215
Views
51
CrossRef citations to date
0
Altmetric
Review

The human salivary proteome: a critical overview of the results obtained by different proteomic platforms

, , , , , , , , & show all
Pages 33-46 | Published online: 09 Jan 2014

References

  • Helmerhorst EJ, Oppenheim FG. Saliva: a dynamic proteome. J. Dent. Res.86(8), 680–693 (2007).
  • Tabak LA. In defense of the oral cavity: the protective role of the salivary secretions. Pediatr. Dent.28(2), 110–117 (2006).
  • Messana I, Inzitari R, Fanali C, Cabras T, Castagnola M. Facts and artifacts in proteomics of body fluids. What proteomics of saliva is telling us? J. Sep. Sci.31(11), 1948–1963 (2008).
  • Bandhakavi S, Stone MD, Onsongo G, Van Riper SK, Griffin TJ. A dynamic range compression and three-dimensional peptide fractionation analysis platform expands proteome coverage and the diagnostic potential of whole saliva. J. Proteome Res.8(12), 5590–5600 (2009).
  • Siqueira WL, Salih E, Wan DL, Helmerhorst EJ, Oppenheim FG. Proteome of human minor salivary gland secretion. J. Dent. Res.87(5), 445–450 (2008).
  • Pisano E, Cabras T, Montaldo C et al. Peptides of human gingival crevicular fluid determined by HPLC-ESI-MS. Eur. J. Oral Sci.113(6), 462–468 (2005).
  • Inzitari R, Cabras T, Pisano E et al. HPLC-ESI-MS analysis of oral human fluids reveals that gingival crevicular fluid is the main source of thymosins beta 4 and beta 10. J. Sep. Sci.32(1), 57–63 (2009).
  • Oppenheim FG, Salih E, Siqueira WL, Zhang W, Helmerhorst EJ. Salivary proteome and its genetic polymorphisms. Ann. NY Acad. Sci.1098, 22–50 (2007).
  • Cabras T, Fanali C, Monteiro JA et al. Tyrosine polysulfation of human salivary histatin 1. A post-translational modification specific of the submandibular gland. J. Proteome Res.6(7), 2472–2480 (2007).
  • Cabras T, Manconi B, Iavarone F et al. Top-down proteomic platform evidenced that salivary cystatin B is detectable in adult human whole saliva mostly as S-modified derivatives: S-glutathionyl, S-cysteinyl and S- S 2-mer. J. Proteomics doi:10.1016/j.jprot.2011.10.006 (2011) (Epub ahead of print).
  • Helmerhorst EJ, Sun X, Salih E, Oppenheim FG. Identification of Lys–Pro–Gln as a novel cleavage site specificity of saliva-associated proteases. J. Biol. Chem.283(29), 19957–19966 (2008).
  • Cabras T, Inzitari R, Fanali C et al. HPLC-MS characterization of cyclo-statherin Q-37, a specific cyclization product of human salivary statherin generated by transglutaminase 2. J. Sep. Sci.29(17), 2600–2606 (2006).
  • Messana I, Cabras T, Pisano E et al. Trafficking and post-secretory events responsible for the formation of secreted human salivary peptides. A proteomic approach. Mol. Cell. Proteomics7(5), 911–926 (2008).
  • Aps JK, Martens LC. Review: the physiology of saliva and transfer of drugs into saliva. Forensic Sci. Int.150(2–3), 119–131 (2005).
  • Cabras T, Pisano E, Boi R et al. Age-dependent modifications of the human salivary secretory complex. J. Proteome Res.8, 4126–4134 (2009).
  • Castagnola M, Inzitari R, Fanali C et al. The surprising composition of the salivary proteome of preterm human newborn. Mol. Cell. Proteomics10(1), M110.003467 (2011).
  • Tipton JD, Tran JC, Catherman AD, Ahlf DR, Durbin KR, Kelleher NL. Analysis of intact protein isoforms by mass spectrometry. J. Biol. Chem.286(29), 25451–25458 (2011).
  • Cui W, Rohrs HW, Gross ML. Top-down mass spectrometry: recent developments, applications and perspectives. Analyst136(19), 3854–3864 (2011).
  • Michalski A, Cox J, Mann M. More than 100,000 detectable peptide species elute in single shotgun proteomics runs but the majority is inaccessible to data-dependent LC-MS/MS. J. Proteome Res.10(4), 1785–1793 (2011).
  • Podwojski K, Eisenacher M, Kohl M et al. Peek a peak: a glance at statistics for quantitative label-free proteomics. Expert Rev. Proteomics7(2), 249–261 (2010).
  • Bergquist J, Palmblad M, Wetterhall M, Håkansson P, Markides KE. Peptide mapping of protein in human body fluid using electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Mass Spectrom. Rev.21(1), 2–15 (2002).
  • Hu S, Xie Y, Ramachandran P et al. Large-scale identification of proteins in human salivary proteome by liquid chromatography/mass spectrometry and two-dimensional gel electrophoresis-mass spectrometry. Proteomics5(6), 1714–1728 (2005).
  • Xie H, Rhodus NL, Griffin RJ, Carlis JV, Griffin TJ. A catalogue of human salivary proteins identified by free-flow capillary electrophoresis-based peptide separation and tandem mass spectrometry. Mol. Cell. Proteomics4(11), 1826–1830 (2005).
  • Guo T, Rudnick PA, Wang W, Lee CS, Devoe DL, Balgley BM. Characterization of the human salivary proteome by capillary isoelectric focusing/nanoreversed-phase liquid chromatography coupled with ESI-tandem MS. J. Proteome Res.5(6), 1469–1478 (2006).
  • Fang X, Yang L, Wang W et al. Comparison of electrokinetics-based multidimensional separations coupled with electrospray ionization-tandem mass spectrometry for characterization of human salivary proteins. Anal. Chem.79(15), 5785–5792 (2007).
  • Yan W, Apweiler R, Balgley BM et al. A systematic comparison of the human saliva and plasma proteomes. Proteomics Clin. Appl.3(1), 116–134 (2009).
  • Li SJ, Peng M, Li H et al. SysBody Fluid: a systematical database for human body fluid proteome research. Nucleic Acids Res.37, D907–D912 (2009).
  • Siqueira WL, Zhang W, Helmerhorst EJ, Gygi SP, Oppenheim FG. Identification of protein components in in vivo human acquired enamel pellicle using LC-ESI-MS/MS. J. Proteome Res.6(6), 2152–2160 (2007).
  • Denny P, Hagen FK, Hardt M et al. The proteomes of human parotid and submandibular/sublingual gland salivas collected as the ductal secretions. J. Proteome Res.7(5), 1994–2006 (2008).
  • Ramachandran P, Boontheung P, Xie Y, Sondej M, Wong DT, Loo JA. Identification of N-linked glycoproteins in human saliva by glycoprotein capture and mass spectrometry. J. Proteome Res.5(6), 1493–1503 (2006).
  • Larsen MR, Jensen SS, Jakobsen LA, Heegaard NH. Exploring the sialiome using titanium dioxide chromatography and mass spectrometry. Mol. Cell. Proteomics6(10), 1778–1787 (2007).
  • Salih E, Siqueira WL, Helmerhorst EJ, Oppenheim FG. Large-scale phosphoproteome of human whole saliva using disulfide-thiol interchange covalent chromatography and mass spectrometry. Anal. Biochem.407(1), 19–33 (2010).
  • Stone MD, Chen X, McGowan T et al. Large-scale phosphoproteomics analysis of whole saliva reveals a distinct phosphorylation pattern. J. Proteome Res.10(4), 1728–1736 (2011).
  • Gonzalez-Begne M, Lu B, Han X et al. Proteomic analysis of human parotid gland exosomes by multidimensional protein identification technology (MudPIT). J. Proteome Res.8(3), 1304–1314 (2009).
  • Xie H, Onsongo G, Popko J et al. Proteomics analysis of cells in whole saliva from oral cancer patients via value-added three-dimensional peptide fractionation and tandem mass spectrometry. Mol. Cell. Proteomics7(3), 486–498 (2008).
  • Ambatipudi KS, Lu B, Hagen FK, Melvin JE, Yates JR. Quantitative analysis of age specific variation in the abundance of human female parotid salivary proteins. J. Proteome Res.8(11), 5093–5102 (2009).
  • Streckfus CF, Mayorga-Wark O, Arreola D, Edwards C, Bigler L, Dubinsky WP. Breast cancer related proteins are present in saliva and are modulated secondary to ductal carcinoma in situ of the breast. Cancer Invest.26(2), 159–167 (2008).
  • Hu S, Arellano M, Boontheung P et al. Salivary proteomics for oral cancer biomarker discovery. Clin. Cancer Res.14(19), 6246–6252 (2008).
  • Preza D, Thiede B, Olsen I, Grinde B. The proteome of the human parotid gland secretion in elderly with and without root caries. Acta Odontol. Scand.67(3), 161–169 (2009).
  • Rao PV, Reddy AP, Lu X et al. Proteomic identification of salivary biomarkers of Type-2 diabetes. J. Proteome Res.8(1), 239–245 (2009).
  • Weist S, Eravci M, Broedel O, Fuxius S, Eravci S, Baumgartner A. Results and reliability of protein quantification for two-dimensional gel electrophoresis strongly depend on the type of protein sample and the method employed. Proteomics8(16), 3389–3396 (2008).
  • Clark BN, Gutstein HB. The myth of automated, high-throughput two-dimensional gel analysis. Proteomics8(6), 1197–1203 (2008).
  • Ghafouri B, Tagesson C, Lindahl M. Mapping of proteins in human saliva using two-dimensional gel electrophoresis and peptide mass fingerprinting. Proteomics3(6), 1003–1015 (2003).
  • Yao Y, Berg EA, Costello CE, Troxler RF, Oppenheim FG. Identification of protein components in human acquired enamel pellicle and whole saliva using novel proteomics approaches. J. Biol. Chem.278(7), 5300–5308 (2003).
  • Vitorino R, Lobo MJ, Ferrer-Correira AJ et al. Identification of human whole saliva protein components using proteomics. Proteomics4(4), 1109–1115 (2004).
  • Deutsch O, Fleissig Y, Zaks B, Krief G, Aframian D.J, Palmon A. An approach to remove alpha amylase for proteomic analysis of low abundance biomarkers in human saliva. Electrophoresis29(20), 4150–4157 (2008).
  • Walz A, Stühler K, Wattenberg A et al. Proteome analysis of glandular parotid and submandibular-sublingual saliva in comparison to whole human saliva by two-dimensional gel electrophoresis. Proteomics6(5), 1631–1639 (2006).
  • Hardt M, Thomas LR, Dixon SE et al. Toward defining the human parotid gland salivary proteome and peptidome: identification and characterization using 2D SDS-PAGE, ultrafiltration, HPLC, and mass spectrometry. Biochemistry44(8), 2885–2899 (2005).
  • Fleissig Y, Reichenberg E, Redlich M et al. Comparative proteomic analysis of human oral fluids according to gender and age. Oral Dis.16(8), 831–838 (2010).
  • Neyraud E, Sayd T, Morzel M, Dransfield E. Proteomic analysis of human whole and parotid salivas following stimulation by different tastes. J. Proteome Res.5(9), 2474–2480 (2006).
  • Giusti L, Baldini C, Bazzichi L et al. Proteome analysis of whole saliva: a new tool for rheumatic diseases – the example of Sjögren’s syndrome. Proteomics7(10), 1634–1643 (2007).
  • Ryu OH, Atkinson JC, Hoehn GT, Illei GG, Hart TC. Identification of parotid salivary biomarkers in Sjogren’s syndrome by surface-enhanced laser desorption/ionization time-of-flight mass spectrometry and two-dimensional difference gel electrophoresis. Rheumatology45(9), 1077–1086 (2006).
  • Giusti L, Baldini C, Bazzichi L, Bombardieri S, Lucacchini A. Proteomic diagnosis of Sjögren’s syndrome. Expert Rev. Proteomics4(6), 757–767 (2007).
  • Ferraccioli G, De Santis M, Peluso G et al. Proteomic approaches to Sjogren’s syndrome: a clue to interpret the pathophysiology and organ involvement of the disease. Autoimmun. Rev.9(9), 622–626 (2010).
  • Fleissig Y, Deutsch O, Reichenberg E et al. Different proteomic protein patterns in saliva of Sjögren’s syndrome patients. Oral Dis.15(1), 61–68 (2009).
  • Quintana M, Palicki O, Lucchi G et al. Inter-individual variability of protein patterns in saliva of healthy adults.J. Proteomics72(5), 822–830 (2009).
  • Vitorino R, de Morais Guedes S, Ferreira R et al. Two-dimensional electrophoresis study of in vitro pellicle formation and dental caries susceptibility. Eur. J. Oral Sci.114(2), 147–153 (2006).
  • Rudney JD, Staikov RK, Johnson JD. Potential biomarkers of human salivary function: a modified proteomic approach. Arch. Oral Biol.54(1), 91–100 (2009).
  • Haigh BJ, Stewart KW, Whelan JR, Barnett MP, Smolenski GA, Wheeler TT. Alterations in the salivary proteome associated with periodontitis. J. Clin. Periodontol.37(3), 241–247 (2010).
  • Wu Y, Shu R, Luo LJ, Ge LH, Xie YF. Initial comparison of proteomic profiles of whole unstimulated saliva obtained from generalized aggressive periodontitis patients and healthy control subjects. J. Periodontal Res.44(5), 636–644 (2009).
  • Dowling P, Wormald R, Meleady P, Henry M, Curran A, Clynes M. Analysis of the saliva proteome from patients with head and neck squamous cell carcinoma reveals differences in abundance levels of proteins associated with tumour progression and metastasis. J. Proteomics71(2), 168–175 (2008).
  • Ohshiro K, Rosenthal DI, Koomen JM et al. Pre-analytic saliva processing affect proteomic results and biomarker screening of head and neck squamous carcinoma. Int. J. Oncol.30(3), 743–749 (2007).
  • Jou YJ, Lin CD, Lai CH et al. Proteomic identification of salivary transferring as a biomarker for early detection of oral cancer. Anal. Chim. Acta681(1–2), 41–48 (2010).
  • Caffrey RE. A review of experimental design best practices for proteomics based biomarker discovery: focus on SELDI-TOF. Methods Mol. Biol.641, 167–183 (2010).
  • Yang MH, Lo LH, Chen YH et al. Study of human neutrophil peptides in saliva by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom.23(19), 3220–3226 (2009).
  • Huang CM, Zhu W. Profiling human saliva endogenous peptidome via a high throughput MALDI-TOF-TOF mass spectrometry. Comb. Chem. High Throughput Screen.12(5), 521–531 (2009).
  • Schipper R, Loof A, de Groot J, Harthoorn L, Dransfield E, van Heerde W. SELDI-TOF-MS of saliva: methodology and pre-treatment effects. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.847(1), 45–53 (2007).
  • Schipper R, Loof A, de Groot J, Harthoorn L, van Heerde W, Dransfield E. Salivary protein/peptide profiling with SELDI-TOF-MS. Ann. NY Acad. Sci.1098, 498–503 (2007).
  • Shintani S, Hamakawa H, Ueyama Y, Hatori M, Toyoshima T. Identification of a truncated cystatin SA-I as a saliva biomarker for oral squamous cell carcinoma using the SELDI ProteinChip platform. Int. J. Oral. Maxillofac. Surg.39(1), 68–74 (2010).
  • Ryan CM, Souda P, Halgand F et al. Confident assignment of intact mass tags to human salivary cystatins using top-down Fourier-transform ion cyclotron resonance mass spectrometry. J. Am. Soc. Mass Spectrom.21(6), 908–917 (2010).
  • Millea KM, Krull IS, Chakraborty AB, Gebler JC, Berger SJ. Comparative profiling of human saliva by intact protein LC/ESI-TOF mass spectrometry. Biochim. Biophys. Acta1774(7), 897–906 (2007).
  • Vitorino R, Lobo MJ, Duarte JA, Ferrer-Correia AJ, Domingues PM, Amado FM. Analysis of salivary peptides using HPLC-electrospray mass spectrometry. Biomed. Chromatogr.18(8), 570–575 (2004).
  • Vitorino R, Calheiros-Lobo MJ, Williams J et al. Peptidomic analysis of human acquired enamel pellicle. Biomed. Chromatogr.21(11), 1107–1117 (2007).
  • Siqueira WL, Margolis HC, Helmerhorst EJ, Mendes FM, Oppenheim FG. Evidence of intact histatins in the in vivo acquired enamel pellicle. J. Dent. Res.89(6), 626–630 (2010).
  • Robinson S, Niles RK, Witkowska HE et al. A mass spectrometry-based strategy for detecting and characterizing endogenous proteinase activities in complex biological samples. Proteomics8(3), 435–445 (2008).
  • Whitelegge JP, Zabrouskov V, Halgand F et al. Protein-sequence polymorphisms and post-translational modifications in proteins from human saliva using top-down Fourier-transform ion cyclotron resonance mass spectrometry. Int. J. Mass Spectrom.268(2–3), 190–197 (2007).
  • Halgand F, Zabrouskov V, Bassilian S et al. Micro-heterogeneity of human saliva Peptide P-C characterized by high-resolution top-down Fourier-transform mass spectrometry. J. Am. Soc. Mass Spectrom.21(5), 868–877 (2010).
  • Hardt M, Witkowska HE, Webb S et al. Assessing the effects of diurnal variation on the composition of human parotid saliva: quantitative analysis of native peptides using iTRAQ reagents. Anal. Chem.77(15), 4947–4954 (2005).
  • Messana I, Cabras T, Inzitari R et al. Characterization of the human salivary basic proline-rich protein complex by a proteomic approach. J. Proteome Res.3(4), 792–800 (2004).
  • Inzitari R, Cabras T, Onnis G et al. Different isoforms and post-translational modifications of human salivary acidic proline-rich proteins. Proteomics5(3), 805–815 (2005).
  • Inzitari R, Cabras T, Rossetti DV et al. Detection in human saliva of different statherin and P-B fragments and derivatives. Proteomics6(23), 6370–6379 (2006).
  • Castagnola M, Inzitari R, Rossetti DV et al. A cascade of 24 histatins (histatin 3 fragments) in human saliva: suggestions for a pre-secretory sequential cleavage pathway. J. Biol. Chem.279(40), 41436–41443 (2004).
  • Inzitari R, Vento G, Capoluongo E et al. Proteomic analysis of salivary acidic proline-rich proteins in human pre-term and at-term newborns. J. Proteome Res.6(4), 1371–1377 (2007).
  • Nemolato S, Messana I, Cabras T et al. Thymosin β4 and β10 levels in pre-term newborn oral cavity and foetal salivary glands evidence a switch of secretion during foetal development. PLoS ONE4(4), e5109 (2009).
  • Castagnola M, Messana I, Inzitari et al. Hypo-phosphorylation of salivary peptidome as a clue to the molecular pathogenesis of autism spectrum disorders. J. Proteome Res.7, 5327–5332 (2008).
  • Cabras T, Pisano E, Mastinu A et al. Alteration of the salivary peptidome profile in children affected by Type 1 diabetes. Mol. Cell. Proteomics9(10), 2099–2108 (2010).
  • Al-Tarawneh SK, Border MB, Dibble CF, Bencharit S. Defining salivary biomarkers using mass spectrometry-based proteomics: a systematic review. Omics15(6), 353–361 (2011).
  • Hu J, Coombes KR, Morris JS, Baggerly KA. The importance of experimental design in proteomic mass spectrometry experiments: some cautionary tales. Brief Funct. Genomic Proteomic3(4), 322–331 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.