44
Views
18
CrossRef citations to date
0
Altmetric
Special Report

Heat-shock protein vaccines as active immunotherapy against human gliomas

, &
Pages 1577-1582 | Published online: 10 Jan 2014

References

  • Yang I, Kremen TJ, Giovannone AJ et al. Modulation of major histocompatibility complex class I molecules and major histocompatibility complex-bound immunogenic peptides induced by interferon-α and interferon-γ treatment of human glioblastoma multiforme. J. Neurosurg.100(2), 310–319 (2004).
  • Park HG, Han SI, Oh SY, Kang HS. Cellular responses to mild heat stress. Cell. Mol. Life Sci.62(1), 10–23 (2005).
  • Young JC, Agashe VR, Siegers K, Hartl FU. Pathways of chaperone-mediated protein folding in the cytosol. Nat. Rev. Mol. Cell Biol.5(10), 781–791 (2004).
  • Soo ET, Yip GW, Lwin ZM, Kumar SD, Bay BH. Heat shock proteins as novel therapeutic targets in cancer. In Vivo22(3), 311–315 (2008).
  • Pockley AG. Heat shock proteins as regulators of the immune response. Lancet362(9382), 469–476 (2003).
  • Voellmy R. Feedback regulation of the heat shock response. Handb. Exp. Pharmacol.(172), 43–68 (2006).
  • Schmitt E, Gehrmann M, Brunet M, Multhoff G, Garrido C. Intracellular and extracellular functions of heat shock proteins: repercussions in cancer therapy. J. Leukoc. Biol.81(1), 15–27 (2007).
  • Srivastava PK. Peptide-binding heat shock proteins in the endoplasmic reticulum: role in immune response to cancer and in antigen presentation. Adv. Cancer Res.62, 153–177 (1993).
  • Manjili MH, Wang XY, Park J, Facciponte JG, Repasky EA, Subjeck JR. Immunotherapy of cancer using heat shock proteins. Front. Biosci.7, d43–d52 (2002).
  • Subjeck JR, Shyy TT. Stress protein systems of mammalian cells. Am. J. Physiol.250(1 Pt 1), C1–17 (1986).
  • Binder RJ. Heat shock protein vaccines: from bench to bedside. Int. Rev. Immunol.25(5–6), 353–375 (2006).
  • Srivastava PK, Amato RJ. Heat shock proteins: the ‘swiss army knife’ vaccines against cancers and infectious agents. Vaccine19(17–19), 2590–2597 (2001).
  • Suto R, Srivastava PK. A mechanism for the specific immunogenicity of heat shock protein-chaperoned peptides. Science269(5230), 1585–1588 (1995).
  • Tamura Y, Peng P, Liu K, Daou M, Srivastava PK. Immunotherapy of tumors with autologous tumor-derived heat shock protein preparations. Science278(5335), 117–120 (1997).
  • Udono H, Srivastava PK. Comparison of tumor-specific immunogenicities of stress-induced proteins Gp96, HSP90, and HSP70. J. Immunol.152(11), 5398–5403 (1994).
  • Srivastava PK, Deleo AB, Old LJ. Tumor rejection antigens of chemically induced sarcomas of inbred mice. Proc. Natl Acad. Sci. USA83(10), 3407–3411 (1986).
  • Srivastava PK, Menoret A, Basu S, Binder RJ, Mcquade KL. Heat shock proteins come of age: primitive functions acquire new roles in an adaptive world. Immunity8(6), 657–665 (1998).
  • Blachere NE, Li Z, Chandawarkar RY et al. Heat shock protein-peptide complexes, reconstituted in vitro, elicit peptide-specific cytotoxic T lymphocyte response and tumor immunity. J. Exp. Med.186(8), 1315–1322 (1997).
  • Przepiorka D, Srivastava PK. Heat shock protein–peptide complexes as immunotherapy for human cancer. Mol. Med. Today4(11), 478–484 (1998).
  • Binder RJ, Blachere NE, Srivastava PK. Heat shock protein-chaperoned peptides but not free peptides introduced into the cytosol are presented efficiently by major histocompatibility complex I molecules. J. Biol. Chem.276(20), 17163–17171 (2001).
  • Castelli C, Rivoltini L, Rini F et al. Heat shock proteins: biological functions and clinical application as personalized vaccines for human cancer. Cancer Immunol. Immunother.53(3), 227–233 (2004).
  • Nicchitta CV, Carrick DM, Baker-Lepain JC. The messenger and the message: Gp96 (grp94)-peptide interactions in cellular immunity. Cell Stress Chaperones9(4), 325–331 (2004).
  • Wang XY, Li Y, Yang G, Subjeck JR. Current ideas about applications of heat shock proteins in vaccine design and immunotherapy. Int. J. Hyperthermia21(8), 717–722 (2005).
  • Grossmann ME, Madden BJ, Gao F et al. Proteomics shows HSP70 does not bind peptide sequences indiscriminately in vivo. Exp. Cell Res.297(1), 108–117 (2004).
  • Singh-Jasuja H, Hilf N, Arnold-Schild D, Schild H. The role of heat shock proteins and their receptors in the activation of the immune system. Biol. Chem.382(4), 629–636 (2001).
  • Zhu X, Zhao X, Burkholder WF et al. Structural analysis of substrate binding by the molecular chaperone dnak. Science272(5268), 1606–1614 (1996).
  • Graner MW, Bigner DD. Chaperone proteins and brain tumors: potential targets and possible therapeutics. Neuro Oncol.7(3), 260–278 (2005).
  • Scheibel T, Weikl T, Buchner J. Two chaperone sites in HSP90 differing in substrate specificity and ATP dependence. Proc. Natl Acad. Sci. USA95(4), 1495–1499 (1998).
  • Workman P. Altered states: selectively drugging the HSP90 cancer chaperone. Trends Mol. Med.10(2), 47–51 (2004).
  • Obermann WM, Sondermann H, Russo AA, Pavletich NP, Hartl FU. In vivo function of HSP90 is dependent on ATP binding and ATP hydrolysis. J. Cell Biol.143(4), 901–910 (1998).
  • Wang XY, Kaneko Y, Repasky E, Subjeck JR. Heat shock proteins and cancer immunotherapy. Immunol. Invest.29(2), 131–137 (2000).
  • Srivastava PK, Udono H, Blachere NE, Li Z. Heat shock proteins transfer peptides during antigen processing and ctl priming. Immunogenetics39(2), 93–98 (1994).
  • Roigas J, Wallen ES, Loening SA, Moseley PL. Heat shock protein (HSP72) surface expression enhances the lysis of a human renal cell carcinoma by IL-2 stimulated NK cells. Adv. Exp. Med. Biol.451, 225–229 (1998).
  • Arnold-Schild D, Hanau D, Spehner D et al. Cutting edge: receptor-mediated endocytosis of heat shock proteins by professional antigen-presenting cells. J. Immunol.162(7), 3757–3760 (1999).
  • Basu S, Binder RJ, Ramalingam T, Srivastava PK. Cd91 is a common receptor for heat shock proteins Gp96, HSP90, HSP70, and calreticulin. Immunity14(3), 303–313 (2001).
  • Binder RJ, Han DK, Srivastava PK. Cd91: a receptor for heat shock protein Gp96. Nat. Immunol.1(2), 151–155 (2000).
  • Binder RJ, Karimeddini D, Srivastava PK. Adjuvanticity of α 2-macroglobulin, an independent ligand for the heat shock protein receptor Cd91. J. Immunol.166(8), 4968–4972 (2001).
  • Binder RJ, Srivastava PK. Essential role of Cd91 in re-presentation of Gp96-chaperoned peptides. Proc. Natl Acad. Sci. USA101(16), 6128–6133 (2004).
  • Delneste Y, Magistrelli G, Gauchat J et al. Involvement of Lox-1 in dendritic cell-mediated antigen cross-presentation. Immunity17(3), 353–362 (2002).
  • Nishikawa M, Takemoto S, Takakura Y. Heat shock protein derivatives for delivery of antigens to antigen presenting cells. Int. J. Pharm.354(1–2), 23–27 (2008).
  • Castellino F, Boucher PE, Eichelberg K et al. Receptor-mediated uptake of antigen/heat shock protein complexes results in major histocompatibility complex class I antigen presentation via two distinct processing pathways. J. Exp. Med.191(11), 1957–1964 (2000).
  • Takakura Y, Takemoto S, Nishikawa M. HSP-based tumor vaccines: state-of-the-art and future directions. Curr. Opin. Mol. Ther.9(4), 385–391 (2007).
  • Basu S, Binder RJ, Suto R, Anderson KM, Srivastava PK. Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-κB pathway. Int. Immunol.12(11), 1539–1546 (2000).
  • Wang HH, Mao CY, Teng LS, Cao J. Recent advances in heat shock protein-based cancer vaccines. Hepatobiliary Pancreat. Dis. Int.5(1), 22–27 (2006).
  • Calderwood SK, Khaleque MA, Sawyer DB, Ciocca DR. Heat shock proteins in cancer: chaperones of tumorigenesis. Trends Biochem. Sci.31(3), 164–172 (2006).
  • Calderwood SK, Theriault JR, Gong J. Message in a bottle: role of the 70 kDa heat shock protein family in antitumor immunity. Eur J. Immunol.35(9), 2518–2527 (2005).
  • Ciocca DR, Calderwood SK. Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones10(2), 86–103 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.