208
Views
20
CrossRef citations to date
0
Altmetric
Review

Glia-based biomarkers and their functional role in the CNS

&
Pages 43-63 | Published online: 09 Jan 2014

References

  • Giaume C, Kirchhoff F, Matute C, Reichenbach A, Verkhratsky A. Glia: the fulcrum of brain diseases. Cell Death Differ. 14(7), 1324–1335 (2007).
  • Zhang SC. Defining glial cells during CNS development. Nat. Rev. Neurosci. 2(11), 840–843 (2001).
  • Barres BA. The mystery and magic of glia: a perspective on their roles in health and disease. Neuron 60(3), 430–440 (2008).
  • Kriegstein A, Alvarez-Buylla A. The glial nature of embryonic and adult neural stem cells. Annu. Rev. Neurosci. 32, 149–184 (2009).
  • Chittajallu R, Aguirre A, Gallo V. NG2-positive cells in the mouse white and grey matter display distinct physiological properties. J. Physiol. (Lond.) 561(Pt 1), 109–122 (2004).
  • Lin SC, Bergles DE. Physiological characteristics of NG2-expressing glial cells. J. Neurocytol. 31(6-7), 537–549 (2002).
  • Feng Z, Ko CP. Neuronal glia interactions at the vertebrate neuromuscular junction. Curr. Opin. Pharmacol. 7(3), 316–324 (2007).
  • Saijo K, Glass CK. Microglial cell origin and phenotypes in health and disease. Nat. Rev. Immunol. 11(11), 775–787 (2011).
  • Chakraborty S, Nazmi A, Dutta K, Basu A. Neurons under viral attack: victims or warriors? Neurochem. Int. 56(6-7), 727–735 (2010).
  • Scheffel J, Regen T, Van Rossum D et al. Toll-like receptor activation reveals developmental reorganization and unmasks responder subsets of microglia. Glia 60(12), 1930–1943 (2012).
  • Varnum MM, Ikezu T. The classification of microglial activation phenotypes on neurodegeneration and regeneration in Alzheimer’s disease brain. Arch. Immunol. Ther. Exp. (Warsz.) 60(4), 251–266 (2012).
  • Bastos GN, Moriya T, Inui F, Katura T, Nakahata N. Involvement of cyclooxygenase-2 in lipopolysaccharide-induced impairment of the newborn cell survival in the adult mouse dentate gyrus. Neuroscience 155(2), 454–462 (2008).
  • Deng W, Aimone JB, Gage FH. New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory? Nat. Rev. Neurosci. 11(5), 339–350 (2010).
  • Ekdahl CT, Claasen JH, Bonde S, Kokaia Z, Lindvall O. Inflammation is detrimental for neurogenesis in adult brain. Proc. Natl Acad. Sci. USA 100(23), 13632–13637 (2003).
  • Hoehn BD, Palmer TD, Steinberg GK. Neurogenesis in rats after focal cerebral ischemia is enhanced by indomethacin. Stroke 36(12), 2718–2724 (2005).
  • Monje ML, Toda H, Palmer TD. Inflammatory blockade restores adult hippocampal neurogenesis. Science 302(5651), 1760–1765 (2003).
  • Walter J, Honsek SD, Illes S et al. A new role for interferon γ in neural stem/precursor cell dysregulation. Mol. Neurodegener. 6, 18 (2011).
  • Gutteridge JM, Halliwell B. Iron toxicity and oxygen radicals. Baillieres Clin. Haematol. 2(2), 195–256 (1989).
  • Butovsky O, Talpalar AE, Ben-Yaakov K, Schwartz M. Activation of microglia by aggregated beta-amyloid or lipopolysaccharide impairs MHC-II expression and renders them cytotoxic whereas IFN-γ and IL-4 render them protective. Mol. Cell. Neurosci. 29(3), 381–393 (2005).
  • Butovsky O, Ziv Y, Schwartz A et al. Microglia activated by IL-4 or IFN-γ differentially induce neurogenesis and oligodendrogenesis from adult stem/progenitor cells. Mol. Cell. Neurosci. 31(1), 149–160 (2006).
  • Kiyota T, Ingraham KL, Swan RJ, Jacobsen MT, Andrews SJ, Ikezu T. AAV serotype 2/1-mediated gene delivery of anti-inflammatory interleukin-10 enhances neurogenesis and cognitive function in APP+PS1 mice. Gene Ther. 19(7), 724–733 (2012).
  • Kiyota T, Okuyama S, Swan RJ, Jacobsen MT, Gendelman HE, Ikezu T. CNS expression of anti-inflammatory cytokine interleukin-4 attenuates Alzheimer’s disease-like pathogenesis in APP+PS1 bigenic mice. FASEB J. 24(8), 3093–3102 (2010).
  • Carpentier PA, Palmer TD. Immune influence on adult neural stem cell regulation and function. Neuron 64(1), 79–92 (2009).
  • Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 25(12), 677–686 (2004).
  • Tichauer J, Saud K, von Bernhardi R. Modulation by astrocytes of microglial cell-mediated neuroinflammation: effect on the activation of microglial signaling pathways. Neuroimmunomodulation 14(3-4), 168–174 (2007).
  • Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH. Mechanisms underlying inflammation in neurodegeneration. Cell 140(6), 918–934 (2010).
  • Perry VH, Nicoll JA, Holmes C. Microglia in neurodegenerative disease. Nat. Rev. Neurol. 6(4), 193–201 (2010).
  • Karimi-Abdolrezaee S, Billakanti R. Reactive astrogliosis after spinal cord injury-beneficial and detrimental effects. Mol. Neurobiol. 46(2), 251–264 (2012).
  • Sofroniew MV. Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci. 32(12), 638–647 (2009).
  • Pekny M, Wilhelmsson U, Bogestål YR, Pekna M. The role of astrocytes and complement system in neural plasticity. Int. Rev. Neurobiol. 82, 95–111 (2007).
  • Pekny M, Nilsson M. Astrocyte activation and reactive gliosis. Glia 50(4), 427–434 (2005).
  • Escartin C, Bonvento G. Targeted activation of astrocytes: a potential neuroprotective strategy. Mol. Neurobiol. 38(3), 231–241 (2008).
  • Kang W, Hébert JM. Signaling pathways in reactive astrocytes, a genetic perspective. Mol. Neurobiol. 43(3), 147–154 (2011).
  • Ridet JL, Malhotra SK, Privat A, Gage FH. Reactive astrocytes: cellular and molecular cues to biological function. Trends Neurosci. 20(12), 570–577 (1997).
  • Eddleston M, Mucke L. Molecular profile of reactive astrocytes – implications for their role in neurologic disease. Neuroscience 54(1), 15–36 (1993).
  • Bauer J, Huitinga I, Zhao W, Lassmann H, Hickey WF, Dijkstra CD. The role of macrophages, perivascular cells, and microglial cells in the pathogenesis of experimental autoimmune encephalomyelitis. Glia 15(4), 437–446 (1995).
  • Stoll G, Jander S. The role of microglia and macrophages in the pathophysiology of the CNS. Prog. Neurobiol. 58(3), 233–247 (1999).
  • Dong Y, Benveniste EN. Immune function of astrocytes. Glia 36(2), 180–190 (2001).
  • Fischer HG, Reichmann G. Brain dendritic cells and macrophages/microglia in central nervous system inflammation. J. Immunol. 166(4), 2717–2726 (2001).
  • Kettenmann H, Verkhratsky A. Neuroglia: the 150 years after. Trends Neurosci. 31(12), 653–659 (2008).
  • Liu W, Wang CH, Cui Y et al. Inhibition of neuronal nitric oxide synthase antagonizes morphine antinociceptive tolerance by decreasing activation of p38 MAPK in the spinal microglia. Neurosci. Lett. 410(3), 174–177 (2006).
  • Verge GM, Milligan ED, Maier SF, Watkins LR, Naeve GS, Foster AC. Fractalkine (CX3CL1) and fractalkine receptor (CX3CR1) distribution in spinal cord and dorsal root ganglia under basal and neuropathic pain conditions. Eur. J. Neurosci. 20(5), 1150–1160 (2004).
  • Fundytus ME. Glutamate receptors and nociception: implications for the drug treatment of pain. CNS Drugs 15(1), 29–58 (2001).
  • Kostic M, Zivkovic N, Stojanovic I. Multiple sclerosis and glutamate excitotoxicity. Rev. Neurosci.12, 1–18 (2012).
  • Silva SL, Vaz AR, Diógenes MJ et al. Neuritic growth impairment and cell death by unconjugated bilirubin is mediated by NO and glutamate, modulated by microglia, and prevented by glycoursodeoxycholic acid and interleukin-10. Neuropharmacology 62(7), 2398–2408 (2012).
  • Liu W, Tang Y, Feng J. Cross talk between activation of microglia and astrocytes in pathological conditions in the central nervous system. Life Sci. 89(5–6), 141–146 (2011).
  • Ransohoff RM, Brown MA. Innate immunity in the central nervous system. J. Clin. Invest. 122(4), 1164–1171 (2012).
  • Nave KA. Myelination and support of axonal integrity by glia. Nature 468(7321), 244–252 (2010).
  • Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin. Pharmacol. Ther. 69(3), 89–95 (2001).
  • Strimbu K, Tavel JA. What are biomarkers? Curr. Opin. HIV AIDS 5(6), 463–466 (2010).
  • Földi I, Müller G, Penke B, Janáky T. Characterisation of the variation of mouse brain proteome by two-dimensional electrophoresis. J. Proteomics 74(6), 894–901 (2011).
  • Krishnamurthy D, Levin Y, Harris LW, Umrania Y, Bahn S, Guest PC. Analysis of the human pituitary proteome by data independent label-free liquid chromatography tandem mass spectrometry. Proteomics 11(3), 495–500 (2011).
  • Dhaunchak AS, Huang JK, De Faria O Jr et al. A proteome map of axoglial specializations isolated and purified from human central nervous system. Glia 58(16), 1949–1960 (2010).
  • Enose Y, Destache CJ, Mack AL et al. Proteomic fingerprints distinguish microglia, bone marrow, and spleen macrophage populations. Glia 51(3), 161–172 (2005).
  • Vanrobaeys F, Van Coster R, Dhondt G, Devreese B, Van Beeumen J. Profiling of myelin proteins by 2D-gel electrophoresis and multidimensional liquid chromatography coupled to MALDI TOF-TOF mass spectrometry. J. Proteome Res. 4(6), 2283–2293 (2005).
  • Broadwater L, Pandit A, Clements R et al. Analysis of the mitochondrial proteome in multiple sclerosis cortex. Biochim. Biophys. Acta 1812(5), 630–641 (2011).
  • Yang X, Levin Y, Rahmoune H et al. Comprehensive two-dimensional liquid chromatography mass spectrometric profiling of the rat hippocampal proteome. Proteomics 11(3), 501–505 (2011).
  • Maurya DK, Sundaram CS, Bhargava P. Proteome profile of whole cerebellum of the mature rat. Proteomics 10(23), 4311–4319 (2010).
  • McLaughlin P, Zhou Y, Ma T et al. Proteomic analysis of microglial contribution to mouse strain-dependent dopaminergic neurotoxicity. Glia 53(6), 567–582 (2006).
  • Hauck SM, Suppmann S, Ueffing M. Proteomic profiling of primary retinal Müller glia cells reveals a shift in expression patterns upon adaptation to in vitro conditions. Glia 44(3), 251–263 (2003).
  • Shen M, Ji Y, Zhang S et al. A proteome map of primary cultured rat Schwann cells. Proteome Sci. 10(1), 20 (2012).
  • Greenbaum D, Luscombe NM, Jansen R, Qian J, Gerstein M. Interrelating different types of genomic data, from proteome to secretome: ‘oming in on function. Genome Res. 11(9), 1463–1468 (2001).
  • Grimmond SM, Miranda KC, Yuan Z et al.; RIKEN GER Group; GSL Members. The mouse secretome: functional classification of the proteins secreted into the extracellular environment. Genome Res. 13(6B), 1350–1359 (2003).
  • Lafon-Cazal M, Adjali O, Galéotti N et al. Proteomic analysis of astrocytic secretion in the mouse. Comparison with the cerebrospinal fluid proteome. J. Biol. Chem. 278(27), 24438–24448 (2003).
  • Keene SD, Greco TM, Parastatidis I et al. Mass spectrometric and computational analysis of cytokine-induced alterations in the astrocyte secretome. Proteomics 9(3), 768–782 (2009).
  • Moore NH, Costa LG, Shaffer SA, Goodlett DR, Guizzetti M. Shotgun proteomics implicates extracellular matrix proteins and protease systems in neuronal development induced by astrocyte cholinergic stimulation. J. Neurochem. 108(4), 891–908 (2009).
  • Greco TM, Seeholzer SH, Mak A, Spruce L, Ischiropoulos H. Quantitative mass spectrometry-based proteomics reveals the dynamic range of primary mouse astrocyte protein secretion. J. Proteome Res. 9(5), 2764–2774 (2010).
  • Yin P, Knolhoff AM, Rosenberg HJ, Millet LJ, Gillette MU, Sweedler JV. Peptidomic analyses of mouse astrocytic cell lines and rat primary cultured astrocytes. J. Proteome Res. 11(8), 3965–3973 (2012).
  • Kim S, Ock J, Kim AK et al. Neurotoxicity of microglial cathepsin D revealed by secretome analysis. J. Neurochem. 103(6), 2640–2650 (2007).
  • Liu J, Hong Z, Ding J, Liu J, Zhang J, Chen S. Predominant release of lysosomal enzymes by newborn rat microglia after LPS treatment revealed by proteomic studies. J. Proteome Res. 7(5), 2033–2049 (2008).
  • Jeon H, Lee S, Lee WH, Suk K. Analysis of glial secretome: the long pentraxin PTX3 modulates phagocytic activity of microglia. J. Neuroimmunol. 229(1–2), 63–72 (2010).
  • Ciborowski P, Kadiu I, Rozek W et al. Investigating the human immunodeficiency virus type 1-infected monocyte-derived macrophage secretome. Virology 363(1), 198–209 (2007).
  • Liu Y, Teng X, Yang X et al. Shotgun proteomics and network analysis between plasma membrane and extracellular matrix proteins from rat olfactory ensheathing cells. Cell Transplant. 19(2), 133–146 (2010).
  • Ribeiro CA, Salgado AJ, Fraga JS, Silva NA, Reis RL, Sousa N. The secretome of bone marrow mesenchymal stem cells-conditioned media varies with time and drives a distinct effect on mature neurons and glial cells (primary cultures). J. Tissue Eng. Regen. Med. 5(8), 668–672 (2011).
  • Skalnikova H, Motlik J, Gadher SJ, Kovarova H. Mapping of the secretome of primary isolates of mammalian cells, stem cells and derived cell lines. Proteomics 11(4), 691–708 (2011).
  • Cocucci E, Racchetti G, Meldolesi J. Shedding microvesicles: artefacts no more. Trends Cell Biol. 19(2), 43–51 (2009).
  • Lakkaraju A, Rodriguez-Boulan E. Itinerant exosomes: emerging roles in cell and tissue polarity. Trends Cell Biol. 18(5), 199–209 (2008).
  • Vella LJ, Greenwood DL, Cappai R, Scheerlinck JP, Hill AF. Enrichment of prion protein in exosomes derived from ovine cerebral spinal fluid. Vet. Immunol. Immunopathol. 124(3-4), 385–393 (2008).
  • Frühbeis C, Fröhlich D, Krämer-Albers EM. Emerging roles of exosomes in neuron–glia communication. Front. Physiol. 3, 119 (2012).
  • Krämer-Albers EM, Bretz N, Tenzer S et al. Oligodendrocytes secrete exosomes containing major myelin and stress-protective proteins: Trophic support for axons? Proteomics Clin. Appl. 1(11), 1446–1461 (2007).
  • Fornasiero EF, Bonanomi D, Benfenati F, Valtorta F. The role of synapsins in neuronal development. Cell. Mol. Life Sci. 67(9), 1383–1396 (2010).
  • Cesca F, Baldelli P, Valtorta F, Benfenati F. The synapsins: key actors of synapse function and plasticity. Prog. Neurobiol. 91(4), 313–348 (2010).
  • Wang S, Cesca F, Loers G et al. Synapsin I is an oligomannose-carrying glycoprotein, acts as an oligomannose-binding lectin, and promotes neurite outgrowth and neuronal survival when released via glia-derived exosomes. J. Neurosci. 31(20), 7275–7290 (2011).
  • Hsu C, Morohashi Y, Yoshimura S et al. Regulation of exosome secretion by Rab35 and its GTPase-activating proteins TBC1D10A-C. J. Cell Biol. 189(2), 223–232 (2010).
  • Bakhti M, Winter C, Simons M. Inhibition of myelin membrane sheath formation by oligodendrocyte-derived exosome-like vesicles. J. Biol. Chem. 286(1), 787–796 (2011).
  • Février B, Raposo G. Exosomes: endosomal-derived vesicles shipping extracellular messages. Curr. Opin. Cell Biol. 16(4), 415–421 (2004).
  • Guescini M, Genedani S, Stocchi V, Agnati LF. Astrocytes and Glioblastoma cells release exosomes carrying mtDNA. J. Neural Transm. 117(1), 1–4 (2010).
  • Taylor AR, Robinson MB, Gifondorwa DJ, Tytell M, Milligan CE. Regulation of heat shock protein 70 release in astrocytes: role of signaling kinases. Dev. Neurobiol. 67(13), 1815–1829 (2007).
  • Dowell JA, Johnson JA, Li L. Identification of astrocyte secreted proteins with a combination of shotgun proteomics and bioinformatics. J. Proteome Res. 8(8), 4135–4143 (2009).
  • Biber K, Vinet J, Boddeke HW. Neuron-microglia signaling: chemokines as versatile messengers. J. Neuroimmunol. 198(1-2), 69–74 (2008).
  • Hansson E, Rönnbäck L. Glial neuronal signaling in the central nervous system. FASEB J. 17(3), 341–348 (2003).
  • Mohri I, Taniike M, Taniguchi H et al. Prostaglandin D2-mediated microglia/astrocyte interaction enhances astrogliosis and demyelination in twitcher. J. Neurosci. 26(16), 4383–4393 (2006).
  • Röhl C, Armbrust E, Kolbe K et al. Activated microglia modulate astroglial enzymes involved in oxidative and inflammatory stress and increase the resistance of astrocytes to oxidative stress in vitro. Glia 56(10), 1114–1126 (2008).
  • Wang T, Gong N, Liu J et al. HIV-1-infected astrocytes and the microglial proteome. J. Neuroimmune Pharmacol. 3(3), 173–186 (2008).
  • Clark AK, Wodarski R, Guida F, Sasso O, Malcangio M. Cathepsin S release from primary cultured microglia is regulated by the P2X7 receptor. Glia 58(14), 1710–1726 (2010).
  • Clark AK, Grist J, Al-Kashi A, Perretti M, Malcangio M. Spinal cathepsin S and fractalkine contribute to chronic pain in the collagen-induced arthritis model. Arthritis Rheum. 64(6), 2038–2047 (2012).
  • Jeon H, Kim JH, Kim JH, Lee WH, Lee MS, Suk K. Plasminogen activator inhibitor type 1 regulates microglial motility and phagocytic activity. J. Neuroinflammation 9, 149 (2012).
  • Jijon HB, Madsen KL, Walker JW, Allard B, Jobin C. Serum amyloid A activates NF-κB and proinflammatory gene expression in human and murine intestinal epithelial cells. Eur. J. Immunol. 35(3), 718–726 (2005).
  • Koga T, Torigoshi T, Motokawa S et al. Serum amyloid A-induced IL-6 production by rheumatoid synoviocytes. FEBS Lett. 582(5), 579–585 (2008).
  • Jang SY, Shin YK, Lee HY et al. Local production of serum amyloid a is implicated in the induction of macrophage chemoattractants in Schwann cells during wallerian degeneration of peripheral nerves. Glia 60(10), 1619–1628 (2012).
  • Lee HY, Kim MK, Park KS et al. Serum amyloid A induces contrary immune responses via formyl peptide receptor-like 1 in human monocytes. Mol. Pharmacol. 70(1), 241–248 (2006).
  • Lee HY, Kim SD, Shim JW et al. Serum amyloid A induces CCL2 production via formyl peptide receptor-like 1-mediated signaling in human monocytes. J. Immunol. 181(6), 4332–4339 (2008).
  • Lee HY, Kim SD, Shim JW, Yun J, Kim K, Bae YS. Activation of formyl peptide receptor like-1 by serum amyloid A induces CCL2 production in human umbilical vein endothelial cells. Biochem. Biophys. Res. Commun. 380(2), 313–317 (2009).
  • Lu J, Marnell LL, Marjon KD, Mold C, Du Clos TW, Sun PD. Structural recognition and functional activation of FcγR by innate pentraxins. Nature 456(7224), 989–992 (2008).
  • Mantovani A, Garlanda C, Doni A, Bottazzi B. Pentraxins in innate immunity: from C-reactive protein to the long pentraxin PTX3. J. Clin. Immunol. 28(1), 1–13 (2008).
  • Deban L, Russo RC, Sironi M et al. Regulation of leukocyte recruitment by the long pentraxin PTX3. Nat. Immunol. 11(4), 328–334 (2010).
  • Coyle P, Philcox JC, Carey LC, Rofe AM. Metallothionein: the multipurpose protein. Cell. Mol. Life Sci. 59(4), 627–647 (2002).
  • Blaauwgeers HG, Sillevis Smitt PA, de Jong JM, Troost D. Localization of metallothionein in the mammalian central nervous system. Biol. Signals 3(4), 181–187 (1994).
  • Hidalgo J, Aschner M, Zatta P, Vasák M. Roles of the metallothionein family of proteins in the central nervous system. Brain Res. Bull. 55(2), 133–145 (2001).
  • Zambenedetti P, Giordano R, Zatta P. Metallothioneins are highly expressed in astrocytes and microcapillaries in Alzheimer’s disease. J. Chem. Neuroanat. 15(1), 21–26 (1998).
  • Penkowa M, Hidalgo J. Metallothionein I+II expression and their role in experimental autoimmune encephalomyelitis. Glia 32(3), 247–263 (2000).
  • Trendelenburg G, Prass K, Priller J et al. Serial analysis of gene expression identifies metallothionein-II as major neuroprotective gene in mouse focal cerebral ischemia. J. Neurosci. 22(14), 5879–5888 (2002).
  • Kim JH, Nam YP, Jeon SM, Han HS, Suk K. Amyloid neurotoxicity is attenuated by metallothionein: dual mechanisms at work. J. Neurochem. 121(5), 751–762 (2012).
  • Asahina M, Yoshiyama Y, Hattori T. Expression of matrix metalloproteinase-9 and urinary-type plasminogen activator in Alzheimer’s disease brain. Clin. Neuropathol. 20(2), 60–63 (2001).
  • Gottschall PE, Deb S. Regulation of matrix metalloproteinase expressions in astrocytes, microglia and neurons. Neuroimmunomodulation 3(2-3), 69–75 (1996).
  • Nübling G, Levin J, Bader B et al. Limited cleavage of τ with matrix-metalloproteinase MMP-9, but not MMP-3, enhances tau oligomer formation. Exp. Neurol. 237(2), 470–476 (2012).
  • Galpern WR, Lang AE. Interface between tauopathies and synucleinopathies: a tale of two proteins. Ann. Neurol. 59(3), 449–458 (2006).
  • Rejman JJ, Hurley WL. Isolation and characterization of a novel 39 kilodalton whey protein from bovine mammary secretions collected during the nonlactating period. Biochem. Biophys. Res. Commun. 150(1), 329–334 (1988).
  • Thouvenot E, Lafon-Cazal M, Demettre E, Jouin P, Bockaert J, Marin P. The proteomic analysis of mouse choroid plexus secretome reveals a high protein secretion capacity of choroidal epithelial cells. Proteomics 6(22), 5941–5952 (2006).
  • Craig-Schapiro R, Perrin RJ, Roe CM et al. YKL-40: a novel prognostic fluid biomarker for preclinical Alzheimer’s disease. Biol. Psychiatry 68(10), 903–912 (2010).
  • Coffman FD. Chitinase 3-Like-1 (CHI3L1): a putative disease marker at the interface of proteomics and glycomics. Crit. Rev. Clin. Lab. Sci. 45(6), 531–562 (2008).
  • Bonneh-Barkay D, Wang G, Starkey A, Hamilton RL, Wiley CA. In vivo CHI3L1 (YKL-40) expression in astrocytes in acute and chronic neurological diseases. J. Neuroinflammation 7, 34 (2010).
  • Choi J, Lee HW, Suk K. Plasma level of chitinase 3-like 1 protein increases in patients with early Alzheimer’s disease. J. Neurol. 258(12), 2181–2185 (2011).
  • Akiyama H, Barger S, Barnum S et al. Inflammation and Alzheimer’s disease. Neurobiol. Aging 21(3), 383–421 (2000).
  • Apelt J, Schliebs R. β-amyloid-induced glial expression of both pro- and anti-inflammatory cytokines in cerebral cortex of aged transgenic Tg2576 mice with Alzheimer plaque pathology. Brain Res. 894(1), 21–30 (2001).
  • Yanai H, Ban T, Taniguchi T. High-mobility group box family of proteins: ligand and sensor for innate immunity. Trends Immunol. 33(12), 633–640 (2012).
  • Choi J, Lee HW, Suk K. Increased plasma levels of lipocalin 2 in mild cognitive impairment. J. Neurol. Sci. 305(1–2), 28–33 (2011).
  • Guerra MC, Tortorelli LS, Galland F et al. Lipopolysaccharide modulates astrocytic S100B secretion: a study in cerebrospinal fluid and astrocyte cultures from rats. J. Neuroinflammation 8, 128 (2011).
  • Thouvenot E, Urbach S, Vigy O et al. Quantitative proteomic analysis reveals protein expression changes in the murine neuronal secretome during apoptosis. J. Proteomics 77, 394–405 (2012).
  • Zhou L, Barão S, Laga M et al. The neural cell adhesion molecules L1 and CHL1 are cleaved by BACE1 protease in vivo. J. Biol. Chem. 287(31), 25927–25940 (2012).
  • Kuhn PH, Koroniak K, Hogl S et al. Secretome protein enrichment identifies physiological BACE1 protease substrates in neurons. EMBO J. 31(14), 3157–3168 (2012).
  • Zhu X, Raina AK, Perry G, Smith MA. Apoptosis in Alzheimer disease: a mathematical improbability. Curr. Alzheimer Res. 3(4), 393–396 (2006).
  • Lewczuk P, Wiltfang J. Neurochemical dementia diagnostics: State of the art and research perspectives. Proteomics 8(6), 1292–1301 (2008).
  • Füvesi J, Hanrieder J, Bencsik K et al. Proteomic analysis of cerebrospinal fluid in a fulminant case of multiple sclerosis. Int. J. Mol. Sci. 13(6), 7676–7693 (2012).
  • van Gool AJ, Hendrickson RC. The proteomic toolbox for studying cerebrospinal fluid. Expert Rev. Proteomics 9(2), 165–179 (2012).
  • Zougman A, Pilch B, Podtelejnikov A et al. Integrated analysis of the cerebrospinal fluid peptidome and proteome. J. Proteome Res. 7(1), 386–399 (2008).
  • Mouton-Barbosa E, Roux-Dalvai F, Bouyssié D et al. In-depth exploration of cerebrospinal fluid by combining peptide ligand library treatment and label-free protein quantification. Mol. Cell Proteomics 9(5), 1006–1021 (2010).
  • Schutzer SE, Liu T, Natelson BH et al. Establishing the proteome of normal human cerebrospinal fluid. PLoS ONE 5(6), e10980 (2010).
  • Thouvenot E, Urbach S, Dantec C et al. Enhanced detection of CNS cell secretome in plasma protein-depleted cerebrospinal fluid. J. Proteome Res. 7(10), 4409–4421 (2008).
  • Whitin JC, Jang T, Merchant M et al. Alterations in cerebrospinal fluid proteins in a presymptomatic primary glioma model. PLoS ONE 7(11), e49724 (2012).
  • Krüger T, Lautenschläger J, Grosskreutz J, Rhode H. Proteome analysis of body fluids for amyotrophic lateral sclerosis (ALS) biomarker discovery. Proteomics. Clin. Appl. doi:10.1002/prca.201200067 (2012) (Epub ahead of print).
  • Kim JH, Lee SK, Yoo YC et al. Proteome analysis of human cerebrospinal fluid as a diagnostic biomarker in patients with meningioma. Med. Sci. Monit. 18(11), BR450–BR460 (2012).
  • von Neuhoff N, Oumeraci T, Wolf T et al. Monitoring CSF proteome alterations in amyotrophic lateral sclerosis: obstacles and perspectives in translating a novel marker panel to the clinic. PLoS ONE 7(9), e44401 (2012).
  • Angel TE, Jacobs JM, Smith RP et al. Cerebrospinal fluid proteome of patients with acute Lyme disease. J. Proteome Res. 11(10), 4814–4822 (2012).
  • Shayan G, Adamiak B, Relkin NR, Lee KH. Longitudinal analysis of novel Alzheimer’s disease proteomic cerebrospinal fluid biomarkers during intravenous immunoglobulin therapy. Electrophoresis 33(13), 1975–1979 (2012).
  • Stoop MP, Rosenling T, Attali A et al. Minocycline effects on the cerebrospinal fluid proteome of experimental autoimmune encephalomyelitis rats. J. Proteome Res. 11(8), 4315–4325 (2012).
  • Schwarz E, Torrey EF, Guest PC, Bahn S. Biomarker discovery in human cerebrospinal fluid: the need for integrative metabolome and proteome databases. Genome Med. 4(4), 39 (2012).
  • Bora A, Anderson C, Bachani M, Nath A, Cotter RJ. Robust two-dimensional separation of intact proteins for bottom-up tandem mass spectrometry of the human CSF proteome. J. Proteome Res. 11(6), 3143–3149 (2012).
  • Angel TE, Jacobs JM, Spudich SS et al. The cerebrospinal fluid proteome in HIV infection: change associated with disease severity. Clin. Proteomics 9(1), 3 (2012).
  • Ramírez-Boo M, Priego-Capote F, Hainard A, Gluck F, Burkhard P, Sanchez JC. Characterization of the glycated human cerebrospinal fluid proteome. J. Proteomics 75(15), 4766–4782 (2012).
  • Nakamura K, Miyasho T, Nomura S, Yokota H, Nakade T. Proteome analysis of cerebrospinal fluid in healthy beagles and canine encephalitis. J. Vet. Med. Sci. 74(6), 751–756 (2012).
  • Street JM, Barran PE, Mackay CL et al. Identification and proteomic profiling of exosomes in human cerebrospinal fluid. J. Transl. Med. 10, 5 (2012).
  • Ghidoni R, Benussi L, Paterlini A, Albertini V, Binetti G, Emanuele E. Cerebrospinal fluid biomarkers for Alzheimer’s disease: the present and the future. Neurodegener. Dis. 8(6), 413–420 (2011).
  • Tumani H, Lehmensiek V, Lehnert S, Otto M, Brettschneider J. 2D DIGE of the cerebrospinal fluid proteome in neurological diseases. Expert Rev. Proteomics 7(1), 29–38 (2010).
  • Lehmensiek V, Süssmuth SD, Brettschneider J et al. Proteome analysis of cerebrospinal fluid in Guillain–Barré syndrome (GBS). J. Neuroimmunol. 185(1–2), 190–194 (2007).
  • Grebe SK, Singh RJ. LC–MS/MS in the clinical laboratory – where to from here? Clin. Biochem. Rev. 32(1), 5–31 (2011).
  • Rogers RS, Dharsee M, Ackloo S, Sivak JM, Flanagan JG. Proteomics analyses of human optic nerve head astrocytes following biomechanical strain. Mol. Cell Proteomics 11(2), M111.012302 (2012).
  • Ly L, Barnett MH, Zheng YZ, Gulati T, Prineas JW, Crossett B. Comprehensive tissue processing strategy for quantitative proteomics of formalin-fixed multiple sclerosis lesions. J. Proteome Res. 10(10), 4855–4868 (2011).
  • Kuramitsu Y, Miyamoto H, Tanaka T et al. Proteomic differential display analysis identified upregulated astrocytic phosphoprotein PEA-15 in human malignant pleural mesothelioma cell lines. Proteomics 9(22), 5078–5089 (2009).
  • Seyfried NT, Huysentruyt LC, Atwood JA 3rd, Xia Q, Seyfried TN, Orlando R. Up-regulation of NG2 proteoglycan and interferon-induced transmembrane proteins 1 and 3 in mouse astrocytoma: a membrane proteomics approach. Cancer Lett. 263(2), 243–252 (2008).
  • Favre-Kontula L, Sattonnet-Roche P, Magnenat E et al. Detection and identification of plasma proteins that bind GlialCAM using ProteinChip arrays, SELDI-TOF MS, and nano-LC MS/MS. Proteomics 8(2), 378–388 (2008).
  • Witzmann FA, Arnold RJ, Bai F et al. A proteomic survey of rat cerebral cortical synaptosomes. Proteomics 5(8), 2177–2201 (2005).
  • Kozuka-Hata H, Nasu-Nishimura Y, Koyama-Nasu R et al. Phosphoproteome of human glioblastoma initiating cells reveals novel signaling regulators encoded by the transcriptome. PLoS ONE 7(8), e43398 (2012).
  • Zhang K, Schrag M, Crofton A, Trivedi R, Vinters H, Kirsch W. Targeted proteomics for quantification of histone acetylation in Alzheimer's disease. Proteomics 12(8), 1261–1268 (2012).
  • Donovan LE, Higginbotham L, Dammer EB et al. Analysis of a membrane-enriched proteome from postmortem human brain tissue in Alzheimer’s disease. Proteomics. Clin. Appl. 6(3–4), 201–211 (2012).
  • Bildl W, Haupt A, Müller CS et al. Extending the dynamic range of label-free mass spectrometric quantification of affinity purifications. Mol. Cell Proteomics 11(2), M111.007955 (2012).
  • Biales AD, Bencic DC, Villeneuve DL, Ankley GT, Lattier DL. Proteomic analysis of zebrafish brain tissue following exposure to the pesticide prochloraz. Aquat. Toxicol. 105(3-4), 618–628 (2011).
  • Suzuki T, Zhang J, Miyazawa S, Liu Q, Farzan MR, Yao WD. Association of membrane rafts and postsynaptic density: proteomics, biochemical, and ultrastructural analyses. J. Neurochem. 119(1), 64–77 (2011).
  • Shawahna R, Uchida Y, Declèves X et al. Transcriptomic and quantitative proteomic analysis of transporters and drug metabolizing enzymes in freshly isolated human brain microvessels. Mol. Pharm. 8(4), 1332–1341 (2011).
  • Winding C, Sun Y, Höger H et al. Serine/threonine-protein phosphatase 1 a levels are paralleling olfactory memory formation in the CD1 mouse. Electrophoresis 32(13), 1675–1683 (2011).
  • Lubieniecka JM, Streijger F, Lee JH et al. Biomarkers for severity of spinal cord injury in the cerebrospinal fluid of rats. PLoS ONE 6(4), e19247 (2011).
  • Suk K. Combined analysis of the glia secretome and the CSF proteome: neuroinflammation and novel biomarkers. Expert Rev. Proteomics 7(2), 263–274 (2010).
  • Perrin RJ, Craig-Schapiro R, Malone JP et al. Identification and validation of novel cerebrospinal fluid biomarkers for staging early Alzheimer’s disease. PLoS ONE 6(1), e16032 (2011).
  • Yin GN, Lee HW, Cho JY, Suk K. Neuronal pentraxin receptor in cerebrospinal fluid as a potential biomarker for neurodegenerative diseases. Brain Res. 1265, 158–170 (2009).
  • Stoop MP, Coulier L, Rosenling T et al. Quantitative proteomics and metabolomics analysis of normal human cerebrospinal fluid samples. Mol. Cell Proteomics 9(9), 2063–2075 (2010).
  • Tajiri M, Takeuchi T, Wada Y. Distinct features of matrix-assisted 6 microm infrared laser desorption/ionization mass spectrometry in biomolecular analysis. Anal. Chem. 81(16), 6750–6755 (2009).
  • Yang F, Shen Y, Camp DG 2nd, Smith RD. High-pH reversed-phase chromatography with fraction concatenation for 2D proteomic analysis. Expert Rev. Proteomics 9(2), 129–134 (2012).
  • Roche S, Gabelle A, Lehmann S. Clinical proteomics of the cerebrospinal fluid: Towards the discovery of new biomarkers. Proteomics. Clin. Appl. 2(3), 428–436 (2008).
  • Borg J, Campos A, Diema C et al. Spectral counting assessment of protein dynamic range in cerebrospinal fluid following depletion with plasma-designed immunoaffinity columns. Clin. Proteomics 8(1), 6 (2011).
  • Patel S. Role of proteomics in biomarker discovery and psychiatric disorders: current status, potentials, limitations and future challenges. Expert Rev. Proteomics 9(3), 249–265 (2012).
  • Garbis S, Lubec G, Fountoulakis M. Limitations of current proteomics technologies. J. Chromatogr. A 1077(1), 1–18 (2005).
  • Bennett JL, Owens GP. Cerebrospinal fluid proteomics: a new window for understanding human demyelinating disorders? Ann. Neurol. 71(5), 587–588 (2012).
  • Piomelli D, Astarita G, Rapaka R. A neuroscientist’s guide to lipidomics. Nat. Rev. Neurosci. 8(10), 743–754 (2007).
  • Han X. Neurolipidomics: challenges and developments. Front. Biosci. 12 , 2601–2615 (2007).
  • Han X. Multi-dimensional mass spectrometry-based shotgun lipidomics and the altered lipids at the mild cognitive impairment stage of Alzheimer’s disease. Biochim. Biophys. Acta 1801(8), 774–783 (2010).
  • Del Boccio P, Pieragostino D, Di Ioia M et al. Lipidomic investigations for the characterization of circulating serum lipids in multiple sclerosis. J. Proteomics 74(12), 2826–2836 (2011).
  • Bayir H, Tyurin VA, Tyurina YY et al. Selective early cardiolipin peroxidation after traumatic brain injury: an oxidative lipidomics analysis. Ann. Neurol. 62(2), 154–169 (2007).
  • Postle AD. Lipidomics. Curr. Opin. Clin. Nutr. Metab. Care 15(2), 127–133 (2012).
  • Fonteh AN, Harrington RJ, Huhmer AF, Biringer RG, Riggins JN, Harrington MG. Identification of disease markers in human cerebrospinal fluid using lipidomic and proteomic methods. Dis. Markers 22(1–2), 39–64 (2006).
  • Craig-Schapiro R, Fagan AM, Holtzman DM. Biomarkers of Alzheimer’s disease. Neurobiol. Dis. 35(2), 128–140 (2009).
  • Perrin RJ, Fagan AM, Holtzman DM. Multimodal techniques for diagnosis and prognosis of Alzheimer’s disease. Nature 461(7266), 916–922 (2009).
  • Hampel H, Bürger K, Teipel SJ, Bokde AL, Zetterberg H, Blennow K. Core candidate neurochemical and imaging biomarkers of Alzheimer’s disease. Alzheimers. Dement. 4(1), 38–48 (2008).
  • Jack CR Jr, Knopman DS, Jagust WJ et al. Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol. 9(1), 119–128 (2010).
  • Rothermundt M, Peters M, Prehn JH, Arolt V. S100B in brain damage and neurodegeneration. Microsc. Res. Tech. 60(6), 614–632 (2003).
  • Sen J, Belli A. S100B in neuropathologic states: the CRP of the brain? J. Neurosci. Res. 85(7), 1373–1380 (2007).
  • Lauritzen I, Heurteaux C, Lazdunski M. Expression of group II phospholipase A2 in rat brain after severe forebrain ischemia and in endotoxic shock. Brain Res. 651(1–2), 353–356 (1994).
  • Adibhatla RM, Hatcher JF. Secretory phospholipase A2 IIA is up-regulated by TNF-α and IL-1α/β after transient focal cerebral ischemia in rat. Brain Res. 1134(1), 199–205 (2007).
  • Titsworth WL, Cheng X, Ke Y et al. Differential expression of sPLA2 following spinal cord injury and a functional role for sPLA2-IIA in mediating oligodendrocyte death. Glia 57(14), 1521–1537 (2009).
  • Cunningham TJ, Souayah N, Jameson B, Mitchell J, Yao L. Systemic treatment of cerebral cortex lesions in rats with a new secreted phospholipase A2 inhibitor. J. Neurotrauma 21(11), 1683–1691 (2004).
  • Lin TN, Wang Q, Simonyi A et al. Induction of secretory phospholipase A2 in reactive astrocytes in response to transient focal cerebral ischemia in the rat brain. J. Neurochem. 90(3), 637–645 (2004).
  • Martín R, Cordova C, Nieto ML. Secreted phospholipase A2-IIA-induced a phenotype of activated microglia in BV-2 cells requires epidermal growth factor receptor transactivation and proHB-EGF shedding. J. Neuroinflammation 9, 154 (2012).
  • Krumbholz M, Theil D, Derfuss T et al. BAFF is produced by astrocytes and up-regulated in multiple sclerosis lesions and primary central nervous system lymphoma. J. Exp. Med. 201(2), 195–200 (2005).
  • Kim KS, Park JY, Jou I, Park SM. Functional implication of BAFF synthesis and release in gangliosides-stimulated microglia. J. Leukoc. Biol. 86(2), 349–359 (2009).
  • Le Pera M, Urso E, Sprovieri T et al. Contribution of cerebrospinal fluid thymosin β4 levels to the clinical differentiation of Creutzfeldt–Jakob disease. Arch. Neurol. 69(7), 868–872 (2012).
  • Zhang J, Goodlett DR, Quinn JF et al. Quantitative proteomics of cerebrospinal fluid from patients with Alzheimer disease. J. Alzheimers Dis. 7(2), 125–33; discussion 173 (2005).
  • Abdi F, Quinn JF, Jankovic J et al. Detection of biomarkers with a multiplex quantitative proteomic platform in cerebrospinal fluid of patients with neurodegenerative disorders. J. Alzheimers Dis. 9(3), 293–348 (2006).
  • Knopman DS, DeKosky ST, Cummings JL et al. Practice parameter: diagnosis of dementia (an evidence-based review). Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 56(9), 1143–1153 (2001).
  • Van Eldik LJ, Thompson WL, Ralay Ranaivo H, Behanna HA, Martin Watterson D. Glia proinflammatory cytokine upregulation as a therapeutic target for neurodegenerative diseases: function-based and target-based discovery approaches. Int. Rev. Neurobiol. 82, 277–296 (2007).
  • Yin GN, Jeon H, Lee S, Lee HW, Cho JY, Suk K. Role of soluble CD14 in cerebrospinal fluid as a regulator of glial functions. J. Neurosci. Res. 87(11), 2578–2590 (2009).
  • Trapp BD, Nave KA. Multiple sclerosis: an immune or neurodegenerative disorder? Annu. Rev. Neurosci. 31, 247–269 (2008).
  • Linker RA, Brechlin P, Jesse S et al. Proteome profiling in murine models of multiple sclerosis: identification of stage specific markers and culprits for tissue damage. PLoS ONE 4(10), e7624 (2009).
  • Komori M, Matsuyama Y, Nirasawa T et al. Proteomic pattern analysis discriminates among multiple sclerosis-related disorders. Ann. Neurol. 71(5), 614–623 (2012).
  • Menon KN, Steer DL, Short M, Petratos S, Smith I, Bernard CC. A novel unbiased proteomic approach to detect the reactivity of cerebrospinal fluid in neurological diseases. Mol. Cell Proteomics 10(6), M110.000042 (2011).
  • Stoop MP, Singh V, Dekker LJ et al. Proteomics comparison of cerebrospinal fluid of relapsing remitting and primary progressive multiple sclerosis. PLoS ONE 5(8), e12442 (2010).
  • Qin Z, Qin Y, Liu S. Alteration of DBP levels in CSF of patients with MS by proteomics analysis. Cell. Mol. Neurobiol. 29(2), 203–210 (2009).
  • Dhaunchak AS, Becker C, Schulman H et al.; Canadian Pediatric Demyelinating Disease Group. Implication of perturbed axoglial apparatus in early pediatric multiple sclerosis. Ann. Neurol. 71(5), 601–613 (2012).
  • Patzig J, Jahn O, Tenzer S et al. Quantitative and integrative proteome analysis of peripheral nerve myelin identifies novel myelin proteins and candidate neuropathy loci. J. Neurosci. 31(45), 16369–16386 (2011).
  • Ma D, Li L. Searching for reliable premortem protein biomarkers for prion diseases: progress and challenges to date. Expert Rev. Proteomics 9(3), 267–280 (2012).
  • Fontoura P, Steinman L, Miller A. Emerging therapeutic targets in multiple sclerosis. Curr. Opin. Neurol. 19(3), 260–266 (2006).
  • Flower DR. The lipocalin protein family: structure and function. Biochem. J. 318(Pt 1), 1–14 (1996).
  • Kjeldsen L, Johnsen AH, Sengeløv H, Borregaard N. Isolation and primary structure of NGAL, a novel protein associated with human neutrophil gelatinase. J. Biol. Chem. 268(14), 10425–10432 (1993).
  • Borregaard N, Cowland JB. Neutrophil gelatinase-associated lipocalin, a siderophore-binding eukaryotic protein. Biometals 19(2), 211–215 (2006).
  • Flower DR, North AC, Attwood TK. Mouse oncogene protein 24p3 is a member of the lipocalin protein family. Biochem. Biophys. Res. Commun. 180(1), 69–74 (1991).
  • Hamilton RT, Nilsen-Hamilton M, Adams G. Superinduction by cycloheximide of mitogen-induced secreted proteins produced by Balb/c 3T3 cells. J. Cell. Physiol. 123(2), 201–208 (1985).
  • Flower DR, North AC, Sansom CE. The lipocalin protein family: structural and sequence overview. Biochim. Biophys. Acta 1482(1–2), 9–24 (2000).
  • Kjeldsen L, Cowland JB, Borregaard N. Human neutrophil gelatinase-associated lipocalin and homologous proteins in rat and mouse. Biochim. Biophys. Acta 1482(1–2), 272–283 (2000).
  • Goetz DH, Holmes MA, Borregaard N, Bluhm ME, Raymond KN, Strong RK. The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition. Mol. Cell 10(5), 1033–1043 (2002).
  • MacManus JP, Graber T, Luebbert C et al. Translation-state analysis of gene expression in mouse brain after focal ischemia. J. Cereb. Blood Flow Metab. 24(6), 657–667 (2004).
  • Nilsen-Hamilton M, Liu Q, Ryon J, Bendickson L, Lepont P, Chang Q. Tissue involution and the acute phase response. Ann. NY Acad. Sci. 995, 94–108 (2003).
  • Lee J, Hur J, Lee P et al. Dual role of inflammatory stimuli in activation-induced cell death of mouse microglial cells. Initiation of two separate apoptotic pathways via induction of interferon regulatory factor-1 and caspase-11. J. Biol. Chem. 276(35), 32956–32965 (2001).
  • Suk K, Kim SY, Kim H. Essential role of caspase-11 in activation-induced cell death of rat astrocytes. J. Neurochem. 80(2), 230–238 (2002).
  • Block ML, Zecca L, Hong JS. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat. Rev. Neurosci. 8(1), 57–69 (2007).
  • González-Scarano F, Baltuch G. Microglia as mediators of inflammatory and degenerative diseases. Annu. Rev. Neurosci. 22, 219–240 (1999).
  • Suk K. Regulation of neuroinflammation by herbal medicine and its implications for neurodegenerative diseases. A focus on traditional medicines and flavonoids. Neurosignals. 14(1–2), 23–33 (2005).
  • Mrak RE, Griffin WS. Glia and their cytokines in progression of neurodegeneration. Neurobiol. Aging 26(3), 349–354 (2005).
  • Liu B, Wang K, Gao HM, Mandavilli B, Wang JY, Hong JS. Molecular consequences of activated microglia in the brain: overactivation induces apoptosis. J. Neurochem. 77(1), 182–189 (2001).
  • Lee P, Lee J, Kim S et al. NO as an autocrine mediator in the apoptosis of activated microglial cells: correlation between activation and apoptosis of microglial cells. Brain Res. 892(2), 380–385 (2001).
  • Kingham PJ, Cuzner ML, Pocock JM. Apoptotic pathways mobilized in microglia and neurones as a consequence of chromogranin A-induced microglial activation. J. Neurochem. 73(2), 538–547 (1999).
  • Jones LL, Banati RB, Graeber MB, Bonfanti L, Raivich G, Kreutzberg GW. Population control of microglia: does apoptosis play a role? J. Neurocytol. 26(11), 755–770 (1997).
  • Lee S, Lee J, Kim S et al. A dual role of lipocalin 2 in the apoptosis and deramification of activated microglia. J. Immunol. 179(5), 3231–3241 (2007).
  • Lee S, Park JY, Lee WH et al. Lipocalin-2 is an autocrine mediator of reactive astrocytosis. J. Neurosci. 29(1), 234–249 (2009).
  • Rathore KI, Berard JL, Redensek A et al. Lipocalin 2 plays an immunomodulatory role and has detrimental effects after spinal cord injury. J. Neurosci. 31(38), 13412–13419 (2011).
  • Ambrosini E, Aloisi F. Chemokines and glial cells: a complex network in the central nervous system. Neurochem. Res. 29(5), 1017–1038 (2004).
  • Lee S, Kim JH, Kim JH et al. Lipocalin-2 Is a chemokine inducer in the central nervous system: role of chemokine ligand 10 (CXCL10) in lipocalin-2-induced cell migration. J. Biol. Chem. 286(51), 43855–43870 (2011).
  • Kim H, Lee S, Park HC, Lee WH, Lee MS, Suk K. Modulation of glial and neuronal migration by lipocalin-2 in zebrafish. Immune Netw. 11(6), 342–347 (2011).
  • Devireddy LR, Gazin C, Zhu X, Green MR. A cell-surface receptor for lipocalin 24p3 selectively mediates apoptosis and iron uptake. Cell 123(7), 1293–1305 (2005).
  • Tong Z, Wu X, Ovcharenko D, Zhu J, Chen CS, Kehrer JP. Neutrophil gelatinase-associated lipocalin as a survival factor. Biochem. J. 391(Pt 2), 441–448 (2005).
  • Nelson AM, Zhao W, Gilliland KL, Zaenglein AL, Liu W, Thiboutot DM. Neutrophil gelatinase-associated lipocalin mediates 13-cis retinoic acid-induced apoptosis of human sebaceous gland cells. J. Clin. Invest. 118(4), 1468–1478 (2008).
  • Lee S, Lee WH, Lee MS, Mori K, Suk K. Regulation by lipocalin-2 of neuronal cell death, migration, and morphology. J. Neurosci. Res. 90(3), 540–550 (2012).
  • Mucha M, Skrzypiec AE, Schiavon E, Attwood BK, Kucerova E, Pawlak R. Lipocalin-2 controls neuronal excitability and anxiety by regulating dendritic spine formation and maturation. Proc. Natl Acad. Sci. USA 108(45), 18436–18441 (2011).
  • Berard JL, Zarruk JG, Arbour N et al. Lipocalin 2 is a novel immune mediator of experimental autoimmune encephalomyelitis pathogenesis and is modulated in multiple sclerosis. Glia 60(7), 1145–1159 (2012).
  • Urade Y, Hayaishi O. Prostaglandin D synthase: structure and function. Vitam. Horm. 58 , 89–120 (2000).
  • Urade Y, Fujimoto N, Hayaishi O. Purification and characterization of rat brain prostaglandin D synthetase. J. Biol. Chem. 260(23), 12410–12415 (1985).
  • Urade Y, Hayaishi O. Biochemical, structural, genetic, physiological, and pathophysiological features of lipocalin-type prostaglandin D synthase. Biochim. Biophys. Acta 1482(1–2), 259–271 (2000).
  • Nagata A, Suzuki Y, Igarashi M et al. Human brain prostaglandin D synthase has been evolutionarily differentiated from lipophilic-ligand carrier proteins. Proc. Natl Acad. Sci. USA 88(9), 4020–4024 (1991).
  • Kanaoka Y, Ago H, Inagaki E et al. Cloning and crystal structure of hematopoietic prostaglandin D synthase. Cell 90(6), 1085–1095 (1997).
  • Hoffmann A, Conradt HS, Gross G, Nimtz M, Lottspeich F, Wurster U. Purification and chemical characterization of beta-trace protein from human cerebrospinal fluid: its identification as prostaglandin D synthase. J. Neurochem. 61(2), 451–456 (1993).
  • Watanabe K, Urade Y, Mäder M, Murphy C, Hayaishi O. Identification of β-trace as prostaglandin D synthase. Biochem. Biophys. Res. Commun. 203(2), 1110–1116 (1994).
  • Ragolia L, Palaia T, Frese L, Fishbane S, Maesaka JK. Prostaglandin D2 synthase induces apoptosis in PC12 neuronal cells. Neuroreport 12(12), 2623–2628 (2001).
  • Maesaka JK, Palaia T, Frese L, Fishbane S, Ragolia L. Prostaglandin D(2) synthase induces apoptosis in pig kidney LLC-PK1 cells. Kidney Int. 60(5), 1692–1698 (2001).
  • Ragolia L, Palaia T, Paric E, Maesaka JK. Elevated L-PGDS activity contributes to PMA-induced apoptosis concomitant with downregulation of PI3-K. Am. J. Physiol., Cell Physiol. 284(1), C119–C126 (2003).
  • Xin X, Huber A, Meyer P et al. L-PGDS (betatrace protein) inhibits astrocyte proliferation and mitochondrial ATP production in vitro. J. Mol. Neurosci. 39(3), 366–371 (2009).
  • Ragolia L, Palaia T, Hall CE, Maesaka JK, Eguchi N, Urade Y. Accelerated glucose intolerance, nephropathy, and atherosclerosis in prostaglandin D2 synthase knock-out mice. J. Biol. Chem. 280(33), 29946–29955 (2005).
  • Schuligoi R, Grill M, Heinemann A, Peskar BA, Amann R. Sequential induction of prostaglandin E and D synthases in inflammation. Biochem. Biophys. Res. Commun. 335(3), 684–689 (2005).
  • Joo M, Kwon M, Cho YJ et al. Lipopolysaccharide-dependent interaction between PU.1 and c-Jun determines production of lipocalin-type prostaglandin D synthase and prostaglandin D2 in macrophages. Am. J. Physiol. Lung Cell Mol. Physiol. 296(5), L771–L779 (2009).
  • Tanaka R, Miwa Y, Mou K et al. Knockout of the l-pgds gene aggravates obesity and atherosclerosis in mice. Biochem. Biophys. Res. Commun. 378(4), 851–856 (2009).
  • Lee S, Jang E, Kim JH, Kim JH, Lee WH, Suk K. Lipocalin-type prostaglandin D2 synthase protein regulates glial cell migration and morphology through myristoylated alanine-rich C-kinase substrate: prostaglandin D2-independent effects. J. Biol. Chem. 287(12), 9414–9428 (2012).
  • Blödorn B, Brück W, Tumani H et al. Expression of the beta-trace protein in human pachymeninx as revealed by in situ hybridization and immunocytochemistry. J. Neurosci. Res. 57(5), 730–734 (1999).
  • Urade Y, Kitahama K, Ohishi H, Kaneko T, Mizuno N, Hayaishi O. Dominant expression of mRNA for prostaglandin D synthase in leptomeninges, choroid plexus, and oligodendrocytes of the adult rat brain. Proc. Natl Acad. Sci. USA 90(19), 9070–9074 (1993).
  • Beuckmann CT, Lazarus M, Gerashchenko D et al. Cellular localization of lipocalin-type prostaglandin D synthase (β-trace) in the central nervous system of the adult rat. J. Comp. Neurol. 428(1), 62–78 (2000).
  • Taniike M, Mohri I, Eguchi N, Beuckmann CT, Suzuki K, Urade Y. Perineuronal oligodendrocytes protect against neuronal apoptosis through the production of lipocalin-type prostaglandin D synthase in a genetic demyelinating model. J. Neurosci. 22(12), 4885–4896 (2002).
  • El Khoury J, Luster AD. Mechanisms of microglia accumulation in Alzheimer’s disease: therapeutic implications. Trends Pharmacol. Sci. 29(12), 626–632 (2008).
  • Orr CF, Rowe DB, Halliday GM. An inflammatory review of Parkinson’s disease. Prog. Neurobiol. 68(5), 325–340 (2002).
  • Sargsyan SA, Monk PN, Shaw PJ. Microglia as potential contributors to motor neuron injury in amyotrophic lateral sclerosis. Glia 51(4), 241–253 (2005).
  • Raivich G, Banati R. Brain microglia and blood-derived macrophages: molecular profiles and functional roles in multiple sclerosis and animal models of autoimmune demyelinating disease. Brain Res. Brain Res. Rev. 46(3), 261–281 (2004).
  • Schuetz E, Thanos S. Microglia-targeted pharmacotherapy in retinal neurodegenerative diseases. Curr. Drug Targets 5(7), 619–627 (2004).
  • Suk K. Unexpected role of lipocalin-type prostaglandin D synthase in brain: regulation of glial cell migration and morphology. Cell Adh. Migr. 6(3), 160–163 (2012).
  • Ganfornina MD, Do Carmo S, Lora JM et al. Apolipoprotein D is involved in the mechanisms regulating protection from oxidative stress. Aging Cell 7(4), 506–515 (2008).
  • Zhang Y, Cong Y, Wang S, Zhang S. Antioxidant activities of recombinant amphioxus (Branchiostoma belcheri) apolipoprotein D. Mol. Biol. Rep. 38(3), 1847–1851 (2011).
  • Rassart E, Bedirian A, Do Carmo S et al. Apolipoprotein D. Biochim. Biophys. Acta 1482(1-2), 185–198 (2000).
  • Sanchez D, López-Arias B, Torroja L et al. Loss of glial lazarillo, a homolog of apolipoprotein D, reduces lifespan and stress resistance in Drosophila. Curr. Biol. 16(7), 680–686 (2006).
  • Walker DW, Muffat J, Rundel C, Benzer S. Overexpression of a Drosophila homolog of apolipoprotein D leads to increased stress resistance and extended lifespan. Curr. Biol. 16(7), 674–679 (2006).
  • Bajo-Grañeras R, Ganfornina MD, Martín-Tejedor E, Sanchez D. Apolipoprotein D mediates autocrine protection of astrocytes and controls their reactivity level, contributing to the functional maintenance of paraquat-challenged dopaminergic systems. Glia 59(10), 1551–1566 (2011).
  • Deisseroth K, Feng G, Majewska AK, Miesenböck G, Ting A, Schnitzer MJ. Next-generation optical technologies for illuminating genetically targeted brain circuits. J. Neurosci. 26(41), 10380–10386 (2006).
  • Figueiredo M, Lane S, Tang F et al. Optogenetic experimentation on astrocytes. Exp. Physiol. 96(1), 40–50 (2011).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.