222
Views
13
CrossRef citations to date
0
Altmetric
Review

A matter of life, death and diseases: mitochondria from a proteomic perspective

, , , , &
Pages 97-111 | Published online: 09 Jan 2014

References

  • Suski JM, Lebiedzinska M, Bonora M, Pinton P, Duszynski J, Wieckowski MR. Relation between mitochondrial membrane potential and ROS formation. Methods Mol. Biol. 810, 183–205 (2012).
  • Sanges D, Comitato A, Tammaro R, Marigo V. Apoptosis in retinal degeneration involves cross-talk between apoptosis-inducing factor (AIF) and caspase-12 and is blocked by calpain inhibitors. Proc. Natl Acad. Sci. USA 103(46), 17366–17371 (2006).
  • Perier C, Bové J, Wu DC et al. Two molecular pathways initiate mitochondria-dependent dopaminergic neurodegeneration in experimental Parkinson’s disease. Proc. Natl Acad. Sci. USA 104(19), 8161–8166 (2007).
  • Anesti V, Scorrano L. The relationship between mitochondrial shape and function and the cytoskeleton. Biochim. Biophys. Acta 1757(5–6), 692–699 (2006).
  • Miura T, Miki T, Yano T. Role of the gap junction in ischemic preconditioning in the heart. Am. J. Physiol. Heart Circ. Physiol. 298(4), H1115–H1125 (2010).
  • Carito V, Pingitore A, Cione E et al. Localization of nerve growth factor (NGF) receptors in the mitochondrial compartment: characterization and putative role. Biochim. Biophys. Acta 1820(2), 96–103 (2012).
  • Psarra AM, Sekeris CE. Glucocorticoid receptors and other nuclear transcription factors in mitochondria and possible functions. Biochim. Biophys. Acta 1787(5), 431–436 (2009).
  • Yang SH, Sarkar SN, Liu R et al. Estrogen receptor beta as a mitochondrial vulnerability factor. J. Biol. Chem. 284(14), 9540–9548 (2009).
  • Gray MW, Burger G, Lang BF. The origin and early evolution of mitochondria. Genome Biol. 2(6), REVIEWS1018 (2001).
  • Kurland CG, Andersson SG. Origin and evolution of the mitochondrial proteome. Microbiol. Mol. Biol. Rev. 64(4), 786–820 (2000).
  • Gottlieb RA. Identification of targets of phosphorylation in heart mitochondria. Methods Mol. Biol. 357, 127–137 (2007).
  • Struewing IT, Toborek A, Mao CD. Mitochondrial and nuclear forms of Wnt13 are generated via alternative promoters, alternative RNA splicing, and alternative translation start sites. J. Biol. Chem. 281(11), 7282–7293 (2006).
  • Kagan J, Srivastava S. Mitochondria as a target for early detection and diagnosis of cancer. Crit. Rev. Clin. Lab. Sci. 42(5–6), 453–472 (2005).
  • Jobson RW, Dehne-Garcia A, Galtier N. Apparent longevity-related adaptation of mitochondrial amino acid content is due to nucleotide compositional shifts. Mitochondrion 10(5), 540–547 (2010).
  • Finley LW, Haigis MC. The coordination of nuclear and mitochondrial communication during aging and calorie restriction. Ageing Res. Rev. 8(3), 173–188 (2009).
  • Ngo HB, Kaiser JT, Chan DC. The mitochondrial transcription and packaging factor Tfam imposes a U-turn on mitochondrial DNA. Nat. Struct. Mol. Biol. 18(11), 1290–1296 (2011).
  • MacAlpine DM, Perlman PS, Butow RA. The numbers of individual mitochondrial DNA molecules and mitochondrial DNA nucleoids in yeast are co-regulated by the general amino acid control pathway. EMBO J. 19(4), 767–775 (2000).
  • Okamoto K, Perlman PS, Butow RA. The sorting of mitochondrial DNA and mitochondrial proteins in zygotes: preferential transmission of mitochondrial DNA to the medial bud. J. Cell Biol. 142(3), 613–623 (1998).
  • Zelenaya-Troitskaya O, Newman SM, Okamoto K, Perlman PS, Butow RA. Functions of the high mobility group protein, Abf2p, in mitochondrial DNA segregation, recombination and copy number in Saccharomyces cerevisiae. Genetics 148(4), 1763–1776 (1998).
  • Kuroiwa T, Ohta T, Kuroiwa H, Shigeyuki K. Molecular and cellular mechanisms of mitochondrial nuclear division and mitochondriokinesis. Microsc. Res. Tech. 27(3), 220–232 (1994).
  • Chen XJ, Wang X, Kaufman BA, Butow RA. Aconitase couples metabolic regulation to mitochondrial DNA maintenance. Science 307(5710), 714–717 (2005).
  • Wang Y, Bogenhagen DF. Human mitochondrial DNA nucleoids are linked to protein folding machinery and metabolic enzymes at the mitochondrial inner membrane. J. Biol. Chem. 281(35), 25791–25802 (2006).
  • Bogenhagen DF, Wang Y, Shen EL, Kobayashi R. Protein components of mitochondrial DNA nucleoids in higher eukaryotes. Mol. Cell Proteomics 2(11), 1205–1216 (2003).
  • Liu T, Lu B, Lee I, Ondrovicová G, Kutejová E, Suzuki CK. DNA and RNA binding by the mitochondrial lon protease is regulated by nucleotide and protein substrate. J. Biol. Chem. 279(14), 13902–13910 (2004).
  • Wagner I, van Dyck L, Savel’ev AS, Neupert W, Langer T. Autocatalytic processing of the ATP-dependent PIM1 protease: crucial function of a pro-region for sorting to mitochondria. EMBO J. 16(24), 7317–7325 (1997).
  • Gottlieb RA. Mitochondria and apoptosis. Biol. Signals Recept. 10(3–4), 147–161 (2001).
  • Capetanaki Y. Desmin cytoskeleton: a potential regulator of muscle mitochondrial behavior and function. Trends Cardiovasc. Med. 12(8), 339–348 (2002).
  • Rappaport L, Oliviero P, Samuel JL. Cytoskeleton and mitochondrial morphology and function. Mol. Cell. Biochem. 184(1–2), 101–105 (1998).
  • Gourlay CW, Ayscough KR. The actin cytoskeleton: a key regulator of apoptosis and ageing? Nat. Rev. Mol. Cell Biol. 6(7), 583–589 (2005).
  • Touyz RM, Yao G, Schiffrin EL. Role of the actin cytoskeleton in angiotensin II signaling in human vascular smooth muscle cells. Can. J. Physiol. Pharmacol. 83(1), 91–97 (2005).
  • Hales KG. The machinery of mitochondrial fusion, division, and distribution, and emerging connections to apoptosis. Mitochondrion 4(4), 285–308 (2004).
  • Kim N, Lee Y, Kim H et al. Potential biomarkers for ischemic heart damage identified in mitochondrial proteins by comparative proteomics. Proteomics 6(4), 1237–1249 (2006).
  • Bereiter-Hahn J, Jendrach M. Mitochondrial dynamics. Int. Rev. Cell Mol. Biol. 284, 1–65 (2010).
  • Milner DJ, Mavroidis M, Weisleder N, Capetanaki Y. Desmin cytoskeleton linked to muscle mitochondrial distribution and respiratory function. J. Cell Biol. 150(6), 1283–1298 (2000).
  • Coletta DK, Mandarino LJ. Mitochondrial dysfunction and insulin resistance from the outside in: extracellular matrix, the cytoskeleton, and mitochondria. Am. J. Physiol. Endocrinol. Metab. 301(5), E749–E755 (2011).
  • Kay L, Li Z, Mericskay M et al. Study of regulation of mitochondrial respiration in vivo. An analysis of influence of ADP diffusion and possible role of cytoskeleton. Biochim. Biophys. Acta 1322(1), 41–59 (1997).
  • Reipert S, Steinböck F, Fischer I, Bittner RE, Zeöld A, Wiche G. Association of mitochondria with plectin and desmin intermediate filaments in striated muscle. Exp. Cell Res. 252(2), 479–491 (1999).
  • Winter L, Abrahamsberg C, Wiche G. Plectin isoform 1b mediates mitochondrion-intermediate filament network linkage and controls organelle shape. J. Cell Biol. 181(6), 903–911 (2008).
  • Capetanaki Y, Bloch RJ, Kouloumenta A, Mavroidis M, Psarras S. Muscle intermediate filaments and their links to membranes and membranous organelles. Exp. Cell Res. 313(10), 2063–2076 (2007).
  • Meeusen S, DeVay R, Block J et al. Mitochondrial inner-membrane fusion and crista maintenance requires the dynamin-related GTPase Mgm1. Cell 127(2), 383–395 (2006).
  • Smirnova E, Griparic L, Shurland DL, van der Bliek AM. Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. Mol. Biol. Cell 12(8), 2245–2256 (2001).
  • James DI, Parone PA, Mattenberger Y, Martinou JC. hFis1, a novel component of the mammalian mitochondrial fission machinery. J. Biol. Chem. 278(38), 36373–36379 (2003).
  • Karbowski M, Youle RJ. Dynamics of mitochondrial morphology in healthy cells and during apoptosis. Cell Death Differ. 10(8), 870–880 (2003).
  • Perfettini JL, Roumier T, Kroemer G. Mitochondrial fusion and fission in the control of apoptosis. Trends Cell Biol. 15(4), 179–183 (2005).
  • Waterham HR, Koster J, van Roermund CW, Mooyer PA, Wanders RJ, Leonard JV. A lethal defect of mitochondrial and peroxisomal fission. N. Engl. J. Med. 356(17), 1736–1741 (2007).
  • Chen L, Gong Q, Stice JP, Knowlton AA. Mitochondrial OPA1, apoptosis, and heart failure. Cardiovasc. Res. 84(1), 91–99 (2009).
  • Song Z, Ghochani M, McCaffery JM, Frey TG, Chan DC. Mitofusins and OPA1 mediate sequential steps in mitochondrial membrane fusion. Mol. Biol. Cell 20(15), 3525–3532 (2009).
  • Saks VA, Tiivel T, Kay L et al. On the regulation of cellular energetics in health and disease. Mol. Cell Biochem. 160–161, 195–208 (1996).
  • Saks VA, Veksler VI, Kuznetsov AV et al. Permeabilized cell and skinned fiber techniques in studies of mitochondrial function in vivo. Mol. Cell. Biochem. 184(12), 81–100 (1998).
  • Brdiczka D, Wallimann T. The importance of the outer mitochondrial compartment in regulation of energy metabolism. Mol. Cell Biochem. 133–134, 69–83 (1994).
  • van der Klei IJ, Veenhuis M, Neupert W. A morphological view on mitochondrial protein targeting. Microsc. Res. Tech. 27(4), 284–293 (1994).
  • Fraser F, Zammit VA. Enrichment of carnitine palmitoyltransferases I and II in the contact sites of rat liver mitochondria. Biochem. J. 329(Pt 2), 225–229 (1998).
  • Perez Velazquez JL, Frantseva MV, Huzar DV, Carlen PL. Mitochondrial porin required for ischemia-induced mitochondrial dysfunction and neuronal damage. Neuroscience 97(2), 363–369 (2000).
  • Shinohara Y, Ishida T, Hino M, Yamazaki N, Baba Y, Terada H. Characterization of porin isoforms expressed in tumor cells. Eur. J. Biochem. 267(19), 6067–6073 (2000).
  • Ruiz-Romero C, López-Armada MJ, Blanco FJ. Mitochondrial proteomic characterization of human normal articular chondrocytes. Osteoarthr. Cartil. 14(6), 507–518 (2006).
  • Weisleder N, Taffet GE, Capetanaki Y. Bcl-2 overexpression corrects mitochondrial defects and ameliorates inherited desmin null cardiomyopathy. Proc. Natl Acad. Sci. USA 101(3), 769–774 (2004).
  • Garcia-Roves P, Huss JM, Han DH et al. Raising plasma fatty acid concentration induces increased biogenesis of mitochondria in skeletal muscle. Proc. Natl Acad. Sci. USA 104(25), 10709–10713 (2007).
  • Gregersen N, Bross P. Protein misfolding and cellular stress: an overview. Methods Mol. Biol. 648, 3–23 (2010).
  • Simmen T, Lynes EM, Gesson K, Thomas G. Oxidative protein folding in the endoplasmic reticulum: tight links to the mitochondria-associated membrane (MAM). Biochim. Biophys. Acta 1798(8), 1465–1473 (2010).
  • Sano R, Hou YC, Hedvat M et al. Endoplasmic reticulum protein BI-1 regulates Ca²+-mediated bioenergetics to promote autophagy. Genes Dev. 26(10), 1041–1054 (2012).
  • Melkikh AV, Seleznev VD. Mechanisms and models of the active transport of ions and the transformation of energy in intracellular compartments. Prog. Biophys. Mol. Biol. 109(1–2), 33–57 (2012).
  • Kuerschner L, Richter D, Hannibal-Bach HK et al. Exogenous ether lipids predominantly target mitochondria. PLoS ONE 7(2), e31342 (2012).
  • Fujimoto M, Hayashi T, Su TP. The role of cholesterol in the association of endoplasmic reticulum membranes with mitochondria. Biochem. Biophys. Res. Commun. 417(1), 635–639 (2012).
  • Decuypere JP, Monaco G, Bultynck G, Missiaen L, De Smedt H, Parys JB. The IP(3) receptor-mitochondria connection in apoptosis and autophagy. Biochim. Biophys. Acta 1813(5), 1003–1013 (2011).
  • Chiang SF, Huang CY, Lin TY, Chiou SH, Chow KC. An alternative import pathway of AIF to the mitochondria. Int. J. Mol. Med. 29(3), 365–372 (2012).
  • Desouki MM, Kulawiec M, Bansal S, Das GM, Singh KK. Cross talk between mitochondria and superoxide generating NADPH oxidase in breast and ovarian tumors. Cancer Biol. Ther. 4(12), 1367–1373 (2005).
  • Santos JM, Tewari S, Goldberg AF, Kowluru RA. Mitochondrial biogenesis and the development of diabetic retinopathy. Free Radic. Biol. Med. 51(10), 1849–1860 (2011).
  • Park SY, Chang I, Kim JY et al. Resistance of mitochondrial DNA-depleted cells against cell death: role of mitochondrial superoxide dismutase. J. Biol. Chem. 279(9), 7512–7520 (2004).
  • Woo DK, Phang TL, Trawick JD, Poyton RO. Multiple pathways of mitochondrial–nuclear communication in yeast: intergenomic signaling involves ABF1 and affects a different set of genes than retrograde regulation. Biochim. Biophys. Acta 1789(2), 135–145 (2009).
  • Goldstein B. When cells tell their neighbors which direction to divide. Dev. Dyn. 218(1), 23–29 (2000).
  • Gottlieb RA. Mitochondrial signaling in apoptosis: mitochondrial daggers to the breaking heart. Basic Res. Cardiol. 98(4), 242–249 (2003).
  • Jiang XS, Dai J, Sheng QH et al. A comparative proteomic strategy for subcellular proteome research: ICAT approach coupled with bioinformatics prediction to ascertain rat liver mitochondrial proteins and indication of mitochondrial localization for catalase. Mol. Cell Proteomics 4(1), 12–34 (2005).
  • Tell G, Crivellato E, Pines A et al. Mitochondrial localization of APE/Ref-1 in thyroid cells. Mutat. Res. 485(2), 143–152 (2001).
  • Wang X, Yang C, Chai J, Shi Y, Xue D. Mechanisms of AIF-mediated apoptotic DNA degradation in Caenorhabditis elegans. Science 298(5598), 1587–1592 (2002).
  • Fukumori T, Takenaka Y, Oka N et al. Endogenous galectin-3 determines the routing of CD95 apoptotic signaling pathways. Cancer Res. 64(10), 3376–3379 (2004).
  • Bresalier RS, Yan PS, Byrd JC, Lotan R, Raz A. Expression of the endogenous galactose-binding protein galectin-3 correlates with the malignant potential of tumors in the central nervous system. Cancer 80(4), 776–787 (1997).
  • Dagher SF, Wang JL, Patterson RJ. Identification of galectin-3 as a factor in pre-mRNA splicing. Proc. Natl Acad. Sci. USA 92(4), 1213–1217 (1995).
  • Schoeppner HL, Raz A, Ho SB, Bresalier RS. Expression of an endogenous galactose-binding lectin correlates with neoplastic progression in the colon. Cancer 75(12), 2818–2826 (1995).
  • Yu F, Finley RL Jr, Raz A, Kim HR. Galectin-3 translocates to the perinuclear membranes and inhibits cytochrome c release from the mitochondria. A role for synexin in galectin-3 translocation. J. Biol. Chem. 277(18), 15819–15827 (2002).
  • Davidson PJ, Davis MJ, Patterson RJ, Ripoche MA, Poirier F, Wang JL. Shuttling of galectin-3 between the nucleus and cytoplasm. Glycobiology 12(5), 329–337 (2002).
  • Yang RY, Liu FT. Galectins in cell growth and apoptosis. Cell. Mol. Life Sci. 60(2), 267–276 (2003).
  • Duneau M, Boyer-Guittaut M, Gonzalez P et al. Galig, a novel cell death gene that encodes a mitochondrial protein promoting cytochrome c release. Exp. Cell Res. 302(2), 194–205 (2005).
  • Gonzalez P, Duneau M, Charpentier S et al. Destabilization of membranes containing cardiolipin or its precursors by peptides derived from mitogaligin, a cell death protein. Biochemistry 46(25), 7374–7382 (2007).
  • Naitoh K, Ichikawa Y, Miura T et al. MitoKATP channel activation suppresses gap junction permeability in the ischemic myocardium by an ERK-dependent mechanism. Cardiovasc. Res. 70(2), 374–383 (2006).
  • Miura T, Ohnuma Y, Kuno A et al. Protective role of gap junctions in preconditioning against myocardial infarction. Am. J. Physiol. Heart Circ. Physiol. 286(1), H214–H221 (2004).
  • Gross GJ, Peart JN. KATP channels and myocardial preconditioning: an update. Am. J. Physiol. Heart Circ. Physiol. 285(3), H921–H930 (2003).
  • Rodriguez-Sinovas A, Boengler K, Cabestrero A et al. Translocation of connexin 43 to the inner mitochondrial membrane of cardiomyocytes through the heat shock protein 90-dependent TOM pathway and its importance for cardioprotection. Circ. Res. 99(1), 93–101 (2006).
  • Plotkin LI, Aguirre JI, Kousteni S, Manolagas SC, Bellido T. Bisphosphonates and estrogens inhibit osteocyte apoptosis via distinct molecular mechanisms downstream of extracellular signal-regulated kinase activation. J. Biol. Chem. 280(8), 7317–7325 (2005).
  • Przyklenk K, Maynard M, Darling CE, Whittaker P. Pretreatment with D-myo-inositol trisphosphate reduces infarct size in rabbit hearts: role of inositol trisphosphate receptors and gap junctions in triggering protection. J. Pharmacol. Exp. Ther. 314(3), 1386–1392 (2005).
  • Schwanke U, Konietzka I, Duschin A, Li X, Schulz R, Heusch G. No ischemic preconditioning in heterozygous connexin43-deficient mice. Am. J. Physiol. Heart Circ. Physiol. 283(4), H1740–H1742 (2002).
  • Li X, Heinzel FR, Boengler K, Schulz R, Heusch G. Role of connexin 43 in ischemic preconditioning does not involve intercellular communication through gap junctions. J. Mol. Cell. Cardiol. 36(1), 161–163 (2004).
  • Padilla F, Garcia-Dorado D, Rodríguez-Sinovas A, Ruiz-Meana M, Inserte J, Soler-Soler J. Protection afforded by ischemic preconditioning is not mediated by effects on cell-to-cell electrical coupling during myocardial ischemia-reperfusion. Am. J. Physiol. Heart Circ. Physiol. 285(5), H1909–H1916 (2003).
  • García-Dorado D, Rodríguez-Sinovas A, Ruiz-Meana M. Gap junction-mediated spread of cell injury and death during myocardial ischemia-reperfusion. Cardiovasc. Res. 61(3), 386–401 (2004).
  • Li PF, Li J, Müller EC, Otto A, Dietz R, von Harsdorf R. Phosphorylation by protein kinase CK2: a signaling switch for the caspase-inhibiting protein ARC. Mol. Cell 10(2), 247–258 (2002).
  • Griffiths GJ, Dubrez L, Morgan CP et al. Cell damage-induced conformational changes of the pro-apoptotic protein Bak in vivo precede the onset of apoptosis. J. Cell Biol. 144(5), 903–914 (1999).
  • Gross A, Jockel J, Wei MC, Korsmeyer SJ. Enforced dimerization of BAX results in its translocation, mitochondrial dysfunction and apoptosis. EMBO J. 17(14), 3878–3885 (1998).
  • Reddy PH, Reddy TP. Mitochondria as a therapeutic target for aging and neurodegenerative diseases. Curr. Alzheimer Res. 8(4), 393–409 (2011).
  • Perier C, Tieu K, Guégan C et al. Complex I deficiency primes Bax-dependent neuronal apoptosis through mitochondrial oxidative damage. Proc. Natl Acad. Sci. USA 102(52), 19126–19131 (2005).
  • Wu CC, Bratton SB. Regulation of the intrinsic apoptosis pathway by reactive oxygen species. Antioxid. Redox Signal. (2012).
  • Scorrano L, Oakes SA, Opferman JT et al. BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis. Science 300(5616), 135–139 (2003).
  • Zong WX, Li C, Hatzivassiliou G et al. Bax and Bak can localize to the endoplasmic reticulum to initiate apoptosis. J. Cell Biol. 162(1), 59–69 (2003).
  • Zamorano S, Rojas-Rivera D, Lisbona F et al. A BAX/BAK and cyclophilin D-independent intrinsic apoptosis pathway. PLoS ONE 7(6), e37782 (2012).
  • Heath-Engel HM, Wang B, Shore GC. Bcl2 at the endoplasmic reticulum protects against a Bax/Bak-independent paraptosis-like cell death pathway initiated via p20Bap31. Biochim. Biophys. Acta 1823(2), 335–347 (2012).
  • Babiychuk EB, Atanassoff AP, Monastyrskaya K et al. The targeting of plasmalemmal ceramide to mitochondria during apoptosis. PLoS ONE 6(8), e23706 (2011).
  • Quarato G, Piccoli C, Scrima R, Capitanio N. Functional imaging of membrane potential at the single mitochondrion level: possible application for diagnosis of human diseases. Mitochondrion 11(5), 764–773 (2011).
  • Nakamura K, Hori T, Sato N, Sugie K, Kawakami T, Yodoi J. Redox regulation of a src family protein tyrosine kinase p56lck in T cells. Oncogene 8(11), 3133–3139 (1993).
  • Staal FJ, Anderson MT, Staal GE, Herzenberg LA, Gitler C, Herzenberg LA. Redox regulation of signal transduction: tyrosine phosphorylation and calcium influx. Proc. Natl Acad. Sci. USA 91(9), 3619–3622 (1994).
  • Reddy PH, Beal MF. Are mitochondria critical in the pathogenesis of Alzheimer’s disease? Brain Res. Brain Res. Rev. 49(3), 618–632 (2005).
  • Reddy PH. Mitochondrial oxidative damage in aging and Alzheimer’s disease: implications for mitochondrially targeted antioxidant therapeutics. J. Biomed. Biotechnol. 2006(3), 31372 (2006).
  • Wallace DC. Mitochondrial diseases in man and mouse. Science 283(5407), 1482–1488 (1999).
  • Aksenov MY, Aksenova MV, Butterfield DA, Geddes JW, Markesbery WR. Protein oxidation in the brain in Alzheimer’s disease. Neuroscience 103(2), 373–383 (2001).
  • Butterfield DA, Lauderback CM. Lipid peroxidation and protein oxidation in Alzheimer’s disease brain: potential causes and consequences involving amyloid β-peptide-associated free radical oxidative stress. Free Radic. Biol. Med. 32(11), 1050–1060 (2002).
  • Smith MA, Richey Harris PL, Sayre LM, Beckman JS, Perry G. Widespread peroxynitrite-mediated damage in Alzheimer’s disease. J. Neurosci. 17(8), 2653–2657 (1997).
  • Smith MA, Richey PL, Taneda S et al. Advanced Maillard reaction end products, free radicals, and protein oxidation in Alzheimer’s disease. Ann. N. Y. Acad. Sci. 738, 447–454 (1994).
  • Blin O, Desnuelle C, Rascol O et al. Mitochondrial respiratory failure in skeletal muscle from patients with Parkinson’s disease and multiple system atrophy. J. Neurol. Sci. 125(1), 95–101 (1994).
  • Olanow CW, Tatton WG. Etiology and pathogenesis of Parkinson’s disease. Annu. Rev. Neurosci. 22, 123–144 (1999).
  • Varadarajan S, Yatin S, Aksenova M, Butterfield DA. Review: Alzheimer’s amyloid β-peptide-associated free radical oxidative stress and neurotoxicity. J. Struct. Biol. 130(2-3), 184–208 (2000).
  • Beal MF. Oxidative metabolism. Ann. N. Y. Acad. Sci. 924, 164–169 (2000).
  • Alzualde A, Indakoetxea B, Ferrer I et al. A novel PRNP Y218N mutation in Gerstmann–Stäussler–Scheinker disease with neurofibrillary degeneration. J. Neuropathol. Exp. Neurol. 69(8), 789–800 (2010).
  • Haider L, Fischer MT, Frischer JM et al. Oxidative damage in multiple sclerosis lesions. Brain 134(Pt 7), 1914–1924 (2011).
  • Good PF, Werner P, Hsu A, Olanow CW, Perl DP. Evidence of neuronal oxidative damage in Alzheimer’s disease. Am. J. Pathol. 149(1), 21–28 (1996).
  • Smith MA, Kutty RK, Richey PL et al. Heme oxygenase-1 is associated with the neurofibrillary pathology of Alzheimer’s disease. Am. J. Pathol. 145(1), 42–47 (1994).
  • Sompol P, Ittarat W, Tangpong J et al. A neuronal model of Alzheimer’s disease: an insight into the mechanisms of oxidative stress-mediated mitochondrial injury. Neuroscience 153(1), 120–130 (2008).
  • Qin L, Liu Y, Cooper C, Liu B, Wilson B, Hong JS. Microglia enhance β-amyloid peptide-induced toxicity in cortical and mesencephalic neurons by producing reactive oxygen species. J. Neurochem. 83(4), 973–983 (2002).
  • Schilling T, Eder C. Amyloid-β-induced reactive oxygen species production and priming are differentially regulated by ion channels in microglia. J. Cell. Physiol. 226(12), 3295–3302 (2011).
  • Zhu Y, Hou H, Rezai-Zadeh K et al. CD45 deficiency drives amyloid-β peptide oligomers and neuronal loss in Alzheimer’s disease mice. J. Neurosci. 31(4), 1355–1365 (2011).
  • Bindoff LA, Birch-Machin MA, Cartlidge NE, Parker WD Jr, Turnbull DM. Respiratory chain abnormalities in skeletal muscle from patients with Parkinson’s disease. J. Neurol. Sci. 104(2), 203–208 (1991).
  • Lee HJ, Shin SY, Choi C, Lee YH, Lee SJ. Formation and removal of α-synuclein aggregates in cells exposed to mitochondrial inhibitors. J. Biol. Chem. 277(7), 5411–5417 (2002).
  • Hsu M, Srinivas B, Kumar J, Subramanian R, Andersen J. Glutathione depletion resulting in selective mitochondrial complex I inhibition in dopaminergic cells is via an NO-mediated pathway not involving peroxynitrite: implications for Parkinson’s disease. J. Neurochem. 92(5), 1091–1103 (2005).
  • Miyama A, Saito Y, Yamanaka K, Hayashi K, Hamakubo T, Noguchi N. Oxidation of DJ-1 induced by 6-hydroxydopamine decreasing intracellular glutathione. PLoS ONE 6(11), e27883 (2011).
  • Wilson MA. The role of cysteine oxidation in DJ-1 function and dysfunction. Antioxid. Redox Signal. 15(1), 111–122 (2011).
  • Koh H, Chung J. PINK1 as a molecular checkpoint in the maintenance of mitochondrial function and integrity. Mol. Cells 34(1), 7–13 (2012).
  • Shin JH, Ko HS, Kang H et al. PARIS (ZNF746) repression of PGC-1a contributes to neurodegeneration in Parkinson’s disease. Cell 144(5), 689–702 (2011).
  • Chen X, Wei S, Yang F. Mitochondria in the pathogenesis of diabetes: a proteomic view. Protein Cell 3(9), 648–660 (2012).
  • Giebelstein J, Poschmann G, Højlund K et al. The proteomic signature of insulin-resistant human skeletal muscle reveals increased glycolytic and decreased mitochondrial enzymes. Diabetologia 55(4), 1114–1127 (2012).
  • Sourris KC, Harcourt BE, Tang PH et al. Ubiquinone (coenzyme Q10) prevents renal mitochondrial dysfunction in an experimental model of Type 2 diabetes. Free Radic. Biol. Med. 52(3), 716–723 (2012).
  • Lo MC, Lu CI, Chen MH, Chen CD, Lee HM, Kao SH. Glycoxidative stress-induced mitophagy modulates mitochondrial fates. Ann. N. Y. Acad. Sci. 1201, 1–7 (2010).
  • Kartha GK, Moshal KS, Sen U et al. Renal mitochondrial damage and protein modification in Type-2 diabetes. Acta Diabetol. 45(2), 75–81 (2008).
  • Santos JM, Kowluru RA. Role of mitochondria biogenesis in the metabolic memory associated with the continued progression of diabetic retinopathy and its regulation by lipoic acid. Invest. Ophthalmol. Vis. Sci. 52(12), 8791–8798 (2011).
  • Krügel K, Wurm A, Pannicke T et al. Involvement of oxidative stress and mitochondrial dysfunction in the osmotic swelling of retinal glial cells from diabetic rats. Exp. Eye Res. 92(1), 87–93 (2011).
  • Olmos PR, Borzone GR, Olmos JP et al. Mitochondrial diabetes and deafness: possible dysfunction of strial marginal cells of the inner ear. J. Otolaryngol. Head Neck Surg. 40(2), 93–103 (2011).
  • Ye L, Wang F, Yang RH. Diabetes impairs learning performance and affects the mitochondrial function of hippocampal pyramidal neurons. Brain Res. 1411, 57–64 (2011).
  • Warburg O. Metabolism of Tumors. Arnold Constable, London, UK (1930).
  • Modica-Napolitano JS, Kulawiec M, Singh KK. Mitochondria and human cancer. Curr. Mol. Med. 7(1), 121–131 (2007).
  • Kim HK, Park WS, Kang SH et al. Mitochondrial alterations in human gastric carcinoma cell line. Am. J. Physiol. Cell Physiol. 293(2), C761–C771 (2007).
  • Mullen AR, Wheaton WW, Jin ES et al. Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature 481(7381), 385–388 (2012).
  • Lu J, Sharma LK, Bai Y. Implications of mitochondrial DNA mutations and mitochondrial dysfunction in tumorigenesis. Cell Res. 19(7), 802–815 (2009).
  • Tuppen HA, Blakely EL, Turnbull DM, Taylor RW. Mitochondrial DNA mutations and human disease. Biochim. Biophys. Acta 1797(2), 113–128 (2010).
  • Verma M, Kagan J, Sidransky D, Srivastava S. Proteomic analysis of cancer-cell mitochondria. Nat. Rev. Cancer 3(10), 789–795 (2003).
  • Bohr VA, Stevnsner T, de Souza-Pinto NC. Mitochondrial DNA repair of oxidative damage in mammalian cells. Gene 286(1), 127–134 (2002).
  • Fliss MS, Usadel H, Caballero OL et al. Facile detection of mitochondrial DNA mutations in tumors and bodily fluids. Science 287(5460), 2017–2019 (2000).
  • DiMauro S, Schon EA. Mitochondrial respiratory-chain diseases. N. Engl. J. Med. 348(26), 2656–2668 (2003).
  • Polyak K, Li Y, Zhu H et al. Somatic mutations of the mitochondrial genome in human colorectal tumours. Nat. Genet. 20(3), 291–293 (1998).
  • Singh KK, Russell J, Sigala B, Zhang Y, Williams J, Keshav KF. Mitochondrial DNA determines the cellular response to cancer therapeutic agents. Oncogene 18(48), 6641–6646 (1999).
  • Jiang WW, Masayesva B, Zahurak M et al. Increased mitochondrial DNA content in saliva associated with head and neck cancer. Clin. Cancer Res. 11(7), 2486–2491 (2005).
  • Nomoto S, Yamashita K, Koshikawa K, Nakao A, Sidransky D. Mitochondrial D-loop mutations as clonal markers in multicentric hepatocellular carcinoma and plasma. Clin. Cancer Res. 8(2), 481–487 (2002).
  • Parrella P, Xiao Y, Fliss M et al. Detection of mitochondrial DNA mutations in primary breast cancer and fine-needle aspirates. Cancer Res. 61(20), 7623–7626 (2001).
  • Jakupciak JP, Wang W, Markowitz ME et al. Mitochondrial DNA as a cancer biomarker. J. Mol. Diagn. 7(2), 258–267 (2005).
  • Di Lisa F, Canton M, Menabò R, Dodoni G, Bernardi P. Mitochondria and reperfusion injury. The role of permeability transition. Basic Res. Cardiol. 98(4), 235–241 (2003).
  • Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74(5), 1124–1136 (1986).
  • Cuong DV, Kim N, Youm JB et al. Nitric oxide-cGMP-protein kinase G signaling pathway induces anoxic preconditioning through activation of ATP-sensitive K+ channels in rat hearts. Am. J. Physiol. Heart Circ. Physiol. 290(5), H1808–H1817 (2006).
  • Cuong DV, Warda M, Kim N et al. Dynamic changes in nitric oxide and mitochondrial oxidative stress with site-dependent differential tissue response during anoxic preconditioning in rat heart. Am. J. Physiol. Heart Circ. Physiol. 293(3), H1457–H1465 (2007).
  • Gross GJ. The role of mitochondrial K(ATP) channels in the antiarrhythmic effects of ischaemic preconditioning in dogs. Br. J. Pharmacol. 137(7), 939–940 (2002).
  • Han J, Kim N, Joo H, Kim E, Earm YE. ATP-sensitive K(+) channel activation by nitric oxide and protein kinase G in rabbit ventricular myocytes. Am. J. Physiol. Heart Circ. Physiol. 283(4), H1545–H1554 (2002).
  • Buchwalow IB, Schulze W, Karczewski P et al. Inducible nitric oxide synthase in the myocard. Mol. Cell. Biochem. 217(1–2), 73–82 (2001).
  • Hanley PJ, Mickel M, Löffler M, Brandt U, Daut J. K(ATP) channel-independent targets of diazoxide and 5-hydroxydecanoate in the heart. J. Physiol. (Lond.) 542(Pt 3), 735–741 (2002).
  • Wong R, Aponte AM, Steenbergen C, Murphy E. Cardioprotection leads to novel changes in the mitochondrial proteome. Am. J. Physiol. Heart Circ. Physiol. 298(1), H75–H91 (2010).
  • Rodríguez-Sinovas A, Cabestrero A, López D et al. The modulatory effects of connexin 43 on cell death/survival beyond cell coupling. Prog. Biophys. Mol. Biol. 94(1–2), 219–232 (2007).
  • DiMauro S, Schon EA. Mitochondrial DNA mutations in human disease. Am. J. Med. Genet. 106(1), 18–26 (2001).
  • Vallance HD, Jeven G, Wallace DC, Brown MD. A case of sporadic infantile histiocytoid cardiomyopathy caused by the A8344G (MERRF) mitochondrial DNA mutation. Pediatr. Cardiol. 25(5), 538–540 (2004).
  • Bennett MJ, Rinaldo P, Strauss AW. Inborn errors of mitochondrial fatty acid oxidation. Crit. Rev. Clin. Lab. Sci. 37(1), 1–44 (2000).
  • Strauss AW, Powell CK, Hale DE et al. Molecular basis of human mitochondrial very-long-chain acyl-CoA dehydrogenase deficiency causing cardiomyopathy and sudden death in childhood. Proc. Natl Acad. Sci. USA 92(23), 10496–10500 (1995).
  • Graham BH, Waymire KG, Cottrell B, Trounce IA, MacGregor GR, Wallace DC. A mouse model for mitochondrial myopathy and cardiomyopathy resulting from a deficiency in the heart/muscle isoform of the adenine nucleotide translocator. Nat. Genet. 16(3), 226–234 (1997).
  • Wang J, Wilhelmsson H, Graff C et al. Dilated cardiomyopathy and atrioventricular conduction blocks induced by heart-specific inactivation of mitochondrial DNA gene expression. Nat. Genet. 21(1), 133–137 (1999).
  • Exil VJ, Roberts RL, Sims H et al. Very-long-chain acyl-coenzyme a dehydrogenase deficiency in mice. Circ. Res. 93(5), 448–455 (2003).
  • Kurtz DM, Rinaldo P, Rhead WJ et al. Targeted disruption of mouse long-chain acyl-CoA dehydrogenase gene reveals crucial roles for fatty acid oxidation. Proc. Natl Acad. Sci. USA 95(26), 15592–15597 (1998).
  • Rebelato E, Abdulkader F, Curi R, Carpinelli AR. Control of the intracellular redox state by glucose participates in the insulin secretion mechanism. PLoS ONE 6(8), e24507 (2011).
  • Yuan H, Lu Y, Huang X et al. Suppression of NADPH oxidase 2 substantially restores glucose-induced dysfunction of pancreatic NIT-1 cells. FEBS J. 277(24), 5061–5071 (2010).
  • Gao CL, Zhu C, Zhao YP et al. Mitochondrial dysfunction is induced by high levels of glucose and free fatty acids in 3T3-L1 adipocytes. Mol. Cell. Endocrinol. 320(1–2), 25–33 (2010).
  • Gonzalez CD, Lee MS, Marchetti P et al. The emerging role of autophagy in the pathophysiology of diabetes mellitus. Autophagy 7(1), 2–11 (2011).
  • Skulachev VP, Anisimov VN, Antonenko YN et al. An attempt to prevent senescence: a mitochondrial approach. Biochim. Biophys. Acta 1787(5), 437–461 (2009).
  • Chen X, Li J, Hou J, Xie Z, Yang F. Mammalian mitochondrial proteomics: insights into mitochondrial functions and mitochondria-related diseases. Expert Rev. Proteomics 7(3), 333–345 (2010).
  • Khairallah RJ, Kim J, O’Shea KM et al. Improved mitochondrial function with diet-induced increase in either docosahexaenoic acid or arachidonic acid in membrane phospholipids. PLoS ONE 7(3), e34402 (2012).
  • Zhang H, Wang Y, Li J et al. Proteome of skeletal muscle lipid droplet reveals association with mitochondria and apolipoprotein a-I. J. Proteome Res. 10(10), 4757–4768 (2011).
  • Hahn T, Polanczyk MJ, Borodovsky A, Ramanathapuram LV, Akporiaye ET, Ralph SJ. Use of anti-cancer drugs, mitocans, to enhance the immune responses against tumors. Curr. Pharm. Biotechnol. (2012) (Epub ahead of print).
  • Cloonan SM, Choi AM. Mitochondria: commanders of innate immunity and disease? Curr. Opin. Immunol. 24(1), 32–40 (2012).
  • Siegelin MD, Plescia J, Raskett CM, Gilbert CA, Ross AH, Altieri DC. Global targeting of subcellular heat shock protein-90 networks for therapy of glioblastoma. Mol. Cancer Ther. 9(6), 1638–1646 (2010).
  • Quarato G, D’Aprile A, Gavillet B et al. The cyclophilin inhibitor alisporivir prevents hepatitis C virus-mediated mitochondrial dysfunction. Hepatology 55(5), 1333–1343 (2012).
  • Chacko BK, Reily C, Srivastava A et al. Prevention of diabetic nephropathy in Ins2(+/-)(AkitaJ) mice by the mitochondria-targeted therapy MitoQ. Biochem. J. 432(1), 9–19 (2010).
  • Chu VC, Bhattacharya S, Nomoto A et al. Persistent expression of hepatitis C virus non-structural proteins leads to increased autophagy and mitochondrial injury in human hepatoma cells. PLoS ONE 6(12), e28551 (2011).
  • Smith RA, Adlam VJ, Blaikie FH et al. Mitochondria-targeted antioxidants in the treatment of disease. Ann. N. Y. Acad. Sci. 1147, 105–111 (2008).
  • Durazo SA, Kompella UB. Functionalized nanosystems for targeted mitochondrial delivery. Mitochondrion 12(2), 190–201 (2012).
  • Souchelnytskyi S. Bridging proteomics and systems biology: what are the roads to be traveled? Proteomics 5(16), 4123–4137 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.