346
Views
27
CrossRef citations to date
0
Altmetric
Review

From global phosphoproteomics to individual proteins: the case of translation elongation factor eEF1A

, &
Pages 71-83 | Published online: 09 Jan 2014

References

  • Choudhary C, Mann M. Decoding signalling networks by mass spectrometry-based proteomics. Nat. Rev. Mol. Cell. Biol.11(6), 427–439 (2010).
  • Mayya V, Han DK. Phosphoproteomics by mass spectrometry: insights, implications, applications and limitations. Expert Rev. Proteomics6(6), 605–618 (2009).
  • Villén J, Gygi SP. The SCX/IMAC enrichment approach for global phosphorylation analysis by mass spectrometry. Nat. Protoc.3(10), 1630–1638 (2008).
  • Wisniewski JR, Nagaraj N, Zougman A, Gnad F, Mann M. Brain phosphoproteome obtained by a FASP-based method reveals plasma membrane protein topology. J. Proteome Res.9(6), 3280–3289 (2010).
  • Huang PH, Miraldi ER, Xu AM et al. Phosphotyrosine signaling analysis of site-specific mutations on EGFRvIII identifies determinants governing glioblastoma cell growth. Mol. Biosyst.6(7), 1227–1237 (2010).
  • Olsen JV, Blagoev B, Gnad F et al. Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell127(3), 635–648 (2006).
  • Kolch W, Pitt A. Functional proteomics to dissect tyrosine kinase signalling pathways in cancer. Nat. Rev. Cancer10(9), 618–629 (2010).
  • Zhang L, Smit-McBride Z, Pan X, Rheinhardt J, Hershey JW. An oncogenic role for the phosphorylated h-subunit of human translation initiation factor eIF3. J. Biol. Chem.283(35), 24047–29060 (2008).
  • Martin L, Kimball SR, Gardner LB. Regulation of the unfolded protein response by eif2Bδ isoforms. J. Biol. Chem.285(42), 31944–31953 (2010).
  • Das F, Ghosh-Choudhury N, Kasinath BS, Choudhury GG. GFβ enforces activation of eukaryotic elongation factor-2 (eEF2) via inactivation of eEF2 kinase by p90 ribosomal S6 kinase (p90Rsk) to induce mesangial cell hypertrophy. FEBS Lett.584(19), 4268–4272 (2010).
  • Negrutskii BS, El’skaya AV. Eukaryotic translation elongation factor 1α: structure, expression, functions, and possible role in aminoacyl-tRNA channeling. Prog. Nucleic Acid Res. Mol. Biol.60, 47–78 (1998).
  • Negrutskii BS, Deutscher MP. Channeling of aminoacyl-tRNA for protein synthesis in vivo. Proc. Natl Acad. Sci. USA88(11), 4991–5199 (1991).
  • Mateyak MK, Kinzy TG. eEF1A: thinking outside the ribosome. J. Biol. Chem.285(28), 21209–21213 (2010).
  • Pittman YR, Kandl K, Lewis M, Valente L, Kinzy TG. Coordination of eukaryotic translation elongation factor 1A (eEF1A) function in actin organization and translation elongation by the guanine nucleotide exchange factor eEF1Bα. J. Biol. Chem.284(7), 4739–4747 (2009).
  • Shiina N, Gotoh Y, Kubomura N, Iwamatsu A, Nishida E. Microtubule severing by elongation factor 1α. Science266(5183), 282–285 (1994).
  • Chuang SM, Chen L, Lambertson D, Anand M, Kinzy TG, Madura K. Proteasome-mediated degradation of cotranslationally damaged proteins involves translation elongation factor 1A. Mol. Cell Biol.25(1), 403–413 (2005).
  • Lukash TO, Turkivska HV, Negrutskii BS, El’skaya AV. Chaperone-like activity of mammalian elongation factor eEF1A: renaturation of aminoacyl-tRNA synthetases. Int. J. Biochem. Cell Biol.36(7), 1341–1347 (2004).
  • Khacho M, Mekhail K, Pilon-Larose K, Pause A, Côté J, Lee S. eEF1A is a novel component of the mammalian nuclear protein export machinery. Mol. Biol. Cell19(12), 5296–5308 (2008).
  • Veremieva M, Khoruzhenko A, Zaicev S, Negrutskii B, El’skaya A. Unbalanced expression of the translation complex eEF1 subunits in human cardioesophageal carcinoma. Eur. J. Clin. Invest.41(3), 269–276 (2011).
  • Piazzi M, Bavelloni A, Faenza I et al. eEF1A phosphorylation in the nucleus of insulin-stimulated C2C12 myoblasts: Ser53 is a novel substrate for protein kinase C βI. Mol. Cell. Proteomics9(12), 2719–2728 (2010).
  • Davis WG, Blackwell JL, Shi PY, Brinton MA. Interaction between the cellular protein eEF1A and the 3´-terminal stem-loop of West Nile virus genomic RNA facilitates viral minus-strand RNA synthesis J. Virol.81(18), 10172–10187 (2007).
  • Li Z, Pogany J, Panavas T et al. Translation elongation factor 1A is a component of the tombusvirus replicase complex and affects the stability of the p33 replication co-factor. Virology385(1), 245–260 (2009).
  • Miura P, Coriati A, Bélanger G et al. The utrophin A 5´-UTR drives cap-independent translation exclusively in skeletal muscles of transgenic mice and interacts with eEF1A2. Hum. Mol. Genet.19(7), 1211–1220 (2010).
  • Fan K, Chrzanowska-Lightowlers ZM, Hesketh JE. Fine mapping of interactions between eEF1α protein and 3´UTR of metallothionein-1 mRNA. Biochem. Biophys. Res. Commun.386(1), 82–88 (2009).
  • Gillardon F. Interaction of elongation factor 1-α with leucine-rich repeat kinase 2 impairs kinase activity and microtubule bundling in vitro. Neuroscience163(2), 533–539 (2009).
  • Aranda-Orgillés B, Trockenbacher A, Winter J et al. The Opitz syndrome gene product MID1 assembles a microtubule-associated ribonucleoprotein complex. Hum. Genet.123(2), 163–176 (2008).
  • Ditzel HJ, Masaki Y, Nielsen H, Farnaes L, Burton DR. Cloning and expression of a novel human antibody-antigen pair associated with Felty’s syndrome. Proc. Natl Acad. Sci. USA97(16), 9234–9239 (2000).
  • Choi S, Cho K, Kim J et al. Comparative proteome analysis using amine-reactive isobaric tagging reagents coupled with 2D LC/MS/MS in 3T3-L1 adipocytes following hypoxia or normoxia. Biochem. Biophys. Res. Commun.383(1), 135–140 (2009).
  • Borradaile NM, Buhman KK, Listenberger LL et al. A critical role for eukaryotic elongation factor1A-1 in lipotoxic cell death Mol. Biol. Cell17(2), 770–778 (2006).
  • Anand N, Murthy S, Amann G et al. Protein elongation factor EEF1A2 is a putative oncogene in ovarian cancer. Nat. Genet.31(3), 301–305 (2002).
  • Tomlinson VA, Newbery HJ, Wray NR et al. Translation elongation factor eEF1A2 is a potential oncoprotein that is overexpressed in two-thirds of breast tumours. BMC Cancer5, 113 (2005).
  • Li R, Wang H, Bekele BN et al. Identification of putative oncogenes in lung adenocarcinoma by a comprehensive functional genomic approach. Oncogene25(18), 2628–2635 (2006).
  • Cao H, Zhu Q, Huang J et al. Regulation and functional role of eEF1A2 in pancreatic carcinoma. Biochem. Biophys. Res. Commun.380(1), 11–16 (2009).
  • Pecorari L, Marin O, Silvestri C et al. Elongation factor 1α interacts with phospho-Akt in breast cancer cells and regulates their proliferation, survival and motility. Mol. Cancer8, 58 (2009).
  • Tomlinson VA, Newbery HJ, Bergmann JH et al. Expression of eEF1A2 is associated with clear cell histology in ovarian carcinomas: overexpression of the gene is not dependent on modifications at the EEF1A2 locus. Br. J. Cancer96(10), 1613–1620 (2007).
  • Pinke DE, Kalloger SE, Francetic T, Huntsman DG, Lee JM. The prognostic significance of elongation factor eEF1A2 in ovarian cancer. Gynecol. Oncol.108(3), 561–568 (2008).
  • Sun Y, Wong N, Guan Y et al. The eukaryotic translation elongation factor eEF1A2 induces neoplastic properties and mediates tumorigenic effects of ZNF217 in precursor cells of human ovarian carcinomas. Int. J. Cancer123(8), 1761–1769 (2008).
  • Zhu H, Lam DC, Han KC et al. High resolution analysis of genomic aberrations by metaphase and array comparative genomic hybridization identifies candidate tumour genes in lung cancer cell lines. Cancer Lett.245(1–2), 303–314 (2007).
  • Schlaeger C, Longerich T, Schiller C et al. Etiology-dependent molecular mechanisms in human hepatocarcinogenesis. Hepatology47(2), 511–520 (2008).
  • Yamashita S, Tsujino Y, Moriguchi K, Tatematsu M, Ushijima T. Chemical genomic screening for methylation-silenced genes in gastric cancer cell lines using 5-aza-2´-deoxycytidine treatment and oligonucleotide microarray. Cancer Sci.97(1), 64–71 (2006).
  • Ruest LB, Marcotte R, Wang E. Peptide elongation factor eEF1A-2/S1 expression in cultured differentiated myotubes and its protective effect against caspase-3-mediated apoptosis. J. Biol. Chem.277(7), 5418–5425 (2002).
  • Chang R, Wang E. Mouse translation elongation factor eEF1A-2 interacts with Prdx-I to protect cells against apoptotic death induced by oxidative stress. J. Cell Biochem.100(2), 267–278 (2007).
  • Whitlock NA, Lindsey K, Agarwal N, Crosson CE, Ma JX. Heat shock protein 27 delays Ca2+-induced cell death in a caspase-dependent and -independent manner in rat retinal ganglion cells. Invest. Ophthalmol. Vis. Sci.46(3), 1085–1091 (2005).
  • Talapatra S, Wagner JD, Thompson CB. Elongation factor-1α is a selective regulator of growth factor withdrawal and ER stress-induced apoptosis. Cell Death Differ.9(8), 856–861 (2002).
  • Hashimoto K, Ishima T. Neurite outgrowth mediated by translation elongation factor eEF1A1: a target for antiplatelet agent cilostazol. PLoS One6(3), e17431 (2011).
  • Umeda D, Yano S, Yamada K, Tachibana H. Green tea polyphenol epigallocatechin-3-gallate signaling pathway through 67-kDa laminin receptor. J. Biol. Chem.283(6), 3050–3058 (2008).
  • Van Goietsenoven G, Hutton J, Becker JP et al. Targeting of eEF1A with Amaryllidaceae isocarbostyrils as a strategy to combat melanomas. FASEB J.24(11), 4575–4584 (2010).
  • Yao N, Chen CY, Wu CY et al. Novel flavonoids with anti-proliferative activities against breast cancer cells. J. Med. Chem.54(13), 4339–4349 (2011).
  • Lam YW, Yuan Y, Isaac J, Babu CV, Meller J, Ho SM. Comprehensive identification and modified-site mapping of S-nitrosylated targets in prostate epithelial cells. PLoS One5(2), e9075 (2010).
  • Greco TM, Hodara R, Parastatidis I et al. Identification of S-nitrosylation motifs by site-specific mapping of the S-nitrosocysteine proteome in human vascular smooth muscle cells Proc. Natl Acad. Sci. USA103(19), 7420–7425 (2006).
  • Belyi Y, Stahl M, Sovkova I, Kaden P, Luy B, Aktories K. Region of elongation factor 1A1 involved in substrate recognition by Legionella pneumophila glucosyltransferase Lgt1: identification of Lgt1 as a retaining glucosyltransferase. J. Biol. Chem.284(30), 20167–20174 (2009).
  • Hamnell-Pamment Y, Lind C, Palmberg C, Bergman T, Cotgreave IA. Determination of site-specificity of S-glutathionylated cellular proteins Biochem. Biophys. Res. Commun.332(2), 362–369 (2005).
  • Grimsrud PA, Picklo MJ, Griffin TJ, Bernlohr DA. Carbonylation of adipose proteins in obesity and insulin resistance: identification of adipocyte fatty acid-binding protein as a cellular target of 4-hydroxynonenal. Mol. Cell. Proteomics6(4), 624–637 (2007).
  • Gharbi S, Garzon B, Gayarre J, Timms J, Pérez-Sala D. Study of protein targets for covalent modification by the antitumoral and anti-inflammatory prostaglandin PGA1: focus on vimentin J. Mass. Spectrom.42(11), 1474–1484 (2007).
  • Panasyuk G, Nemazanyy I, Filonenko V, Negrutskii B, El’skaya AV. A2 isoform of mammalian translation factor eEF1A displays increased tyrosine phosphorylation and ability to interact with different signalling molecules. Int. J. Biochem. Cell Biol.40(1), 63–71 (2008).
  • Jeganathan S, Lee JM. Binding of elongation factor eEF1A2 to phosphatidylinositol 4-kinase β stimulates lipid kinase activity and phosphatidylinositol 4-phosphate generation. J. Biol. Chem.282(1), 372–380 (2007).
  • Leclercq TM, Moretti PA, Vadas MA, Pitson SM. Eukaryotic elongation factor 1A interacts with sphingosine kinase and directly enhances its catalytic activity. J. Biol. Chem.283(15), 9606–9614 (2008).
  • Cambray S, Pedraza N, Rafel M, Garí E, Aldea M, Gallego C. Protein kinase KIS localizes to RNA granules and enhances local translation. Mol. Cell Biol.29(3), 726–735 (2009).
  • Soares DC, Barlow PN, Newbery HJ, Porteous DJ, Abbott CM. Structural models of human eEF1A1 and eEF1A2 reveal two distinct surface clusters of sequence variation and potential differences in phosphorylation. PLoS One4(7), e6315 (2009).
  • Old WM, Shabb JB, Houel S et al Functional proteomics identifies targets of phosphorylation by B-Raf signaling in melanoma. Mol. Cell34(1), 115–131 (2009).
  • Lin KW, Yakymovych I, Jia M, Yakymovych M, Souchelnytskyi S. Phosphorylation of eEF1A1 at Ser300 by TβR-I results in inhibition of mRNA translation. Curr. Biol.20(18), 1615–1625 (2010).
  • Dephoure N, Zhou C, Villén J et al. A quantitative atlas of mitotic phosphorylation. Proc. Natl Acad. Sci. USA105(31), 10762–10767 (2008).
  • Rush J, Moritz A, Lee KA et al. Immunoaffinity profiling of tyrosine phosphorylation in cancer cells. Nat. Biotechnol.23(1), 94–101 (2005).
  • Goss VL, Lee KA, Moritz A et al. A common phosphotyrosine signature for the Bcr–Abl kinase. Blood107(12), 4888–4897 (2006).
  • Rikova K, Guo A, Zeng Q et al. Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell131(6), 1190–1203 (2007).
  • Lam DC, Girard L, Suen WS et al. Establishment and expression profiling of new lung cancer cell lines from Chinese smokers and lifetime never-smokers. J. Thorac. Oncol.1(9), 932–942 (2006).
  • Amiri A, Noei F, Jeganathan S, Kulkarni G, Pinke DE, Lee JM. eEF1A2 activates Akt and stimulates Akt-dependent actin remodeling, invasion and migration. Oncogene26(21), 3027–3040 (2007).
  • Guo A, Villén J, Kornhauser J et al. Signaling networks assembled by oncogenic EGFR and c-Met. Proc. Natl Acad. Sci. USA105(2), 692–697 (2008).
  • Nguyen V, Cao L, Lin JT et al. A new approach for quantitative phosphoproteomic dissection of signaling pathways applied to T cell receptor activation. Mol. Cell Proteomics8(11), 2418–2431 (2009).
  • Heibeck TH, Ding SJ, Opresko LK et al. An extensive survey of tyrosine phosphorylation revealing new sites in human mammary epithelial cells. J. Proteome Res.8(8), 3852–3861 (2009).
  • Villén J, Beausoleil SA, Gerber SA, Gygi SP. Large-scale phosphorylation analysis of mouse liver. Proc. Natl Acad. Sci. USA104(5), 1488–1493 (2007).
  • Huttlin EL, Jedrychowski MP, Elias JE et al. A tissue-specific atlas of mouse protein phosphorylation and expression. Cell143(7), 1174–1189 (2010).
  • Molina H, Horn DM, Tang N, Mathivanan S, Pandey A. Global proteomic profiling of phosphopeptides using electron transfer dissociation tandem mass spectrometry. Proc. Natl Acad. Sci. USA104(7), 2199–2204 (2007).
  • Daub H, Olsen JV, Bairlein M et al. Kinase-selective enrichment enables quantitative phosphoproteomics of the kinome across the cell cycle. Mol. Cell31(3), 438–448 (2008).
  • Budkevich TV, Timchenko AA, Tiktopulo EI et al. Extended conformation of mammalian translation elongation factor 1A in solution. Biochemistry41(51), 15342–15349 (2002).
  • Andersen GR, Pedersen L, Valente L et al. Structural basis for nucleotide exchange and competition with tRNA in the yeast elongation factor complex eEF1A:eEF1Bα. Mol. Cell6(5), 1261–1266 (2000).
  • Kanibolotsky DS, Novosyl’na OV, Abbott CM, Negrutskii BS, El’skaya AV. Multiple molecular dynamics simulation of the isoforms of human translation elongation factor 1A reveals reversible fluctuations between ‘open’ and ‘closed’ conformations and suggests specific for eEF1A1 affinity for Ca2+-calmodulin. BMC Struct. Biol.8, 4 (2008).
  • Jiménez JL, Hegemann B, Hutchins JR, Peters JM, Durbin RA. Systematic comparative and structural analysis of protein phosphorylation sites based on the mtcPTM database. Genome Biol.8(5), R90 (2007).
  • Vriend G. WHAT IF. A molecular modeling and drug design program. J. Mol. Graph.8(1), 52–56 (1990).
  • Vitagliano L, Masullo M, Sica F, Zagari A, Bocchini V. The crystal structure of Sulfolobus solfataricus elongation factor 1α in complex with GDP reveals novel features in nucleotide binding and exchange. EMBO J.20(19), 5305–5311 (2001).
  • Kaul G, Pattan G, Rafeequi T. Eukaryotic elongation factor-2 (eEF2): its regulation and peptide chain elongation. Cell Biochem. Funct.29(3), 227–234 (2011).
  • Zhou M, Robinson CV. When proteomics meets structural biology. Trends Biochem. Sci.35(9), 522–529 (2010).
  • Kast D, Espinoza-Fonseca LM, Yi C, Thomas DD. Phosphorylation-induced structural changes in smooth muscle myosin regulatory light chain. Proc. Natl Acad. Sci. USA107(18), 8207–8212 (2010).
  • Morita K, Bunai F, Numata O. Roles of three domains of Tetrahymena eEF1A in bundling F-actin. Zoolog. Sci.25(1), 22–29 (2008).
  • Lamberti A, Sanges C, Chambery A et al. Analysis of interaction partners for eukaryotic translation elongation factor 1A M-domain by functional proteomics. Biochimie93(10), 1738–1746 (2011).
  • Novosylna OV, Timchenko AA, Tiktopulo EI, Serdyuk IN, Negrutskii BS, El’skaya AV. Characterization of physical properties of two isoforms of translation elongation factor eEF1A. Biopolym. Cell23(5), 386–390 (2007).
  • Gannon J, Staunton L, O’Connell K, Doran P, Ohlendieck K. Phosphoproteomic analysis of aged skeletal muscle. Int. J. Mol. Med.22(1), 33–42 (2008).
  • Trinidad JC, Specht CG, Thalhammer A, Schoepfer R, Burlingame AL. Comprehensive identification of phosphorylation sites in postsynaptic density preparations. Mol. Cell. Proteomics5(5), 914–922 (2006).
  • Trinidad JC, Thalhammer A, Specht CG et al. Quantitative analysis of synaptic phosphorylation and protein expression. Mol. Cell. Proteomics7(4), 684–696 (2008).
  • Ballif BA, Villén J, Beausoleil SA, Schwartz D, Gygi SP. Phosphoproteomic analysis of the developing mouse brain. Mol. Cell. Proteomics3(11), 1093–1101 (2004).
  • Xia Q, Cheng D, Duong DM et al. Phosphoproteomic analysis of human brain by calcium phosphate precipitation and mass spectrometry. J. Proteome Res.7(7), 2845–2851 (2008).
  • Collins MO, Yu L, Campuzano I, Choudhary JS. Phosphoproteomic analysis of the mouse brain cytosol reveals a predominance of protein phosphorylation in regions of intrinsic sequence disorder. Mol. Cell. Proteomics7(7), 1331–1348 (2008).
  • Tweedie-Cullen RY, Reck JM, Mansuy IM. Comprehensive mapping of post-translational modifications on synaptic, nuclear, and histone proteins in the adult mouse brain. J. Proteome Res.8(11), 4966–4982 (2009).
  • Ballif BA, Carey GR, Sunyaev SR, Gygi SP. Large-scale identification and evolution indexing of tyrosine phosphorylation sites from murine brain. J. Proteome Res.7(1), 311–318 (2008).
  • Xue Y, Liu Z, Cao J et al. GPS 2.1: enhanced prediction of kinase-specific phosphorylation sites with an algorithm of motif length selection. Protein Eng. Des. Sel.24(3), 255–260 (2011).
  • Li Z, Qi CF, Shin DM et al. Eef1a2 promotes cell growth, inhibits apoptosis and activates JAK/STAT and AKT signaling in mouse plasmacytomas. PLoS One 21, 5(5), e10755 (2010).
  • Wilson-Grady JT, Villén J, Gygi SP. Phosphoproteome analysis of fission yeast. J. Proteome Res.7(3), 1088–1097 (2008).
  • Li X, Gerber SA, Rudner AD et al. Large-scale phosphorylation analysis of α-factor-arrested Saccharomyces cerevisiae. J. Proteome Res.6(3), 1190–1197 (2007).
  • Chi A, Huttenhower C, Geer LY et al. Analysis of phosphorylation sites on proteins from Saccharomyces cerevisiae by electron transfer dissociation (ETD) mass spectrometry. Proc. Natl Acad. Sci. USA104(7), 2193–2198 (2007).
  • Zhai B, Villén J, Beausoleil SA, Mintseris J, Gygi SP. Phosphoproteome analysis of Drosophila melanogaster embryos. J. Proteome Res.7(4), 1675–1682 (2008).
  • Lemeer S, Jopling C, Gouw J et al. Comparative phosphoproteomics of zebrafish Fyn/Yes morpholino knockdown embryos. Mol. Cell Proteomics7(11), 2176–2187 (2008).
  • Dinkel H, Chica C, Via A et al. ELM: a database of phosphorylation sites – update 2011. Nucleic Acids Res.39(Database issue), D261–D267 (2011).
  • Gnad F, Ren S, Cox J, Olsen JV, Macek B, Oroshi M, Mann M. PHOSIDA (phosphorylation site database): management, structural and evolutionary investigation, and prediction of phosphosites. Genome Biol.8(11), R250 (2007).
  • Amanchy R, Periaswamy B, Mathivanan S, Reddy R, Tattikota SG, Pandey AA. Curated compendium of phosphorylation motifs. Nat. Biotechnol.25(3), 285–286 (2007).
  • Obenauer JC, Cantley LC, Yaffe MB. Scansite 2.0: proteome-wide prediction of cell signaling interactions using short sequence motifs. Nucleic Acids Res.31(13), 3635–3641 (2003).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.