125
Views
8
CrossRef citations to date
0
Altmetric
Perspective

Investigating infection processes with a workflow from organic chemistry to biophysics: the combination of metabolic glycoengineering, super-resolution fluorescence imaging and proteomics

, , , , , & show all
Pages 25-31 | Published online: 09 Jan 2014

References

  • Special issue: microbial proteomics. Proteomics 11(15), (2011).
  • Hartlova A, Krocova Z, Cerveny L, Stulik J. A proteomic view of the host–pathogen interaction: the host perspective. Proteomics 11(15), 3212–3220 (2011).
  • Laughlin ST, Baskin JM, Amacher SL, Bertozzi CR. In vivo imaging of membrane-associated glycans in developing zebrafish. Science 320(5876), 664–667 (2008).
  • Kayser H, Zeitler R, Kannicht C, Grunow D, Nuck R, Reutter W. Biosynthesis of a nonphysiological sialic acid in different rat organs, using N-propanoyl-d-hexosamines as precursors. J. Biol. Chem. 267(24), 16934–16938 (1992).
  • Keppler OT, Stehling P, Herrmann M et al. Biosynthetic modulation of sialic acid-dependent virus-receptor interactions of two primate polyoma viruses. J. Biol. Chem. 270(3), 1308–1314 (1995).
  • Herrmann M, von der Lieth CW, Stehling P, Reutter W, Pawlita M. Consequences of a subtle sialic acid modification on the murine polyomavirus receptor. J. Virol. 71(8), 5922–5931 (1997).
  • Schmidt C, Stehling P, Schnitzer J, Reutter W, Horstkorte R. Biochemical engineering of neural cell surfaces by the synthetic N-propanoyl-substituted neuraminic acid precursor. J. Biol. Chem. 273(30), 19146–19152 (1998).
  • Aich U, Campbell CT, Elmouelhi N et al. Regioisomeric SCFA attachment to hexosamines separates metabolic flux from cytotoxicity and MUC1 suppression. ACS Chem. Biol. 3(4), 230–240 (2008).
  • Campbell CT, Sampathkumar SG, Yarema KJ. Metabolic oligosaccharide engineering: perspectives, applications, and future directions. Mol. Biosyst. 3(3), 187–194 (2007).
  • Yarema KJ, Mahal LK, Bruehl RE, Rodriguez EC, Bertozzi CR. Metabolic delivery of ketone groups to sialic acid residues. Application To cell surface glycoform engineering. J. Biol. Chem. 273(47), 31168–31179 (1998).
  • Saxon E, Bertozzi CR. Cell surface engineering by a modified Staudinger reaction. Science 287(5460), 2007–2010 (2000).
  • Jewett JC, Bertozzi CR. Cu-free click cycloaddition reactions in chemical biology. Chem. Soc. Rev. 39(4), 1272–1279 (2010).
  • Homann A, Qamar RU, Serim S, Dersch P, Seibel J. Bioorthogonal metabolic glycoengineering of human larynx carcinoma (HEp-2) cells targeting sialic acid. Beilstein J. Org. Chem. 6, 24 (2010).
  • Hell SW, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19(11), 780–782 (1994).
  • Hell SW, Kroug M. Ground-state-depletion fluorescence microscopy: a concept for breaking the diffraction resolution limit. Appl. Phys. B60, 495–497 (1995).
  • Gustafsson MG. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microsc. 198(Pt 2), 82–87 (2000).
  • Betzig E, Patterson GH, Sougrat R et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313(5793), 1642–1645 (2006).
  • Hess ST, Girirajan TP, Mason MD. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys. J. 91(11), 4258–4272 (2006).
  • Rust MJ, Bates M, Zhuang X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3(10), 793–795 (2006).
  • Heilemann M, van de Linde S, Schüttpelz M et al. Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew. Chem. Int. Ed. Engl. 47(33), 6172–6176 (2008).
  • Wombacher R, Heidbreder M, van de Linde S et al. Live-cell super-resolution imaging with trimethoprim conjugates. Nat. Methods 7(9), 717–719 (2010).
  • van de Linde S, Löschberger A, Klein T et al. Direct stochastic optical reconstruction microscopy with standard fluorescent probes. Nat. Protocols 6, 991–1009 (2011).
  • Fölling J, Bossi M, Bock H et al. Fluorescence nanoscopy by ground-state depletion and single-molecule return. Nat. Methods 5(11), 943–945 (2008).
  • Steinhauer C, Forthmann C, Vogelsang J, Tinnefeld P. Superresolution microscopy on the basis of engineered dark states. J. Am. Chem. Soc. 130(50), 16840–16841 (2008).
  • Williamson DJ, Owen DM, Rossy J et al. Pre-existing clusters of the adaptor Lat do not participate in early T cell signaling events. Nat. Immunol. 12(7), 655–662 (2011).
  • Itano MS, Steinhauer C, Schmied JJ et al. Super-resolution imaging of C-type lectin and influenza hemagglutinin nanodomains on plasma membranes using blink microscopy. Biophys. J. 102(7), 1534–1542 (2012).
  • Bar-On D, Wolter S, van de Linde S et al. Super-resolution imaging reveals the internal architecture of nano-sized syntaxin clusters. J. Biol. Chem. 287(32), 27158–27167 (2012).
  • Lando D, Endesfelder U, Berger H et al. Quantitative single-molecule microscopy reveals that CENP-A(Cnp1) deposition occurs during G2 in fission yeast. Open Biol. 2(7), 120078 (2012).
  • Heilemann M, van de Linde S, Mukherjee A, Sauer M. Super-resolution imaging with small organic fluorophores. Angew. Chem. Int. Ed. Engl. 48(37), 6903–6908 (2009).
  • Klein T, Löschberger A, Proppert S, Wolter S, van de Linde S, Sauer M. Live-cell dSTORM with SNAP-tag fusion proteins. Nat. Methods 8(1), 7–9 (2011).
  • Klein T, van de Linde S, Sauer M. Live-cell super-resolution imaging goes multicolor. Chembiochem. 13(13), 1861–1863 (2012).
  • van de Linde S, Heilemann M, Sauer M. Live-cell super-resolution imaging with synthetic fluorophores. Annu. Rev. Phys. Chem. 63, 519–540 (2012).
  • Wilmes S, Staufenbiel M, Lisse D et al. Triple-color super-resolution imaging of live cells: resolving submicroscopic receptor organization in the plasma membrane. Angew. Chem. Int. Ed. Engl. 51(20), 4868–4871 (2012).
  • Lovric J. Introducing Proteomics: From Concepts to Sample Separation, Mass Spectrometry and Data Analysis. Wiley-Blackwell, NJ, USA (2011).
  • Godovac-Zimmermann J, Brown LR. Perspectives for mass spectrometry and functional proteomics. Mass Spectrom. Rev. 20(1), 1–57 (2001).
  • Silva JC, Denny R, Dorschel CA et al. Quantitative proteomic analysis by accurate mass retention time pairs. Anal. Chem. 77(7), 2187–2200 (2005).
  • Silva JC, Gorenstein MV, Li GZ, Vissers JP, Geromanos SJ. Absolute quantification of proteins by LCMSE: a virtue of parallel MS acquisition. Mol. Cell Proteomics 5(1), 144–156 (2006).
  • Kriegeskorte A, König S, Sander G et al. Small colony variants of Staphylococcus aureus reveal distinct protein profiles. Proteomics 11(12), 2476–2490 (2011).
  • Marouga R, David S, Hawkins E. The development of the DIGE system: 2D fluorescence difference gel analysis technology. Anal. Bioanal. Chem. 382(3), 669–678 (2005).
  • Ackermann D, Wang W, Streipert B, Geib B, Grün L, König S. Comparative fluorescence two-dimensional gel electrophoresis using a gel strip sandwich assembly for the simultaneous on-gel generation of a reference protein spot grid. Electrophoresis 33(9–10), 1406–1410 (2012).
  • Gu S, Wang T, Chen X. Quantitative proteomic analysis of LPS-induced differential immune response associated with TLR4 Polymorphisms by multiplex amino acid coded mass tagging. Proteomics 8(15), 3061–3070 (2008).
  • Roy K, Hilliard GM, Hamilton DJ, Luo J, Ostmann MM, Fleckenstein JM. Enterotoxigenic Escherichia coli EtpA mediates adhesion between flagella and host cells. Nature 457(7229), 594–598 (2009).
  • Wolter S, Löschberger A, Holm T et al. rapidSTORM: accurate, fast open-source software for localization microscopy. Nat. Methods 9(11), 1040–1041 (2012).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.