236
Views
61
CrossRef citations to date
0
Altmetric
Review

The scientific exploration of saliva in the post-proteomic era: from database back to basic function

Pages 85-96 | Published online: 09 Jan 2014

References

  • Denny P, Hagen FK, Hardt M et al. The proteomes of human parotid and submandibular/sublingual gland salivas collected as the ductal secretions. J. Proteome Res.7(5), 1994–2006 (2008).
  • Loo JA, Yan W, Ramachandran P, Wong DT. Comparative human salivary and plasma proteomes. J. Dent. Res.89(10), 1016–1023 (2010).
  • Castagnola M, Cabras T, Vitali A, Sanna MT, Messana I. Biotechnological implications of the salivary proteome. Trends Biotechnol.29(8), 409–418 (2011).
  • Amado F, Lobo MJ, Domingues P, Duarte JA, Vitorino R. Salivary peptidomics. Expert Rev. Proteomics7(5), 709–721 (2010).
  • Ghafouri B, Tagesson C, Lindahl M. Mapping of proteins in human saliva using two-dimensional gel electrophoresis and peptide mass fingerprinting. Proteomics3(6), 1003–1015 (2003).
  • Walz A, Stühler K, Wattenberg A et al. Proteome analysis of glandular parotid and submandibular-sublingual saliva in comparison to whole human saliva by two-dimensional gel electrophoresis. Proteomics6(5), 1631–1639 (2006).
  • Spielmann N, Wong DT. Saliva: diagnostics and therapeutic perspectives. Oral Dis.17(4), 345–354 (2011).
  • Baum BJ, Yates JR 3rd, Srivastava S, Wong DT, Melvin JE. Scientific frontiers: emerging technologies for salivary diagnostics. Adv. Dent. Res.23(4), 360–368 (2011).
  • Inzitari R, Cabras T, Pisano E et al. HPLC-ESI-MS analysis of oral human fluids reveals that gingival crevicular fluid is the main source of oral thymosins beta(4) and beta(10). J. Sep. Sci.32(1), 57–63 (2009).
  • Leone CW, Oppenheim FG. Physical and chemical aspects of saliva as indicators of risk for dental caries in humans. J. Dent. Educ.65(10), 1054–1062 (2001).
  • Zhang L, Henson BS, Camargo PM, Wong DT. The clinical value of salivary biomarkers for periodontal disease. Periodontol. 200051, 25–37 (2009).
  • Van Nieuw Amerongen A, Bolscher JG, Veerman EC. Salivary proteins: protective and diagnostic value in cariology? Caries Res.38(3), 247–253 (2004).
  • Oppenheim FG, Salih E, Siqueira WL, Zhang W, Helmerhorst EJ. Salivary proteome and its genetic polymorphisms. Ann. NY Acad. Sci.1098, 22–50 (2007).
  • Helmerhorst EJ, Oppenheim FG. Saliva: a dynamic proteome. J. Dent. Res.86(8), 680–693 (2007).
  • Hart GW, Copeland RJ. Glycomics hits the big time. Cell143(5), 672–676 (2010).
  • Scannapieco FA. Saliva–bacterium interactions in oral microbial ecology. Crit. Rev. Oral Biol. Med.5(3–4), 203–248 (1994).
  • Amerongen AV, Veerman EC. Saliva – the defender of the oral cavity. Oral Dis.8(1), 12–22 (2002).
  • Miller CS, Foley JD, Bailey AL et al. Current developments in salivary diagnostics. Biomark. Med.4(1), 171–189 (2010).
  • Zhang L, Xiao H, Wong DT. Salivary biomarkers for clinical applications. Mol. Diagn. Ther.13(4), 245–259 (2009).
  • Levine MJ. Salivary macromolecules. A structure/function synopsis. Ann. NY Acad. Sci.694, 11–16 (1993).
  • Lamkin MS, Oppenheim FG. Structural features of salivary function. Crit. Rev. Oral Biol. Med.4(3–4), 251–259 (1993).
  • Yan W, Apweiler R, Balgley BM et al. Systematic comparison of the human saliva and plasma proteomes. Proteomics Clin. Appl.3(1), 116–134 (2009).
  • Li SJ, Peng M, Li H et al. Sys-BodyFluid: a systematical database for human body fluid proteome research. Nucleic Acids Res.37(Database issue), D907–D912 (2009).
  • Hu S, Loo JA, Wong DT. Human body fluid proteome analysis. Proteomics6(23), 6326–6353 (2006).
  • Schenkels LC, Veerman EC, Nieuw Amerongen AV. Biochemical composition of human saliva in relation to other mucosal fluids. Crit. Rev. Oral Biol. Med.6(2), 161–175 (1995).
  • Emmings FG. Oral biology, a dialogue: Solon Arthur Ellison at the State University of New York at Buffalo. J. Dent. Res.78(3), 725–729 (1999).
  • Mandel ID. The functions of saliva. J. Dent. Res.66, Spec No. 623–627 (1987).
  • Sreebny LM. Saliva in health and disease: an appraisal and update. Int. Dent. J.50(3), 140–161 (2000).
  • Soares RV, Lin T, Siqueira CC et al. Salivary micelles: identification of complexes containing MG2, sIgA, lactoferrin, amylase, glycosylated proline-rich protein and lysozyme. Arch. Oral Biol.49(5), 337–343 (2004).
  • Lamy E, Graca G, da Costa G et al. Changes in mouse whole saliva soluble proteome induced by tannin-enriched diet. Proteome Sci.8, 65 (2010).
  • Weldon CL, Mackessy SP. Biological and proteomic analysis of venom from the Puerto Rican Racer (Alsophis portoricensis: Dipsadidae). Toxicon55(2–3), 558–569 (2010).
  • Lamy E, da Costa G, Santos R et al. Sheep and goat saliva proteome analysis: a useful tool for ingestive behavior research? Physiol. Behav.98(4), 393–401 (2009).
  • Ang CS, Binos S, Knight MI et al. Global survey of the bovine salivary proteome: integrating multidimensional prefractionation, targeted, and glycocapture strategies. J. Proteome Res.10(11), 5059–5069 (2011).
  • Zamakhchari M, Wei G, Dewhirst F et al. Identification of Rothia bacteria as gluten-degrading natural colonizers of the upper gastro-intestinal tract. PLoS One6(9), e24455 (2011).
  • Scannapieco FA, Torres G, Levine MJ. Salivary alpha-amylase: role in dental plaque and caries formation. Crit. Rev. Oral Biol. Med.4(3–4), 301–307 (1993).
  • Fried M, Abramson S, Meyer JH. Passage of salivary amylase through the stomach in humans. Dig. Dis. Sci.32(10), 1097–1103 (1987).
  • Perry GH, Dominy NJ, Claw KG et al. Diet and the evolution of human amylase gene copy number variation. Nat. Genet.39(10), 1256–1260 (2007).
  • Mandel AL, Peyrot des Gachons C, Plank KL, Alarcon S, Breslin PA. Individual differences in AMY1 gene copy number, salivary alpha-amylase levels, and the perception of oral starch. PLoS One5(10), e13352 (2010).
  • Vitorino R, Calheiros-Lobo MJ, Duarte JA, Domingues PM, Amado FM. Peptide profile of human acquired enamel pellicle using MALDI tandem MS. J. Sep. Sci.31(3), 523–537 (2008).
  • Siqueira WL, Zhang W, Helmerhorst EJ, Gygi SP, Oppenheim FG. Identification of protein components in in vivo human acquired enamel pellicle using LC-ESI-MS/MS. J. Proteome Res.6(6), 2152–2160 (2007).
  • Lendenmann U, Grogan J, Oppenheim FG. Saliva and dental pellicle – a review. Adv. Dent. Res.14, 22–28 (2000).
  • Dawes C. Salivary flow patterns and the health of hard and soft oral tissues. J. Am. Dent. Assoc.139(Suppl.), 18S–24S (2008).
  • Holbrook WP, Furuholm J, Gudmundsson K, Theodors A, Meurman JH. Gastric reflux is a significant causative factor of tooth erosion. J. Dent. Res.88(5), 422–426 (2009).
  • Slomiany BL, Murty VL, Slomiany A. Salivary lipids in health and disease. Prog. Lipid Res.24(4), 311–324 (1985).
  • Oudhoff MJ, Blaauboer ME, Nazmi K et al. The role of salivary histatin and the human cathelicidin LL-37 in wound healing and innate immunity. Biol. Chem.391(5), 541–548 (2010).
  • Zelles T, Purushotham KR, Macauley SP, Oxford GE, Humphreys-Beher MG. Saliva and growth factors: the fountain of youth resides in us all. J. Dent. Res.74(12), 1826–1832 (1995).
  • Ruhl S, Hamberger S, Betz R et al. Salivary proteins and cytokines in drug-induced gingival overgrowth. J. Dent. Res.83(4), 322–326 (2004).
  • Blicharz TM, Siqueira WL, Helmerhorst EJ et al. Fiber-optic microsphere-based antibody array for the analysis of inflammatory cytokines in saliva. Anal. Chem.81(6), 2106–2114 (2009).
  • Levi-Montalcini R, Booker B. Excessive growth of the sympathetic ganglia evoked by a protein isolated from mouse salivary glands. Proc. Natl Acad. Sci. USA46(3), 373–384 (1960).
  • Giannobile WV, Beikler T, Kinney JS et al. Saliva as a diagnostic tool for periodontal disease: current state and future directions. Periodontol. 200050, 52–64 (2009).
  • Mese H, Matsuo R. Salivary secretion, taste and hyposalivation. J. Oral Rehabil.34(10), 711–723 (2007).
  • Reed DR, McDaniel AH. The human sweet tooth. BMC Oral Health.6(Suppl. 1), S17 (2006).
  • Shatzman AR, Henkin RI. Gustin concentration changes relative to salivary zinc and taste in humans. Proc. Natl Acad. Sci. USA78(6), 3867–3871 (1981).
  • Kivelä J, Parkkila S, Parkkila AK, Leinonen J, Rajaniemi H. Salivary carbonic anhydrase isoenzyme VI. J. Physiol.520(Pt 2), 315–320 (1999).
  • Pascal C, Pate F, Cheynier V, Delsuc MA. Study of the interactions between a proline-rich protein and a flavan-3-ol by NMR: residual structures in the natively unfolded protein provides anchorage points for the ligands. Biopolymers91(9), 745–756 (2009).
  • Karn RC, Orth A, Bonhomme F, Boursot P. The complex history of a gene proposed to participate in a sexual isolation mechanism in house mice. Mol. Biol. Evol.19(4), 462–471 (2002).
  • Smith BA, Block ML. Male saliva cues and female social choice in Mongolian gerbils. Physiol. Behav.50(2), 379–384 (1991).
  • Teicher MH, Blass EM. Suckling in newborn rats: eliminated by nipple lavage, reinstated by pup saliva. Science193(4251), 422–425 (1976).
  • Gibbons RJ. Bacterial adhesion to oral tissues: a model for infectious diseases. J. Dent. Res.68(5), 750–760 (1989).
  • Gorr SU. Antimicrobial peptides of the oral cavity. Periodontol. 200051, 152–180 (2009).
  • Jang WS, Bajwa JS, Sun JN, Edgerton M. Salivary histatin 5 internalization by translocation, but not endocytosis, is required for fungicidal activity in Candida albicans. Mol. Microbiol.77(2), 354–370 (2010).
  • Oppenheim FG, Xu T, McMillian FM et al. Histatins, a novel family of histidine-rich proteins in human parotid secretion. Isolation, characterization, primary structure, and fungistatic effects on Candida albicans. J. Biol. Chem.263(16), 7472–7477 (1988).
  • Varki A. Nothing in glycobiology makes sense, except in the light of evolution. Cell126(5), 841–845 (2006).
  • Leito JT, Ligtenberg AJ, Nazmi K et al. A common binding motif for various bacteria of the bacteria-binding peptide SRCRP2 of DMBT1/gp-340/salivary agglutinin. Biol. Chem.389(9), 1193–1200 (2008).
  • Walz A, Odenbreit S, Stühler K et al. Identification of glycoprotein receptors within the human salivary proteome for the lectin-like BabA and SabA adhesins of Helicobacter pylori by fluorescence-based 2-D bacterial overlay. Proteomics9(6), 1582–1592 (2009).
  • Müller R, Gröger G, Hiller KA, Schmalz G, Ruhl S. Fluorescence-based bacterial overlay method for simultaneous in situ quantification of surface-attached bacteria. Appl. Environ. Microbiol.73(8), 2653–2660 (2007).
  • Nobbs AH, Jenkinson HF, Jakubovics NS. Stick to your gums: mechanisms of oral microbial adherence. J. Dent. Res.90(11), 1271–1278 (2011).
  • Bürgers R, Schneider-Brachert W, Reischl U et al.Helicobacter pylori in human oral cavity and stomach. Eur. J. Oral Sci.116(4), 297–304 (2008).
  • Heo SM, Haase EM, Lesse AJ, Gill SR, Scannapieco FA. Genetic relationships between respiratory pathogens isolated from dental plaque and bronchoalveolar lavage fluid from patients in the intensive care unit undergoing mechanical ventilation. Clin. Infect. Dis.47(12), 1562–1570 (2008).
  • Slots J, Slots H. Bacterial and viral pathogens in saliva: disease relationship and infectious risk. Periodontol. 200055(1), 48–69 (2011).
  • Cisar JO, Takahashi Y, Ruhl S, Donkersloot JA, Sandberg AL. Specific inhibitors of bacterial adhesion: observations from the study of Gram-positive bacteria that initiate biofilm formation on the tooth surface. Adv. Dent. Res.11(1), 168–175 (1997).
  • Crocker PR, Paulson JC, Varki A. Siglecs and their roles in the immune system. Nat. Rev. Immunol.7(4), 255–266 (2007).
  • Ruhl S, Sandberg AL, Cisar JO. Salivary receptors for the proline-rich protein-binding and lectin-like adhesins of oral actinomyces and streptococci. J. Dent. Res.83(6), 505–510 (2004).
  • Ruhl S, Sandberg AL, Cole MF, Cisar JO. Recognition of immunoglobulin A1 by oral actinomyces and streptococcal lectins. Infect. Immun.64(12), 5421–5424 (1996).
  • Murray PA, Prakobphol A, Lee T, Hoover CI, Fisher SJ. Adherence of oral streptococci to salivary glycoproteins. Infect. Immun.60(1), 31–38 (1992).
  • Takamatsu D, Bensing BA, Prakobphol A, Fisher SJ, Sullam PM. Binding of the streptococcal surface glycoproteins GspB and Hsa to human salivary proteins. Infect. Immun.74(3), 1933–1940 (2006).
  • Mishra A, Devarajan B, Reardon ME et al. Two autonomous structural modules in the fimbrial shaft adhesin FimA mediate Actinomyces interactions with streptococci and host cells during oral biofilm development. Mol. Microbiol.81(5), 1205–1220 (2011).
  • Rogers JD, Palmer RJ Jr, Kolenbrander PE, Scannapieco FA. Role of Streptococcus gordonii amylase-binding protein A in adhesion to hydroxyapatite, starch metabolism, and biofilm formation. Infect. Immun.69(11), 7046–7056 (2001).
  • Loimaranta V, Hytönen J, Pulliainen AT et al. Leucine-rich repeats of bacterial surface proteins serve as common pattern recognition motifs of human scavenger receptor gp340. J. Biol. Chem.284(28), 18614–18623 (2009).
  • Gibbons RJ, Hay DI, Schlesinger DH. Delineation of a segment of adsorbed salivary acidic proline-rich proteins which promotes adhesion of Streptococcus gordonii to apatitic surfaces. Infect. Immun.59(9), 2948–2954 (1991).
  • Clark WB, Beem JE, Nesbitt WE et al. Pellicle receptors for Actinomyces viscosus type 1 fimbriae in vitro. Infect. Immun.57(10), 3003–3008 (1989).
  • Wu C, Mishra A, Yang J, et al. Dual function of a tip fimbrillin of Actinomyces in fimbrial assembly and receptor binding. J. Bacteriol.193(13), 3197–3206 (2011).
  • De Jong MH, Van der Hoeven JS. The growth of oral bacteria on saliva. J. Dent. Res.66(2), 498–505 (1987).
  • Kolenbrander PE. Multispecies communities: interspecies interactions influence growth on saliva as sole nutritional source. Int. J. Oral Sci.3(2), 49–54 (2011).
  • Rohmer L, Hocquet D, Miller SI. Are pathogenic bacteria just looking for food? Metabolism and microbial pathogenesis. Trends Microbiol.19(7), 341–348 (2011).
  • Ragunath C, Manuel SG, Venkataraman V et al. Probing the role of aromatic residues at the secondary saccharide-binding sites of human salivary alpha-amylase in substrate hydrolysis and bacterial binding. J. Mol. Biol.384(5), 1232–1248 (2008).
  • Ruhl S, Rayment SA, Schmalz G, Hiller KA, Troxler RF. Proteins in whole saliva during the first year of infancy. J. Dent. Res.84(1), 29–34 (2005).
  • Castagnola M, Inzitari R, Fanali C et al. The surprising composition of the salivary proteome of preterm human newborn. Mol. Cell Proteomics10(1), M110.003467 (2011).
  • Morzel M, Palicki O, Chabanet C et al. Saliva electrophoretic protein profiles in infants: changes with age and impact of teeth eruption and diet transition. Arch. Oral Biol.56(7), 634–642 (2011).
  • Ambatipudi KS, Lu B, Hagen FK, Melvin JE, Yates JR. Quantitative analysis of age specific variation in the abundance of human female parotid salivary proteins. J. Proteome Res.8(11), 5093–5102 (2009).
  • Ayad M, Van Wuyckhuyse BC, Minaguchi K et al. The association of basic proline-rich peptides from human parotid gland secretions with caries experience. J. Dent. Res.79(4), 976–982 (2000).
  • Young A, Rykke M, Rölla G. Quantitative and qualitative analyses of human salivary micelle-like globules. Acta Odontol. Scand.57(2), 105–110 (1999).
  • Gonzalez-Begne M, Lu B, Han X et al. Proteomic analysis of human parotid gland exosomes by multidimensional protein identification technology (MudPIT). J. Proteome Res.8(3), 1304–1314 (2009).
  • Palanisamy V, Sharma S, Deshpande A et al. Nanostructural and transcriptomic analyses of human saliva derived exosomes. PLoS One5(1), e8577 (2010).
  • Ruhl S, Berlenbach P, Langenfelder S et al. Integrity of proteins in human saliva after sterilization by gamma-irradiation. Appl. Environ. Microbiol.77(3), 749–755 (2010).
  • Schipper RG, Silletti E, Vingerhoeds MH. Saliva as research material: biochemical, physicochemical and practical aspects. Arch. Oral Biol.52(12), 1114–1135 (2007).
  • Thomadaki K, Helmerhorst EJ, Tian N et al. Whole-saliva proteolysis and its impact on salivary diagnostics. J. Dent. Res.90(11), 1325–1330 (2011).
  • Zakhary GM, Clark RM, Bidichandani SI et al. Acidic proline-rich protein Db and caries in young children. J. Dent. Res.86(12), 1176–1180 (2007).
  • Denny PC, Denny PA, Takashima J, Galligan J, Navazesh M. A novel caries risk test. Ann. NY Acad. Sci.1098, 204–215 (2007).
  • Zehetbauer S, Wojahn T, Hiller KA, Schmalz G, Ruhl S. Resemblance of salivary protein profiles between children with early childhood caries and caries-free controls. Eur. J. Oral Sci.117(4), 369–373 (2009).
  • Krief G, Deutsch O, Gariba S et al. Improved visualization of low abundance oral fluid proteins after triple depletion of alpha amylase, albumin and IgG. Oral Dis.17(1), 45–52 (2011).
  • Bandhakavi S, Stone MD, Onsongo G, Van Riper SK, Griffin TJ. A dynamic range compression and three-dimensional peptide fractionation analysis platform expands proteome coverage and the diagnostic potential of whole saliva. J. Proteome Res.8(12), 5590–5600 (2009).
  • Bantscheff M, Schirle M, Sweetman G, Rick J, Kuster B. Quantitative mass spectrometry in proteomics: a critical review. Anal. Bioanal. Chem.389(4), 1017–1031 (2007).
  • Siqueira WL, Dawes C. The salivary proteome: challenges and perspectives. Proteomics Clin. Appl. doi:10.1002/prca.201100046 (2011) (Epub ahead of print).
  • Hardt M, Witkowska HE, Webb S et al. Assessing the effects of diurnal variation on the composition of human parotid saliva: quantitative analysis of native peptides using iTRAQ reagents. Anal. Chem.77(15), 4947–4954 (2005).
  • Penque D. Two-dimensional gel electrophoresis and mass spectrometry for biomarker discovery. Proteomics Clin. Appl.3, 155–172 (2009).
  • Hu S, Jiang J, Wong DT. Proteomic analysis of saliva: 2D gel electrophoresis, LC-MS/MS, and Western blotting. Methods Mol. Biol.666, 31–41 (2010).
  • Sondej M, Denny PA, Xie Y et al. Glycoprofiling of the human salivary proteome. Clin Proteomics5(1), 52–68 (2009).
  • Drake PM, Cho W, Li B, et al. Sweetening the pot: adding glycosylation to the biomarker discovery equation. Clin. Chem.56(2), 223–236 (2010).
  • Zaia J. Mass spectrometry and glycomics. OMICS14(4), 401–418 (2010).
  • Stone MD, Chen XB, McGowan T et al. Large-scale phosphoproteomics analysis of whole saliva reveals a distinct phosphorylation pattern. J. Proteome Res.10(4), 1728–1736 (2011)
  • Salih E, Siqueira WL, Helmerhorst EJ, Oppenheim FG. Large-scale phosphoproteome of human whole saliva using disulfide-thiol interchange covalent chromatography and mass spectrometry. Anal. Biochem.407(1), 19–33 (2010).
  • Peterson J, Garges S, Giovanni M et al. The NIH human microbiome project. Genome Res.19(12), 2317–2323 (2009).
  • Messana I, Inzitari R, Fanali C, Cabras T, Castagnola M. Facts and artifacts in proteomics of body fluids. What proteomics of saliva is telling us? J. Sep. Sci.31(11), 1948–1963 (2008).
  • Huq NL, Cross KJ, Ung M et al. A review of the salivary proteome and peptidome and saliva-derived peptide therapeutics. Int. J. Peptide Res. Ther.13(4), 547–564 (2007).
  • Aguirre A, Testa-Weintraub LA, Banderas JA et al. Sialochemistry: a diagnostic tool? Crit. Rev. Oral Biol. Med.4(3–4), 343–350 (1993).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.