Vanmechelen E et al. Amyloid β peptides in plasma in early diagnosis of Alzheimer’s disease: a multicenter study with multiplexing. Exp. Neurol.223(2), 366–370 (2010).
  • Vignali DA. Multiplexed particle-based flow cytometric assays. J. Immunol. Methods243(1–2), 243–255 (2000).
  • Carson RT, Vignali DA. Simultaneous quantitation of 15 cytokines using a multiplexed flow cytometric assay. J. Immunol. Methods227(1–2), 41–52 (1999).
  • Olsson A, Vanderstichele H, Andreasen N et al. Simultaneous measurement of β-amyloid(1–42), total Tau, and phosphorylated Tau (Thr181) in cerebrospinal fluid by the xMAP technology. Clin. Chem.51(2), 336–345 (2005).
  • Richtlinie der Bundesärztekammer zur Qulitätssicherung laboratoriumsmedizinischen Untersuchungen. Deutsches Ärzteblatt105(7), A341–A355 (2008).
  • Verwey NA, van der Flier WM, Blennow K et al. A worldwide multicentre comparison of assays for cerebrospinal fluid biomarkers in Alzheimer‘s disease. Ann. Clin. Biochem.46(Pt 3), 235–240 (2009).
  • Mattsson N, Blennow K, Zetterberg H. Inter-laboratory variation in cerebrospinal fluid biomarkers for Alzheimer’s disease: united we stand, divided we fall. Clin. Chem. Lab. Med.48(5), 603–607 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.