191
Views
10
CrossRef citations to date
0
Altmetric
Review

New targets for glycosaminoglycans and glycosaminoglycans as novel targets

, , , &
Pages 77-95 | Published online: 09 Jan 2014

References

  • Henrissat B, Surolia A, Stanley P. A genomic view of glycobiology. In: Essentials of Glycobiology (2nd Edition). Varki A, Cummings RD, Esko JD et al. (Eds). Cold Spring Harbor Laboratory Press, NY, USA (2009).
  • Bertozzi CR, Sasisekharan R. Glycomics. In: Essentials of Glycobiology (2nd Edition). Varki A, Cummings RD, Esko JD et al. (Eds). Cold Spring Harbor Laboratory Press, NY, USA (2009).
  • Gandhi NS, Mancera RL. The structure of glycosaminoglycans and their interactions with proteins. Chem. Biol. Drug Des. 72(6), 455–482 (2008).
  • Gesslbauer B, Rek A, Falsone F, Rajkovic E, Kungl AJ. Proteoglycanomics: tools to unravel the biological function of glycosaminoglycans. Proteomics 7(16), 2870–2880 (2007).
  • Li L, Ly M, Linhardt RJ. Proteoglycan sequence. Mol. Biosyst. 8(6), 1613–1625 (2012).
  • Capila I, Linhardt RJ. Heparin-protein interactions. Angew. Chem. Int. Ed. Engl. 41(3), 391–412 (2002).
  • Linhardt RJ, Toida T. Role of glycosaminoglycans in cellular communication. Acc. Chem. Res. 37(7), 431–438 (2004).
  • Häcker U, Nybakken K, Perrimon N. Heparan sulphate proteoglycans: the sweet side of development. Nat. Rev. Mol. Cell Biol. 6(7), 530–541 (2005).
  • Couchman JR. Transmembrane signaling proteoglycans. Annu. Rev. Cell Dev. Biol. 26, 89–114 (2010).
  • Smith RA, Meade K, Pickford CE, Holley RJ, Merry CL. Glycosaminoglycans as regulators of stem cell differentiation. Biochem. Soc. Trans. 39(1), 383–387 (2011).
  • Afratis N, Gialeli C, Nikitovic D et al. Glycosaminoglycans: key players in cancer cell biology and treatment. FEBS J. 279(7), 1177–1197 (2012).
  • Holt CE, Dickson BJ. Sugar codes for axons? Neuron 46(2), 169–172 (2005).
  • Bourin MC, Lindahl U. Glycosaminoglycans and the regulation of blood coagulation. Biochem. J. 289 (Pt 2), 313–330 (1993).
  • Jin L, Abrahams JP, Skinner R, Petitou M, Pike RN, Carrell RW. The anticoagulant activation of antithrombin by heparin. Proc. Natl Acad. Sci. USA 94(26), 14683–14688 (1997).
  • Gray E, Hogwood J, Mulloy B. The anticoagulant and antithrombotic mechanisms of heparin. Handb. Exp. Pharmacol. 207, 43–61 (2012).
  • Taylor KR, Gallo RL. Glycosaminoglycans and their proteoglycans: host-associated molecular patterns for initiation and modulation of inflammation. FASEB J. 20(1), 9–22 (2006).
  • Parish CR. The role of heparan sulphate in inflammation. Nat. Rev. Immunol. 6(9), 633–643 (2006).
  • Li JP, Vlodavsky I. Heparin, heparan sulfate and heparanase in inflammatory reactions. Thromb. Haemost. 102(5), 823–828 (2009).
  • Yip GW, Smollich M, Götte M. Therapeutic value of glycosaminoglycans in cancer. Mol. Cancer Ther. 5(9), 2139–2148 (2006).
  • Fuster MM, Esko JD. The sweet and sour of cancer: glycans as novel therapeutic targets. Nat. Rev. Cancer 5(7), 526–542 (2005).
  • Kisilevsky R, Ancsin JB, Szarek WA, Petanceska S. Heparan sulfate as a therapeutic target in amyloidogenesis: prospects and possible complications. Amyloid 14(1), 21–32 (2007).
  • Papy-Garcia D, Christophe M, Huynh MB et al. Glycosaminoglycans, protein aggregation and neurodegeneration. Curr. Protein Pept. Sci. 12(3), 258–268 (2011).
  • Aquino RS, Lee ES, Park PW. Diverse functions of glycosaminoglycans in infectious diseases. Prog. Mol. Biol. Transl. Sci. 93, 373–394 (2010).
  • Dinglasan RR, Jacobs-Lorena M. Insight into a conserved lifestyle: protein-carbohydrate adhesion strategies of vector-borne pathogens. Infect. Immun. 73(12), 7797–7807 (2005).
  • Gesslbauer B, Kungl AJ. Glycomic approaches toward drug development: therapeutically exploring the glycosaminoglycanome. Curr. Opin. Mol. Ther. 8(6), 521–528 (2006).
  • Rek A, Krenn E, Kungl AJ. Therapeutically targeting protein-glycan interactions. Br. J. Pharmacol. 157(5), 686–694 (2009).
  • Lindahl U. Heparan sulfate-protein interactions – a concept for drug design? Thromb. Haemost. 98(1), 109–115 (2007).
  • Kovensky J. Sulfated oligosaccharides: new targets for drug development? Curr. Med. Chem. 16(18), 2338–2344 (2009).
  • Esko JD, Linhardt RJ. Proteins that bind sulfated glycosaminoglycans. In: Essentials of Glycobiology (2nd Edition). Varki A, Cummings RD, Esko JD et al. (Eds). Cold Spring Harbor Laboratory Press, NY, USA (2009).
  • Ori A, Wilkinson MC, Fernig DG. A systems biology approach for the investigation of the heparin/heparan sulfate interactome. J. Biol. Chem. 286(22), 19892–19904 (2011).
  • Ernst S, Langer R, Cooney CL, Sasisekharan R. Enzymatic degradation of glycosaminoglycans. Crit. Rev. Biochem. Mol. Biol. 30(5), 387–444 (1995).
  • Shively JE, Conrad HE. Formation of anhydrosugars in the chemical depolymerization of heparin. Biochemistry 15(18), 3932–3942 (1976).
  • Rice KG, Kim YS, Grant AC, Merchant ZM, Linhardt RJ. High-performance liquid chromatographic separation of heparin-derived oligosaccharides. Anal. Biochem. 150(2), 325–331 (1985).
  • Turnbull JE. Analytical and preparative strong anion-exchange HPLC of heparan sulfate and heparin saccharides. Methods Mol. Biol. 171, 141–147 (2001).
  • Lyon M, Deakin JA, Gallagher JT. Liver heparan sulfate structure. A novel molecular design. J. Biol. Chem. 269(15), 11208–11215 (1994).
  • Skidmore MA, Guimond SE, Dumax-Vorzet AF, Yates EA, Turnbull JE. Disaccharide compositional analysis of heparan sulfate and heparin polysaccharides using UV or high-sensitivity fluorescence (BODIPY) detection. Nat. Protoc. 5(12), 1983–1992 (2010).
  • Thanawiroon C, Linhardt RJ. Separation of a complex mixture of heparin-derived oligosaccharides using reversed-phase high-performance liquid chromatography. J. Chromatogr. A 1014(1–2), 215–223 (2003).
  • Henriksen J, Roepstorff P, Ringborg LH. Ion-pairing reversed-phased chromatography/mass spectrometry of heparin. Carbohydr. Res. 341(3), 382–387 (2006).
  • Zhang Z, Xie J, Liu H, Liu J, Linhardt RJ. Quantification of heparan sulfate disaccharides using ion-pairing reversed-phase microflow high-performance liquid chromatography with electrospray ionization trap mass spectrometry. Anal. Chem. 81(11), 4349–4355 (2009).
  • Hitchcock AM, Yates KE, Costello CE, Zaia J. Comparative glycomics of connective tissue glycosaminoglycans. Proteomics 8(7), 1384–1397 (2008).
  • Staples GO, Bowman MJ, Costello CE et al. A chip-based amide-HILIC LC/MS platform for glycosaminoglycan glycomics profiling. Proteomics 9(3), 686–695 (2009).
  • Zamfir AD, Bindila L, Lion N, Allen M, Girault HH, Peter-Katalinic J. Chip electrospray mass spectrometry for carbohydrate analysis. Electrophoresis 26(19), 3650–3673 (2005).
  • Niñonuevo M, An H, Yin H et al. Nanoliquid chromatography-mass spectrometry of oligosaccharides employing graphitized carbon chromatography on microchip with a high-accuracy mass analyzer. Electrophoresis 26(19), 3641–3649 (2005).
  • Karlsson NG, Schulz BL, Packer NH, Whitelock JM. Use of graphitised carbon negative ion LC-MS to analyse enzymatically digested glycosaminoglycans. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 824(1–2), 139–147 (2005).
  • Gill VL, Wang Q, Shi X, Zaia J. Mass spectrometric method for determining the uronic acid epimerization in heparan sulfate disaccharides generated using nitrous acid. Anal. Chem. 84(17), 7539–7546 (2012).
  • Volpi N, Maccari F, Linhardt RJ. Capillary electrophoresis of complex natural polysaccharides. Electrophoresis 29(15), 3095–3106 (2008).
  • Gunay NS, Linhardt RJ. Capillary electrophoretic separation of heparin oligosaccharides under conditions amenable to mass spectrometric detection. J. Chromatogr. A 1014(1–2), 225–233 (2003).
  • Karamanos NK, Axelsson S, Vanky P, Tzanakakis GN, Hjerpe A. Determination of hyaluronan and galactosaminoglycan disaccharides by high-performance capillary electrophoresis at the attomole level. Applications to analyses of tissue and cell culture proteoglycans. J. Chromatogr. A 696(2), 295–305 (1995).
  • Toida T, Linhardt RJ. Detection of glycosaminoglycans as a copper (II) complex in capillary electrophoresis. Electrophoresis 17(2), 341–346 (1996).
  • Militsopoulou M, Lamari FN, Hjerpe A, Karamanos NK. Determination of twelve heparin- and heparan sulfate-derived disaccharides as 2-aminoacridone derivatives by capillary zone electrophoresis using ultraviolet and laser-induced fluorescence detection. Electrophoresis 23(7–8), 1104–1109 (2002).
  • Zamfir A, Seidler DG, Kresse H, Peter-Katalinic J. Structural investigation of chondroitin/dermatan sulfate oligosaccharides from human skin fibroblast decorin. Glycobiology 13(11), 733–742 (2003).
  • Volpi N, Maccari F. Electrophoretic approaches to the analysis of complex polysaccharides. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 834(1–2), 1–13 (2006).
  • Calabro A, Midura R, Wang A, West L, Plaas A, Hascall VC. Fluorophore-assisted carbohydrate electrophoresis (FACE) of glycosaminoglycans. Osteoarthritis Cartilage 9(Suppl. A), 16–22 (2001).
  • Zaia J, Costello CE. Tandem mass spectrometry of sulfated heparin-like glycosaminoglycan oligosaccharides. Anal. Chem. 75(10), 2445–2455 (2003).
  • Zaia J. Principles of mass spectrometry of glycosaminoglycans. J. Biomacromol. Mass Spectrom. 1(1), 3–36 (2005).
  • Staples GO, Zaia J. Analysis of glycosaminoglycans using mass spectrometry. Curr. Proteomics. 8(4), 325–336 (2011).
  • Sisu E, Flangea C, Serb A, Zamfir AD. Modern developments in mass spectrometry of chondroitin and dermatan sulfate glycosaminoglycans. Amino Acids 41(2), 235–256 (2011).
  • Zaia J. Mass spectrometry of oligosaccharides. Mass Spectrom. Rev. 23(3), 161–227 (2004).
  • Juhasz P, Biemann K. Utility of non-covalent complexes in the matrix-assisted laser desorption ionization mass spectrometry of heparin-derived oligosaccharides. Carbohydr. Res. 270(2), 131–147 (1995).
  • Laremore TN, Murugesan S, Park TJ, Avci FY, Zagorevski DV, Linhardt RJ. Matrix-assisted laser desorption/ionization mass spectrometric analysis of uncomplexed highly sulfated oligosaccharides using ionic liquid matrices. Anal. Chem. 78(6), 1774–1779 (2006).
  • Tissot B, Gasiunas N, Powell AK et al. Towards GAG glycomics: analysis of highly sulfated heparins by MALDI-TOF mass spectrometry. Glycobiology 17(9), 972–982 (2007).
  • Kailemia MJ, Li L, Ly M, Linhardt RJ, Amster IJ. Complete mass spectral characterization of a synthetic ultralow-molecular-weight heparin using collision-induced dissociation. Anal. Chem. 84(13), 5475–5478 (2012).
  • Wolff JJ, Amster IJ, Chi L, Linhardt RJ. Electron detachment dissociation of glycosaminoglycan tetrasaccharides. J. Am. Soc. Mass Spectrom. 18(2), 234–244 (2007).
  • Wolff JJ, Chi L, Linhardt RJ, Amster IJ. Distinguishing glucuronic from iduronic acid in glycosaminoglycan tetrasaccharides by using electron detachment dissociation. Anal. Chem. 79(5), 2015–2022 (2007).
  • Wolff JJ, Leach FE 3rd, Laremore TN et al. Negative electron transfer dissociation of glycosaminoglycans. Anal. Chem. 82(9), 3460–3466 (2010).
  • Shi X, Huang Y, Mao Y, Naimy H, Zaia J. Tandem mass spectrometry of heparan sulfate negative ions: sulfate loss patterns and chemical modification methods for improvement of product ion profiles. J. Am. Soc. Mass Spectrom. 23(9), 1498–1511 (2012).
  • Ly M, Leach FE 3rd, Laremore TN, Toida T, Amster IJ, Linhardt RJ. The proteoglycan bikunin has a defined sequence. Nat. Chem. Biol. 7(11), 827–833 (2011).
  • Yamada K, Kakehi K. Recent advances in the analysis of carbohydrates for biomedical use. J. Pharm. Biomed. Anal. 255(4), 702–727 (2011).
  • Saad OM, Leary JA. Heparin sequencing using enzymatic digestion and ESI-MSn with HOST: a heparin/HS oligosaccharide sequencing tool. Anal. Chem. 77(18), 5902–5911 (2005).
  • Tissot B, Ceroni A, Powell AK et al. Software tool for the structural determination of glycosaminoglycans by mass spectrometry. Anal. Chem. 80(23), 9204–9212 (2008).
  • Yang B, Bhattacharyya S, Linhardt R, Tobacman J. Exposure to common food additive carrageenan leads to reduced sulfatase activity and increase in sulfated glycosaminoglycans in human epithelial cells. Biochimie 94(6), 1309–1316 (2012).
  • Wei W, Niñonuevo MR, Sharma A, Danan-Leon LM, Leary JA. A comprehensive compositional analysis of heparin/heparan sulfate-derived disaccharides from human serum. Anal. Chem. 83(10), 3703–3708 (2011).
  • Tomatsu S, Montaño AM, Oguma T et al. Validation of disaccharide compositions derived from dermatan sulfate and heparan sulfate in mucopolysaccharidoses and mucolipidoses II and III by tandem mass spectrometry. Mol. Genet. Metab. 99(2), 124–131 (2010).
  • Weyers A, Yang B, Yoon DS et al. A structural analysis of glycosaminoglycans from lethal and nonlethal breast cancer tissues: toward a novel class of theragnostics for personalized medicine in oncology? OMICS 16(3), 79–89 (2012).
  • Flangea C, Sisu E, Seidler DG, Zamfir AD. Analysis of oversulfation in biglycan chondroitin/dermatan sulfate oligosaccharides by chip-based nanoelectrospray ionization multistage mass spectrometry. Anal. Biochem. 420(2), 155–162 (2012).
  • de Agostini AI, Dong JC, de Vantéry Arrighi C et al. Human follicular fluid heparan sulfate contains abundant 3-O-sulfated chains with anticoagulant activity. J. Biol. Chem. 283(42), 28115–28124 (2008).
  • Zamfir AD, Flangea C, Sisu E, Seidler DG, Peter-Katalinic J. Combining size-exclusion chromatography and fully automated chip-based nanoelectrospray quadrupole time-of-flight tandem mass spectrometry for structural analysis of chondroitin/dermatan sulfate in human decorin. Electrophoresis 32(13), 1639–1646 (2011).
  • Chai W, Hounsell EF, Bauer CJ, Lawson AM. Characterisation by LSI-MS and 1H NMR spectroscopy of tetra-, hexa-, and octa-saccharides of porcine intestinal heparin. Carbohydr. Res. 269(1), 139–156 (1995).
  • Yates EA, Santini F, Guerrini M, Naggi A, Torri G, Casu B. 1H and 13C NMR spectral assignments of the major sequences of twelve systematically modified heparin derivatives. Carbohydr. Res. 294, 15–27 (1996).
  • Mulloy B, Mourão PA, Gray E. Structure/function studies of anticoagulant sulphated polysaccharides using NMR. J. Biotechnol. 77(1), 123–135 (2000).
  • Guerrini M, Elli S, Gaudesi D et al. Effects on molecular conformation and anticoagulant activities of 1,6-anhydrosugars at the reducing terminal of antithrombin-binding octasaccharides isolated from low-molecular-weight heparin enoxaparin. J. Med. Chem. 53(22), 8030–8040 (2010).
  • Nguyen K, Rabenstein DL. Determination of the primary structure and carboxyl pK (A)s of heparin-derived oligosaccharides by band-selective homonuclear-decoupled two-dimensional (1)H NMR. Anal. Bioanal. Chem. 399(2), 663–671 (2011).
  • Webb A. Nuclear magnetic resonance of mass-limited samples using small RF coils. Anal. Bioanal. Chem. 388(3), 525–528 (2007).
  • Korir AK, Larive CK. On-line NMR detection of microgram quantities of heparin-derived oligosaccharides and their structure elucidation by microcoil NMR. Anal. Bioanal. Chem. 388(8), 1707–1716 (2007).
  • van Kuppevelt TH, Dennissen MA, van Venrooij WJ, Hoet RM, Veerkamp JH. Generation and application of type-specific anti-heparan sulfate antibodies using phage display technology. Further evidence for heparan sulfate heterogeneity in the kidney. J. Biol. Chem. 273(21), 12960–12966 (1998).
  • Thompson SM, Fernig DG, Jesudason EC et al. Heparan sulfate phage display antibodies identify distinct epitopes with complex binding characteristics: insights into protein binding specificities. J. Biol. Chem. 284(51), 35621–35631 (2009).
  • Smits NC, Robbesom AA, Versteeg EM, van de Westerlo EM, Dekhuijzen PN, van Kuppevelt TH. Heterogeneity of heparan sulfates in human lung. Am. J. Respir. Cell Mol. Biol. 30(2), 166–173 (2004).
  • Lensen JF, Rops AL, Wijnhoven TJ et al. Localization and functional characterization of glycosaminoglycan domains in the normal human kidney as revealed by phage display-derived single chain antibodies. J. Am. Soc. Nephrol. 16(5), 1279–1288 (2005).
  • Clark SJ, Keenan TD, Fielder HL et al. Mapping the differential distribution of glycosaminoglycans in the adult human retina, choroid, and sclera. Invest. Ophthalmol. Vis. Sci. 52(9), 6511–6521 (2011).
  • Bernsen MR, Smetsers TF, van de Westerlo E et al. Heparan sulphate epitope-expression is associated with the inflammatory response in metastatic malignant melanoma. Cancer Immunol. Immunother. 52(12), 780–783 (2003).
  • Jenniskens GJ, Hafmans T, Veerkamp JH, van Kuppevelt TH. Spatiotemporal distribution of heparan sulfate epitopes during myogenesis and synaptogenesis: a study in developing mouse intercostal muscle. Dev. Dyn. 225(1), 70–79 (2002).
  • van de Westerlo EM, Smetsers TF, Dennissen MA et al. Human single chain antibodies against heparin: selection, characterization, and effect on coagulation. Blood. 99(7), 2427–2433 (2002).
  • ten Dam GB, Hafmans T, Veerkamp JH, van Kuppevelt TH. Differential expression of heparan sulfate domains in rat spleen. J. Histochem. Cytochem. 51(6), 727–739 (2003).
  • Krenn EC, Wille I, Gesslbauer B, Poteser M, van Kuppevelt TH, Kungl AJ. Glycanogenomics: a qPCR-approach to investigate biological glycan function. Biochem. Biophys. Res. Commun. 375(3), 297–302 (2008).
  • Nairn AV, York WS, Harris K, Hall EM, Pierce JM, Moremen KW. Regulation of glycan structures in animal tissues: transcript profiling of glycan-related genes. J. Biol. Chem. 283(25), 17298–17313 (2008).
  • Nairn AV, Kinoshita-Toyoda A, Toyoda H et al. Glycomics of proteoglycan biosynthesis in murine embryonic stem cell differentiation. J. Proteome Res. 6(11), 4374–4387 (2007).
  • Tátrai P, Egedi K, Somorácz A et al. Quantitative and qualitative alterations of heparan sulfate in fibrogenic liver diseases and hepatocellular cancer. J. Histochem. Cytochem. 58(5), 429–441 (2010).
  • Levine SP, Wohl H. Human platelet factor 4: purification and characterization by affinity chromatography. Purification of human platelet factor 4. J. Biol. Chem. 251(2), 324–328 (1976).
  • Bengtsson G, Olivecrona T, Höök M, Riesenfeld J, Lindahl U. Interaction of lipoprotein lipase with native and modified heparin-like polysaccharides. Biochem. J. 189(3), 625–633 (1980).
  • Wu X, Linhardt RJ. Capillary affinity chromatography and affinity capillary electrophoresis of heparin binding proteins. Electrophoresis 19(15), 2650–2653 (1998).
  • Lee MK, Lander AD. Analysis of affinity and structural selectivity in the binding of proteins to glycosaminoglycans: development of a sensitive electrophoretic approach. Proc. Natl Acad. Sci. USA 88(7), 2768–2772 (1991).
  • Wu ZL, Zhang L, Beeler DL, Kuberan B, Rosenberg RD. A new strategy for defining critical functional groups on heparan sulfate. FASEB J. 16(6), 539–545 (2002).
  • Watson DJ, Lander AD, Selkoe DJ. Heparin-binding properties of the amyloidogenic peptides Aβ and amylin. Dependence on aggregation state and inhibition by Congo red. J. Biol. Chem. 272(50), 31617–31624 (1997).
  • Lau EK, Paavola CD, Johnson Z et al. Identification of the glycosaminoglycan binding site of the CC chemokine, MCP-1: implications for structure and function in vivo. J. Biol. Chem. 279(21), 22294–22305 (2004).
  • Khan S, Nan R, Gor J, Mulloy B, Perkins SJ. Bivalent and co-operative binding of complement factor H to heparan sulfate and heparin. Biochem. J. 444(3), 417–428 (2012).
  • Najjam S, Gibbs RV, Gordon MY, Rider CC. Characterization of human recombinant interleukin 2 binding to heparin and heparan sulfate using an ELISA approach. Cytokine 9(12), 1013–1022 (1997).
  • Ellyard JI, Simson L, Bezos A, Johnston K, Freeman C, Parish CR. Eotaxin selectively binds heparin. An interaction that protects eotaxin from proteolysis and potentiates chemotactic activity in vivo. J. Biol. Chem. 282(20), 15238–15247 (2007).
  • Scholefield Z, Yates EA, Wayne G, Amour A, McDowell W, Turnbull JE. Heparan sulfate regulates amyloid precursor protein processing by BACE1, the Alzheimer’s β-secretase. J. Cell Biol. 163(1), 97–107 (2003).
  • Smith SM, West LA, Govindraj P, Zhang X, Ornitz DM, Hassell JR. Heparan and chondroitin sulfate on growth plate perlecan mediate binding and delivery of FGF-2 to FGF receptors. Matrix Biol. 26(3), 175–184 (2007).
  • Cochran S, Li CP, Ferro V. A surface plasmon resonance-based solution affinity assay for heparan sulfate-binding proteins. Glycoconj. J. 26(5), 577–587 (2009).
  • Yu H, Muñoz EM, Edens RE, Linhardt RJ. Kinetic studies on the interactions of heparin and complement proteins using surface plasmon resonance. Biochim. Biophys. Acta 1726(2), 168–176 (2005).
  • Crublet E, Andrieu JP, Vivès RR, Lortat-Jacob H. The HIV-1 envelope glycoprotein gp120 features four heparan sulfate binding domains, including the co-receptor binding site. J. Biol. Chem. 283(22), 15193–15200 (2008).
  • Rek A, Brandner B, Geretti E, Kungl AJ. A biophysical insight into the RANTES-glycosaminoglycan interaction. Biochim. Biophys. Acta 1794(4), 577–582 (2009).
  • Goger B, Halden Y, Rek A et al. Different affinities of glycosaminoglycan oligosaccharides for monomeric and dimeric interleukin-8: a model for chemokine regulation at inflammatory sites. Biochemistry 41(5), 1640–1646 (2002).
  • Ahl IM, Jonsson BH, Tibell LA. Thermodynamic characterization of the interaction between the C-terminal domain of extracellular superoxide dismutase and heparin by isothermal titration calorimetry. Biochemistry 48(41), 9932–9940 (2009).
  • Hricovíni M, Guerrini M, Bisio A, Torri G, Naggi A, Casu B. Active conformations of glycosaminoglycans. NMR determination of the conformation of heparin sequences complexed with antithrombin and fibroblast growth factors in solution. Semin. Thromb. Hemost. 28(4), 325–334 (2002).
  • Jiménez-Barbero J, Díaz MD, Nieto PM. NMR structural studies of oligosaccharides related to cancer processes. Anticancer. Agents Med. Chem. 8(1), 52–63 (2008).
  • Nieto L, Canales Á, Giménez-Gallego G, Nieto PM, Jiménez-Barbero J. Conformational selection of the AGA*IA(M) heparin pentasaccharide when bound to the fibroblast growth factor receptor. Chemistry 17(40), 11204–11209 (2011).
  • Imberty A, Lortat-Jacob H, Pérez S. Structural view of glycosaminoglycan-protein interactions. Carbohydr. Res. 342(3–4), 430–439 (2007).
  • Schlessinger J, Plotnikov AN, Ibrahimi OA et al. Crystal structure of a ternary FGF-FGFR-heparin complex reveals a dual role for heparin in FGFR binding and dimerization. Mol. Cell 6(3), 743–750 (2000).
  • Shao C, Zhang F, Kemp MM et al. Crystallographic analysis of calcium-dependent heparin binding to annexin A2. J. Biol. Chem. 281(42), 31689–31695 (2006).
  • Yu Y, Sweeney MD, Saad OM et al. Chemokine-glycosaminoglycan binding: specificity for CCR2 ligand binding to highly sulfated oligosaccharides using FTICR mass spectrometry. J. Biol. Chem. 280(37), 32200–32208 (2005).
  • Sweeney MD, Yu Y, Leary JA. Effects of sulfate position on heparin octasaccharide binding to CCL2 examined by tandem mass spectrometry. J. Am. Soc. Mass Spectrom. 17(8), 1114–1119 (2006).
  • Fermas S, Gonnet F, Sutton A et al. Sulfated oligosaccharides (heparin and fucoidan) binding and dimerization of stromal cell-derived factor-1 (SDF-1/CXCL 12) are coupled as evidenced by affinity CE-MS analysis. Glycobiology 18(12), 1054–1064 (2008).
  • Keiser N, Venkataraman G, Shriver Z, Sasisekharan R. Direct isolation and sequencing of specific protein-binding glycosaminoglycans. Nat. Med. 7(1), 123–128 (2001).
  • Ori A, Free P, Courty J, Wilkinson MC, Fernig DG. Identification of heparin-binding sites in proteins by selective labeling. Mol. Cell Proteomics 8(10), 2256–2265 (2009).
  • Tyler-Cross R, Sobel M, Marques D, Harris RB. Heparin binding domain peptides of antithrombin III: analysis by isothermal titration calorimetry and circular dichroism spectroscopy. Protein Sci. 3(4), 620–627 (1994).
  • Stone AL, Beeler D, Oosta G, Rosenberg RD. Circular dichroism spectroscopy of heparin-antithrombin interactions. Proc. Natl Acad. Sci. USA 79(23), 7190–7194 (1982).
  • Uniewicz KA, Ori A, Rudd TR et al. Following protein-glycosaminoglycan polysaccharide interactions with differential scanning fluorimetry. Methods Mol. Biol. 836, 171–182 (2012).
  • Bágel’ová J, Antalík M, Bona M. Studies on cytochrome c-heparin interactions by differential scanning calorimetry. Biochem. J. 297 (Pt 1), 99–101 (1994).
  • DeLauder S, Schwarz FP, Williams JC Sr, Atha DH. Thermodynamic analysis of heparin binding to human antithrombin. Biochim. Biophys. Acta 1159(2), 141–149 (1992).
  • Yates EA, Terry CJ, Rees C et al. Protein-GAG interactions: new surface-based techniques, spectroscopies and nanotechnology probes. Biochem. Soc. Trans. 34(Pt 3), 427–430 (2006).
  • Bugs MR, Bortoleto-Bugs RK, Cornélio ML. The interaction between heparin and Lys49 phospholipase A2 reveals the natural binding of heparin on the enzyme. Int. J. Biol. Macromol. 37(1–2), 21–27 (2005).
  • Atha DH, Stephens AW, Rosenberg RD. Evaluation of critical groups required for the binding of heparin to antithrombin. Proc. Natl Acad. Sci. USA 81(4), 1030–1034 (1984).
  • Severin IC, Gaudry JP, Johnson Z et al. Characterization of the chemokine CXCL11-heparin interaction suggests two different affinities for glycosaminoglycans. J. Biol. Chem. 285(23), 17713–17724 (2010).
  • Leppänen VM, Bespalov MM, Runeberg-Roos P et al. The structure of GFRα1 domain 3 reveals new insights into GDNF binding and RET activation. EMBO J. 23(7), 1452–1462 (2004).
  • de Paz JL, Noti C, Seeberger PH. Microarrays of synthetic heparin oligosaccharides. J. Am. Chem. Soc. 128(9), 2766–2767 (2006).
  • Park TJ, Lee MY, Dordick JS, Linhardt RJ. Signal amplification of target protein on heparin glycan microarray. Anal. Biochem. 383(1), 116–121 (2008).
  • Yin J, Seeberger PH. Applications of heparin and heparan sulfate microarrays. Meth. Enzymol. 478, 197–218 (2010).
  • Puvirajesinghe TM, Ahmed YA, Powell AK, Fernig DG, Guimond SE, Turnbull JE. Array-based functional screening of heparin glycans. Chem. Biol. 19(5), 553–558 (2012).
  • Zhi ZL, Powell AK, Turnbull JE. Fabrication of carbohydrate microarrays on gold surfaces: direct attachment of nonderivatized oligosaccharides to hydrazide-modified self-assembled monolayers. Anal. Chem. 78(14), 4786–4793 (2006).
  • Zhi ZL, Laurent N, Powell AK et al. A versatile gold surface approach for fabrication and interrogation of glycoarrays. Chembiochem. 9(10), 1568–1575 (2008).
  • Powell AK, Ahmed YA, Yates EA, Turnbull JE. Generating heparan sulfate saccharide libraries for glycomics applications. Nat. Protoc. 5(5), 821–833 (2010).
  • Guimond SE, Puvirajesinghe TM, Skidmore MA et al. Rapid purification and high sensitivity analysis of heparan sulfate from cells and tissues: toward glycomics profiling. J. Biol. Chem. 284(38), 25714–25722 (2009).
  • Plante OJ, Palmacci ER, Seeberger PH. Automated solid-phase synthesis of oligosaccharides. Science 291(5508), 1523–1527 (2001).
  • Orgueira HA, Bartolozzi A, Schell P, Litjens RE, Palmacci ER, Seeberger PH. Modular synthesis of heparin oligosaccharides. Chemistry 9(1), 140–169 (2003).
  • Yates EA, Guimond SE, Turnbull JE. Highly diverse heparan sulfate analogue libraries: providing access to expanded areas of sequence space for bioactivity screening. J. Med. Chem. 47(1), 277–280 (2004).
  • Liu R, Xu Y, Chen M et al. Chemoenzymatic design of heparan sulfate oligosaccharides. J. Biol. Chem. 285(44), 34240–34249 (2010).
  • Chen J, Jones CL, Liu J. Using an enzymatic combinatorial approach to identify anticoagulant heparan sulfate structures. Chem. Biol. 14(9), 986–993 (2007).
  • Turnbull JE, Gallagher JT. Molecular organization of heparan sulphate from human skin fibroblasts. Biochem. J. 265(3), 715–724 (1990).
  • Murali S, Manton KJ, Tjong V et al. Purification and characterization of heparan sulfate from human primary osteoblasts. J. Cell. Biochem. 108(5), 1132–1142 (2009).
  • Lu H, McDowell LM, Studelska DR, Zhang L. Glycosaminoglycans in human and bovine serum: detection of twenty-four heparan sulfate and chondroitin sulfate motifs including a novel sialic acid-modified chondroitin sulfate linkage hexasaccharide. Glycobiol. Insights 2010(2), 13–28 (2010).
  • Coppa GV, Gabrielli O, Buzzega D et al. Composition and structure elucidation of human milk glycosaminoglycans. Glycobiology 21(3), 295–303 (2011).
  • Gesslbauer B, Poljak A, Handwerker C et al. Comparative membrane proteome analysis of three Borrelia species. Proteomics 12(6), 845–858 (2012).
  • Parveen N, Leong JM. Identification of a candidate glycosaminoglycan-binding adhesin of the Lyme disease spirochete Borrelia burgdorferi. Mol. Microbiol. 35(5), 1220–1234 (2000).
  • Guo BP, Brown EL, Dorward DW, Rosenberg LC, Höök M. Decorin-binding adhesins from Borrelia burgdorferi. Mol. Microbiol. 30(4), 711–723 (1998).
  • Cardin AD, Weintraub HJ. Molecular modeling of protein–glycosaminoglycan interactions. Arteriosclerosis 9(1), 21–32 (1989).
  • Sobel M, Soler DF, Kermode JC, Harris RB. Localization and characterization of a heparin binding domain peptide of human von Willebrand factor. J. Biol. Chem. 267(13), 8857–8862 (1992).
  • Hamel DJ, Sielaff I, Proudfoot AE, Handel TM. Chapter 4. Interactions of chemokines with glycosaminoglycans. Meth. Enzymol. 461, 71–102 (2009).
  • Lindahl U, Bäckström G, Höök M, Thunberg L, Fransson LA, Linker A. Structure of the antithrombin-binding site in heparin. Proc. Natl Acad. Sci. USA 76(7), 3198–3202 (1979).
  • Desai UR, Petitou M, Björk I, Olson ST. Mechanism of heparin activation of antithrombin. Role of individual residues of the pentasaccharide activating sequence in the recognition of native and activated states of antithrombin. J. Biol. Chem. 273(13), 7478–7487 (1998).
  • Johnson DJ, Langdown J, Li W, Luis SA, Baglin TP, Huntington JA. Crystal structure of monomeric native antithrombin reveals a novel reactive center loop conformation. J. Biol. Chem. 281(46), 35478–35486 (2006).
  • Kusche M, Bäckström G, Riesenfeld J, Petitou M, Choay J, Lindahl U. Biosynthesis of heparin. O-sulfation of the antithrombin-binding region. J. Biol. Chem. 263(30), 15474–15484 (1988).
  • Shriver Z, Sundaram M, Venkataraman G et al. Cleavage of the antithrombin III binding site in heparin by heparinases and its implication in the generation of low molecular weight heparin. Proc. Natl Acad. Sci. USA 97(19), 10365–10370 (2000).
  • Pike RN, Buckle AM, le Bonniec BF, Church FC. Control of the coagulation system by serpins. Getting by with a little help from glycosaminoglycans. FEBS J. 272(19), 4842–4851 (2005).
  • Quinsey NS, Greedy AL, Bottomley SP, Whisstock JC, Pike RN. Antithrombin: in control of coagulation. Int. J. Biochem. Cell Biol. 36(3), 386–389 (2004).
  • Trowbridge JM, Gallo RL. Dermatan sulfate: new functions from an old glycosaminoglycan. Glycobiology 12(9), 117R–125R (2002).
  • Maimone MM, Tollefsen DM. Structure of a dermatan sulfate hexasaccharide that binds to heparin cofactor II with high affinity. J. Biol. Chem. 265(30), 18263–18271 (1990).
  • McKeehan WL, Kan M. Heparan sulfate fibroblast growth factor receptor complex: structure–function relationships. Mol. Reprod. Dev. 39(1), 69–81; discussion 81 (1994).
  • Chang Z, Meyer K, Rapraeger AC, Friedl A. Differential ability of heparan sulfate proteoglycans to assemble the fibroblast growth factor receptor complex in situ. FASEB J. 14(1), 137–144 (2000).
  • Zhu H, Duchesne L, Rudland PS, Fernig DG. The heparan sulfate co-receptor and the concentration of fibroblast growth factor-2 independently elicit different signalling patterns from the fibroblast growth factor receptor. Cell Commun. Signal 8, 14 (2010).
  • Asada M, Shinomiya M, Suzuki M et al. Glycosaminoglycan affinity of the complete fibroblast growth factor family. Biochim. Biophys. Acta 1790(1), 40–48 (2009).
  • Mohammadi M, Olsen SK, Ibrahimi OA. Structural basis for fibroblast growth factor receptor activation. Cytokine Growth Factor Rev. 16(2), 107–137 (2005).
  • Ornitz DM, Xu J, Colvin JS et al. Receptor specificity of the fibroblast growth factor family. J. Biol. Chem. 271(25), 15292–15297 (1996).
  • Pellegrini L, Burke DF, von Delft F, Mulloy B, Blundell TL. Crystal structure of fibroblast growth factor receptor ectodomain bound to ligand and heparin. Nature 407(6807), 1029–1034 (2000).
  • Harmer NJ. Insights into the role of heparan sulphate in fibroblast growth factor signalling. Biochem. Soc. Trans. 34(Pt 3), 442–445 (2006).
  • Saxena K, Schieborr U, Anderka O et al. Influence of heparin mimetics on assembly of the FGF.FGFR4 signaling complex. J. Biol. Chem. 285(34), 26628–26640 (2010).
  • Goodger SJ, Robinson CJ, Murphy KJ et al. Evidence that heparin saccharides promote FGF2 mitogenesis through two distinct mechanisms. J. Biol. Chem. 283(19), 13001–13008 (2008).
  • Naimy H, Buczek-Thomas JA, Nugent MA, Leymarie N, Zaia J. Highly sulfated nonreducing end-derived heparan sulfate domains bind fibroblast growth factor-2 with high affinity and are enriched in biologically active fractions. J. Biol. Chem. 286(22), 19311–19319 (2011).
  • Turnbull JE, Fernig DG, Ke Y, Wilkinson MC, Gallagher JT. Identification of the basic fibroblast growth factor binding sequence in fibroblast heparan sulfate. J. Biol. Chem. 267(15), 10337–10341 (1992).
  • Guimond S, Maccarana M, Olwin BB, Lindahl U, Rapraeger AC. Activating and inhibitory heparin sequences for FGF-2 (basic FGF). Distinct requirements for FGF-1, FGF-2, and FGF-4. J. Biol. Chem. 268(32), 23906–23914 (1993).
  • Shibuya M. Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) signaling in angiogenesis: a crucial target for anti- and pro-angiogenic therapies. Genes Cancer 2(12), 1097–1105 (2011).
  • Koch S, Claesson-Welsh L. Signal transduction by vascular endothelial growth factor receptors. Cold Spring Harb. Perspect. Med. 2(7), a006502 (2012).
  • Roy H, Bhardwaj S, Ylä-Herttuala S. Biology of vascular endothelial growth factors. FEBS Lett. 580(12), 2879–2887 (2006).
  • Robinson CJ, Mulloy B, Gallagher JT, Stringer SE. VEGF165-binding sites within heparan sulfate encompass two highly sulfated domains and can be liberated by K5 lyase. J. Biol. Chem. 281(3), 1731–1740 (2006).
  • Zhao W, McCallum SA, Xiao Z, Zhang F, Linhardt RJ. Binding affinities of vascular endothelial growth factor (VEGF) for heparin-derived oligosaccharides. Biosci. Rep. 32(1), 71–81 (2012).
  • Ferrara N. Vascular endothelial growth factor. Arterioscler. Thromb. Vasc. Biol. 29(6), 789–791 (2009).
  • Cole CL, Hansen SU, Baráth M et al. Synthetic heparan sulfate oligosaccharides inhibit endothelial cell functions essential for angiogenesis. PLoS ONE 5(7), e11644 (2010).
  • Mousa SA, Feng X, Xie J et al. Synthetic oligosaccharide stimulates and stabilizes angiogenesis: structure-function relationships and potential mechanisms. J. Cardiovasc. Pharmacol. 48(2), 6–13 (2006).
  • Ferro V, Dredge K, Liu L et al. PI-88 and novel heparan sulfate mimetics inhibit angiogenesis. Semin. Thromb. Hemost. 33(5), 557–568 (2007).
  • Esko JD, Sharon N. Microbial lectins: hemagglutinins, adhesins and toxins. In: Essentials of Glycobiology (2nd Edition). Cold Spring Harbor Laboratory Press, NY, USA (2009).
  • Chen Y, Götte M, Liu J, Park PW. Microbial subversion of heparan sulfate proteoglycans. Mol. Cells 26(5), 415–426 (2008).
  • Liu J, Shriver Z, Pope RM et al. Characterization of a heparan sulfate octasaccharide that binds to herpes simplex virus type 1 glycoprotein D. J. Biol. Chem. 277(36), 33456–33467 (2002).
  • Choudhary S, Marquez M, Alencastro F, Spors F, Zhao Y, Tiwari V. Herpes simplex virus type-1 (HSV-1) entry into human mesenchymal stem cells is heavily dependent on heparan sulfate. J. Biomed. Biotechnol. 2011, 264350 (2011).
  • Barth H, Schnober EK, Zhang F et al. Viral and cellular determinants of the hepatitis C virus envelope-heparan sulfate interaction. J. Virol. 80(21), 10579–10590 (2006).
  • Zautner AE, Jahn B, Hammerschmidt E, Wutzler P, Schmidtke M. N- and 6-O-sulfated heparan sulfates mediate internalization of coxsackievirus B3 variant PD into CHO-K1 cells. J. Virol. 80(13), 6629–6636 (2006).
  • Olson ST, Swanson R, Petitou M. Specificity and selectivity profile of EP217609: a new neutralizable dual-action anticoagulant that targets thrombin and factor Xa. Blood 119(10), 2187–2195 (2012).
  • Rao SV, Melloni C, Myles-Dimauro S et al.; EMINENCE Investigators. Evaluation of a new heparin agent in percutaneous coronary intervention: results of the Phase 2 evaluation of M118 in percutaneous coronary intervention (EMINENCE) trial. Circulation 121(15), 1713–1721 (2010).
  • Zhou H, Roy S, Cochran E et al. M402, a novel heparan sulfate mimetic, targets multiple pathways implicated in tumor progression and metastasis. PLos One. 6(6), e21106 (2011).
  • Dredge K, Hammond E, Handley P et al. PG545, a dual heparanase and angiogenesis inhibitor, induces potent anti-tumour and anti-metastatic efficacy in preclinical models. Br. J. Cancer 104(4), 635–642 (2011).
  • Chang J, Patton JT, Sarkar A, Ernst B, Magnani JL, Frenette PS. GMI-1070, a novel pan-selectin antagonist, reverses acute vascular occlusions in sickle cell mice. Blood 116(10), 1779–1786 (2010).
  • Rumjon A, Coats T, Javaid MM. Review of eprodisate for the treatment of renal disease in AA amyloidosis. Int. J. Nephrol. Renovasc. Dis. 5, 37–43 (2012).
  • Dember LM, Hawkins PN, Hazenberg BP et al.; Eprodisate for AA Amyloidosis Trial Group. Eprodisate for the treatment of renal disease in AA amyloidosis. N. Engl. J. Med. 356(23), 2349–2360 (2007).
  • Seeberger PH. Automated oligosaccharide synthesis. Chem. Soc. Rev. 37(1), 19–28 (2008).
  • Soto Y, Acosta E, Delgado L et al. Antiatherosclerotic effect of an antibody that binds to extracellular matrix glycosaminoglycans. Arterioscler. Thromb. Vasc. Biol. 32(3), 595–604 (2012).
  • Nakano K, Ishiguro T, Konishi H et al. Generation of a humanized anti-glypican 3 antibody by CDR grafting and stability optimization. Anticancer. Drugs 21(10), 907–916 (2010).
  • Adage T, Piccinini AM, Falsone A et al. Structure-based design of decoy chemokines as a way to explore the pharmacological potential of glycosaminoglycans. Br. J. Pharmacol. 167(6), 1195–1205 (2012).
  • Liehn EA, Piccinini AM, Koenen RR et al. A new monocyte chemotactic protein-1/chemokine CC motif ligand-2 competitor limiting neointima formation and myocardial ischemia/reperfusion injury in mice. J. Am. Coll. Cardiol. 56(22), 1847–1857 (2010).
  • Brandner B, Rek A, Diedrichs-Möhring M, Wildner G, Kungl AJ. Engineering the glycosaminoglycan-binding affinity, kinetics and oligomerization behavior of RANTES: a tool for generating chemokine-based glycosaminoglycan antagonists. Protein Eng. Des. Sel. 22(6), 367–373 (2009).
  • Skov L, Beurskens FJ, Zachariae CO et al. IL-8 as antibody therapeutic target in inflammatory diseases: reduction of clinical activity in palmoplantar pustulosis. J. Immunol. 181(1), 669–679 (2008).
  • Haringman JJ, Gerlag DM, Smeets TJ et al. A randomized controlled trial with an anti-CCL2 (anti-monocyte chemotactic protein 1) monoclonal antibody in patients with rheumatoid arthritis. Arthritis Rheum. 54(8), 2387–2392 (2006).
  • Kuhne M, Preston B, Wallace S et al. MDX-1100, a fully human anti-CXCL10 (IP-10) antibody, is a high affinity, neutralizing antibody that has entered Phase I clinical trials for the treatment of ulcerative colitis (UC). J. Immunol. 178, s241 (2007).
  • de Graaf KL, Kosco-Vilbois MH, Fisher N. Therapeutic targeting of chemokines with monoclonal antibodies. Curr. Immunol. Rev. 8, 141–148 (2012).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.